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Abstract 31 

A critical transition can occur in many real-world systems and the ability to forecast the 32 

occurrence of transition is of major interest in a range of contexts. Various early warning 33 

signals (EWS) have been developed to anticipate a critical transition or distinguish types 34 

of transitions. However, there is no effective method to establish practical thresholds 35 

indicating the condition when a critical transition is most likely to occur. Here, we 36 

introduce a powerful EWS, named Dynamical Eigen-Value (DEV), rooted in bifurcation 37 

theory of dynamical systems, that estimates the dominant eigen-value of the system. 38 

Theoretically, the absolute value of DEV approaches 1 when the system approaches 39 

bifurcation, whereas its position in the complex plane indicates the type of transition. We 40 

demonstrate the efficacy of the DEV approach in model systems with known bifurcation 41 

types and in addition we test the DEV approach on various critical transitions in real-42 

world systems.  43 
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Introduction 44 

There is a growing consensus that many real-world systems have a critical threshold 45 

(i.e., tipping point)1-5, at which systems suddenly shift to a distinct state, i.e., critical 46 

transitions initiated by local bifurcation6, e.g., outbreak of desert locusts7, development of 47 

psychiatric disorders2, or rapid global warming at the end of glacial periods8. Critical 48 

transitions may shift a system to a new state with undesirable properties, causing damage 49 

and loss in environmental, economic, and public health resources in the absence of timely 50 

corrective action. Thus, it is important for various fields and in many applications to 51 

forecast occurrence and consequence of critical transitions.  52 

Many early warning signals (EWS) have been proposed to anticipate upcoming 53 

critical transitions9. However, most EWS can only warn of a critical transition in a 54 

qualitative way or do not perform consistently for different types of critical transition. 55 

According to bifurcation theory, when the system is approaching a tipping point, the 56 

system starts to recover more slowly from local perturbations10-12, as the dominant 57 

eigenvalue goes to 0 in continuous systems or to 1 in discrete systems. This so-called 58 

critical slowing down (CSD)9 can be revealed by increases in generic EWS10, including 59 

increasing autocorrelation (e.g., AR15) and variability (e.g., SD13) in time series. It was 60 

suggested that AR1 and SD will reach 1 and infinity, respectively at the tipping point, if 61 

dynamical systems can be locally approximated by a first-order stochastic process5,9. 62 

However, these thresholds were usually not met in real-world critical transitions5 or even 63 

in model systems14,15. For example, AR1 does not reach 1 for Neimark-Sacker bifurcation 64 

(Fig. S1). Existing EWS are developed for anticipating critical transitions in fold 65 

bifurcation16 (i.e., catastrophe shift1) but may not distinguish fold bifurcation from more 66 

complex types of bifurcations16,17 (e.g., Hopf or Neimark-Sacker bifurcation).  67 

Recognizing that various types of bifurcation bring divergent consequences to our 68 

focal systems that need different corresponding management to minimize potential losses, 69 

a recent study using deep-learning had promise to distinguish types of bifurcation17; 70 

however, this approach cannot predict the upcoming critical transition and is not rooted in 71 

the theory of dynamical system. Moreover, the method based on deep-learning strongly 72 

depends on the training set and is so far difficult to apply in high-dimensional cases. 73 

Practically, there is no method providing a precise threshold for indicating how large the 74 
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raised EWS shall be, beyond which critical transition is deemed to occur, and also 75 

indicating the type of transition. 76 

 The solution for the challenge is hinted in bifurcation theory - the types and 77 

conditions for the occurrence of critical transition are quantitatively determined based on 78 

the dominant eigen-value derived from locally linearized dynamical systems6,18 (i.e., 79 

Jacobian matrices; Box 1). When the critical transition occurs at the tipping point, the 80 

absolute value of the dominant eigen-value increases to 1 (in discrete systems)19. 81 

Moreover, various bifurcation types are distinguishable by examining the dominant 82 

eigen-value on a complex plane19. Despite these well-established theoretical arguments, a 83 

critical challenge in their implementation remains that such a dominant eigen-value can 84 

only be derived if all parametric equations governing dynamical systems can be 85 

determined. However, the equations (or even their parameters) are generally unknown (or 86 

difficult to estimate) in real-world systems. Recent advances in time series analysis of 87 

dynamical systems indicate that Jacobian (interaction) matrix as well as its dominant 88 

eigen-value can be estimated by the recently advanced lag-embedding empirical 89 

dynamical modeling (EDM)20,21 requiring no model assumptions. However, the existing 90 

method of computing dominant eigen-value (known as local Lyapunov stability)24 91 

requires full information of all interacting components (e.g., interacting species) that is 92 

usually not readily available, especially in large systems. Therefore, the existing method 93 

used to quantify dominant eigen-value24 might not be a suitable EWS and cannot be 94 

easily applied in most systems. 95 

 We propose Dynamical Eigen-Value (DEV) as a novel EWS derived from 96 

EDM20,25 that analyzes time series data requiring no specific model assumption22 (e.g., no 97 

need to assume time-varying autocorrelated stochastic process23). The proposed DEV 98 

directly estimates the dominant eigen-value of focal systems instead of indirectly 99 

quantifying phenomena accompanying critical slowing down, as previous EWS. 100 

Therefore, as suggested in bifurcation theory, this novel EWS has a quantitative threshold 101 

for the occurrence of critical transition (the absolute value of the estimated dominant 102 

eigen-value |DEV|=1) and can differentiate types of critical transition by examining DEV 103 

on a complex plane (Box 1 presents critical transitions induced by fold, period-doubling, 104 

and Neimark-Sacker bifurcations). The presence of DEV threshold enables us to not only 105 
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present a qualitative increasing/decreasing trend of EWS in a relative sense (like most 106 

existing EWS), but explicitly quantify system resilience in an absolute sense. That is, the 107 

absolute value of DEV itself is meaningful and can be directly compared to a theoretical 108 

threshold rather than just compared to values estimated in previous time windows. Unlike 109 

the existing EDM method in computing dominant eigen-value24, DEV recovers the whole 110 

system dynamics from a single time series using lag embeddings26 (i.e., Takens 111 

theorem27), requiring no full information of interacting components. Implementation of 112 

DEV also relaxes the assumption underlying general EDM methods24,28 that critical 113 

properties of the system (e.g., model parameters) are constant throughout the sampling 114 

period. This assumption unlikely holds in critical transition, during which at least one 115 

bifurcation parameter changes with time14. Therefore, the proposed DEV enables tracking 116 

temporal changes in system resilience (see details in Methods) and is rooted in 117 

bifurcation theory that quantitatively reveals both the occurrence condition and type of 118 

critical transition19.  119 

To validate the efficacy of DEV approach, we used three model time series datasets 120 

demonstrating known fold, period-doubling, and Neimark-Sacker bifurcations. Then, we 121 

empirically tested the DEV method in real-world cases of critical transitions from cell-122 

level experiments to global scale paleoclimatic events (Tables S1 and S2). For each 123 

dataset, we computed DEV that anticipated the occurrence and type of critical transition 124 

in both model and empirical cases, following procedures summarized in Fig. S2.  125 

 126 

Results 127 

Validation of DEV using model data 128 

We examined three discrete-time nonlinear dynamical models (Table S1), Noy-Meir 129 

model, Hénon map, and Rosenzweig-MacArthur model (Fig. 1a, b), representing fold, 130 

period-doubling, and Neimark-Sacker bifurcation, respectively. The derived DEV reliably 131 

estimated the dominant eigen-values of nonlinear dynamical systems and mimicked its 132 

dynamical behavior when approaching bifurcation. Specifically, the |DEV| monotonically 133 

increased when approaching the tipping point and reached 1 when the system was at the 134 

tipping point (Fig. 1c). Moreover, mapping DEV to the complex plane clearly 135 

distinguished various types of bifurcation (Fig. 1d), where Re(DEV)→1 and Im(DEV)→136 
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0 for fold bifurcation; Re(DEV)→−1 and Im(DEV)→0 for period-doubling bifurcation; 137 

Im(DEV)≠0 and |DEV| → 1 for Neimark-Sacker bifurcation. Consequently, the estimated 138 

DEV as a reliable EWS anticipated the occurrence of critical transition (i.e., tipping 139 

point) (Fig. 1c), regardless of bifurcation type. Results obtained from discrete-time 140 

models were similar to their continuous-time analogues (Fig. S3). Therefore, DEV was an 141 

effective EWS that anticipated critical transition with a certain threshold (|DEV|=1) and 142 

correctly distinguished various types of bifurcation in model systems.  143 

Next, we evaluated efficacy of DEV when including noise (e.g., observation error 144 

and process noise). In the presence of noise, DEV remained a proper EWS (Fig. S4-6) 145 

that monotonically increased when approaching the tipping points, but the quantitative 146 

threshold of |DEV| was not necessarily equal to 1 at the tipping point. Nevertheless, under 147 

small to moderate levels of noises, DEV still correctly identified types of bifurcation (Fig. 148 

S7). Through this sensitivity analysis, the estimated DEV in model systems remained 149 

effective with noise, except the Rosenzweig-MacArthur model (which is more sensitive 150 

to observation noise; Fig. S6). Perhaps the Rosenzweig-MacArthur model showing 151 

Neimark-Sacker bifurcation has more complicated mathematical normal form29 with 152 

higher order terms likely amplifying impacts of noises. Nonetheless, under reasonable 153 

degrees of noise, our DEV method determined that Neimark-Sacker bifurcation occurred 154 

in real-world cases (e.g., Fig. 2d-f).  155 

 156 

DEV analysis of empirical time series 157 

We investigated five empirical examples, including a cyanobacteria microcosm 158 

experiment under light stress, a physical experiment of voice production during 159 

phonation onset, cytosolic ATP dynamics in living plant tissues under progressive 160 

hypoxia, calcium carbonate (CaCO3) abundance by the end of greenhouse Earth, and bus 161 

voltage frequency before power grid failure (Table S1-2), and anticipated the occurrence 162 

and type of critical transition (Fig. 2). For empirical systems, |DEV| increased when 163 

approaching the tipping point and almost reached 1 at the tipping point (Fig. 2 b, e, h, k, 164 

n). Therefore, we inferred the theoretical threshold (|DEV|=1) was still meaningful in 165 

empirical systems, despite noise in empirical data. In addition, the computed DEV clearly 166 

differentiated types of critical transition in empirical cases (Fig. 2c, f, i, l, o). Among 167 
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these examples, only the voice experiment had Neimark-Sacker bifurcation (with a 168 

nonzero imaginary part), whereas all others demonstrated fold bifurcation. This 169 

conclusion was robust against various choices of embedding parameters (e.g., E, τ, and 170 

window size) (Fig. S8-S12). Identification of bifurcation type provided important insights 171 

into foreseeing the coming new state of the system. Clearly, fold-type critical transition 172 

shifts systems to a new regime with a distinct state (e.g., Fig. 2j), whereas Neimark-173 

Sacker bifurcation shifts systems to a new regime with higher temporal variability (e.g., 174 

Fig. 2d). Information regarding bifurcation type enables more appropriate management 175 

strategies to cope with new regimes. 176 

 177 

Reliability tests of DEV method 178 

Whereas DEV is a quantitative EWS with a theoretical threshold, its efficacy is 179 

likely undermined by observation and process noises (e.g., |DEV|<1 and more gradual 180 

increase of |DEV| approaching bifurcation; Fig. S4-6). Underestimation of DEV under 181 

strong noises was attributed to the dominant eigen-value of pure stochastic processes 182 

being 0, leading to synthesized signals with DEV < 1 at the tipping point. Therefore, 183 

caution is needed when considering the derived DEV, especially at the tipping point. 184 

Here, we suggest that the uncertainty of DEV can be evaluated by its predictability on 185 

future states (e.g., the correlation coefficient (ρ) between observed and predicted one-step 186 

forward future states; Fig. 3) because predictability is an effective indicator for evaluating 187 

the uncertainty of reconstructed dynamical systems30. Indeed, there was a high 188 

association between the predictability and the uncertainty of estimated DEV defined as 189 

how far the estimated DEV is to the analytically solved dominant eigen-value (without 190 

noise). When predictability was high, the |DEV| reached almost 1 prior to transition, 191 

whereas the |DEV| did not reach 1 (Fig. S4-6) when predictability was low under strong 192 

noises (Fig. 3). Thus, system predictability provided indications for precautionary 193 

decisions regarding the threshold. 194 

 195 

Discussion 196 

Implications from analyzing empirical data 197 

Based on analyses of empirical data, the DEV method can be applied to various 198 
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fields (Fig. 2). This is remarkable not only because of diverse underlying systems, but 199 

also due to huge differences in temporal and spatial scales that range from milli-seconds 200 

and micro-meters in cellular processes to millions of years and thousands of kilometers in 201 

climate dynamics. Nonetheless, there is one common feature: the underlying dynamics 202 

are governed by feedback mechanisms, a typical characteristic of nonlinear dynamical 203 

systems. Such feedback regulations might lose controls due to external forcing; 204 

consequently, a critical transition occurs18. Therefore, an analytical framework that 205 

acknowledges feedbacks and nonlinearity, e.g., our DEV method rooted in nonlinear time 206 

series analysis20, has wide applicability for anticipating occurrence of critical transition 207 

under various spatiotemporal scales.  208 

Existing methods for anticipating a critical transition are qualitative in the sense that 209 

statements can be made only about whether a system is moving towards a tipping point or 210 

not. In comparison, the most novel aspect of the DEV method is that a quantitative 211 

statement can be made regarding the extent that current DEV values from the theoretical 212 

threshold (i.e., |DEV|=1) present a sufficient and necessary condition of mathematical 213 

bifurcation19 (i.e., critical transition). In addition to being an EWS, this quantitative 214 

feature enables assessment of system resilience even if the analysis was only done within 215 

one time window with a few portions of time series data. For example, the |DEV| values 216 

estimated from the last time windows before critical transition (300 data points), were 217 

0.99, 0.99, 1.01, 0.91, 0.99 for microcosm, voice, cellular energy, climate, and power grid 218 

data, respectively, indicating that all examined system states were at or close to a tipping 219 

point. Therefore, DEV correctly anticipated the ongoing critical transition without relying 220 

on measures estimated in previous time windows (i.e., a need to uncover a trend of 221 

declining system resilience in a relative sense). Although great care must be taken with 222 

estimates, we concluded that the DEV method is a major advance in improving the 223 

accuracy of the resilience and risk assessment of a wide variety of empirical systems. 224 

Applying DEV analysis to the microcosm experiment was a novel way to 225 

quantitatively forecast catastrophic consequences of biological populations. A central 226 

issue in population biology is to predict fates of populations (e.g., preservation or 227 

extinction of species or species invasion) when facing various stressors. Although 228 

predictions can be made from numerous models, implementation of most population 229 
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models requires correct identification of both model structure and parameters31, which 230 

seldomly match in empirical cases. In contrast, our DEV analysis characterizes 231 

population dynamics without detailed information about model structure and parameter. 232 

Nonetheless, unlike most model-free EWS32, DEV as an empirical estimate of dominant 233 

eigen-value allows to be analyzed as that in theoretical population models (e.g., 234 

bifurcation analysis). Therefore, the proposed DEV links model-free EWS to analysis of 235 

parametric models, with excellent research potential.  236 

Exceptionally good results were achieved for cellular energy status and voice 237 

production (Fig. 2d-i), implying cell biology and physiology have promise for future 238 

DEV applications. Both research fields have been rarely mentioned in previous EWS 239 

literature, although many types of time series data with high spatiotemporal resolution 240 

can be generated using modern imaging and -omics techniques. Therefore, DEV may 241 

have broad applications, including investigating various cellular and physiological 242 

switches that are critical to organism functions. These switches often lead to diseases 243 

(e.g., cancer), whereas dysfunction in energy transformation within mitochondria is 244 

linked to aging33 or disease34. Our proposed DEV may serve as a warning signal early in 245 

disease development, facilitating early treatment. 246 

Critical transition has important roles in driving climate events at global scale (Fig. 247 

2j-l). Our findings confirmed that a critical transition occurred by the end of last 248 

greenhouse earth5. Our proposed method further characterized this global-scale shift as 249 

fold bifurcation. In this case, mean air temperature abruptly declined and then terminated 250 

greenhouse earth. Compared to analyses of other empirical cases (Fig. 2b, e, h, n), the 251 

DEV measures derived from paleoclimate data, although significantly increased, had 252 

noticeable underestimation around the tipping point (i.e., < 1 in Fig. 2k). Such 253 

underestimation was likely caused by noises introduced when inferring ancient climate 254 

conditions from geological climate proxy or by lacking spatial information (i.e., time 255 

series from a single site) in analyzing inherently spatial global-scale climate dynamics. 256 

Our analysis of voltage frequency data preceding a power grid failure (Fig. 2m-o) 257 

suggests a critical transition of electric systems. Maintaining a stable power grid requires 258 

sophisticated regulation to balance supply and demand, considering complex interactions 259 

between meteorological and socio-economic factors and various energy sources. 260 
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Considering the urgent needs in electricity management under a changing environment, 261 

our DEV analysis has potential for monitoring resilience of power grids at milli-second 262 

scale. For example, a real-time grid resilience based on our quantitative warning signal 263 

could prevent failures when the power grid approaches a tipping point. 264 

 265 

Efficacy of DEV as EWS 266 

Our proposed DEV is a functional EWS, with consistent early warning patterns 267 

(e.g., monotonic increase trend) when approaching the tipping point in models and in 268 

empirical datasets (Fig. 1-2). Compared to generic EWS, such as autocorrelation (e.g., 269 

AR1) and variability (e.g., standard deviation [SD]), autocorrelation and variability had 270 

reliable early warning patterns in fold and period-doubling bifurcation (Fig. S1) as 271 

reported9,35; however, they do not perform well in Neimark-Sacker bifurcation wherein 272 

the increasing trend of AR1 is minor and does not reach 1 and the increasing trend of 273 

variability is less dramatic (Fig. S1). When applying AR1 and variability indices on 274 

empirical cases (Fig. S13), early warning patterns were not always apparent (e.g., Fig. 275 

S13b, h, i). This inconsistency might be due to distinct sensitivity of the generic EWS to 276 

various types of bifurcation. In addition, some EWS relying on variability, such as SD, 277 

are likely more sensitive to existence of process noises (e.g., Fig. S4e and S5e).  278 

It is relevant to discuss theoretical connections between DEV and AR1. 279 

Mathematically, if a dynamical system can be approximated by a first-order linear 280 

stochastic process (i.e., AR1 process) for the chosen time window, the matrix J (eq. 1 in 281 

Method) governing the evolution of dynamical system can be formularized as a simple 282 

diagonal matrix (i.e., JAR1) with all diagonal elements equal to the estimated AR1. Here, 283 

JAR1 was assumed fixed within the analyzed time window, whereas the matrix J estimated 284 

in DEV can vary within a time window. Obviously, the dominant eigen-value of this 285 

matrix JAR1 equals to AR1. Therefore, according to bifurcation theory, AR1 theoretically 286 

reaches 1 at the tipping point in fold bifurcation, as suggested5,9. However, convergence 287 

of AR1 to 1 requires that the dynamical system can be well approximated by first-order 288 

stochastic process for the chosen time window. Following the same mathematical 289 

reasoning, AR1 shall approach -1 for period-doubling bifurcation because the dominant 290 

eigen-value will reach -1 around the tipping point; this was confirmed by our analysis of 291 
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Hénon map (Fig. S1). Regardless, the approximation of AR1 process can only obtain a 292 

real-valued dominant eigen-value because the estimated AR1 can never be a complex 293 

number. Consequently, AR1 cannot be applied to Neimark-Sacker or other types of 294 

bifurcations in which the imaging parts of dominant eigen-values are always preserved. 295 

Based on this mathematical reasoning, only fold bifurcation can demonstrate obvious 296 

critical slowing down (CSD)5, wherein the current system state becomes very similar 297 

with the previous state (i.e., increasing AR1) prior to critical transition. However, CSD 298 

may not occur in other types of bifurcation that manifest only minor increases (e.g., 299 

Neimark-Sacker bifurcation in Rosenzweig-MacArthur model) or even decreases (e.g., 300 

period-doubling bifurcation) in AR1 (Fig. S1). Therefore, from the perspective of 301 

bifurcation theory, application of AR1 for detecting critical transition is a special case of 302 

DEV. 303 

 304 

Limitation of DEV and forward looking 305 

To evaluate the efficacy of DEV on more complex models, we investigated a 306 

stochasticity-driven, patch dynamics model, which exhibited no early earning signal 307 

(quantified as variance) prior to critical transition36 (See details in SI texts, Additional 308 

analysis on the meta-population model using multivariate DEV; Fig. S14a). For such a 309 

system with explicit spatial information, we examined whether our DEV approach was 310 

effective. In this study, DEV derived from embedding time series of multiple patches 311 

(i.e., multivariate DEV; Fig. S14b, c) had a clear early warning signal near the tipping 312 

point, but the DEV derived from embedding time series of a single patch (i.e., univariate 313 

DEV; Fig. S14d) did not work. This confirmed previous analysis37 suggesting that 314 

explicit spatial information is necessary to detect the EWS of the critical transition 315 

originating from strong spatial processes37. Multivariate DEV can be applied not only in a 316 

dynamical system with explicit spatial information but also in systems with more than 317 

one variable, e.g., Hénon map (Fig. S15). Therefore, a more general DEV framework 318 

combing both univariate and multivariate DEV highlights a new research direction that 319 

may help detect critical transition emerging from diverse mechanisms, e.g., spatial 320 

processes; certainly, more detailed investigations are needed for developing EWS in 321 

highly spatial structured systems38. Therefore, multivariate DEV can be complementary 322 
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to other EWS relying on spatial patterns39,40. In addition to the issue of spatial processes, 323 

we addressed limitations of DEV for ill-posed cases in SI (Limitations of DEV method in 324 

analyzing atypical transitions). 325 

The embedding approach has been used to evaluate system stability; however, these 326 

studies estimated the dominant eigen-values based on a single time window (i.e., using 327 

the whole time series)24,41. In the present study, as the standard procedure for EWS 328 

estimations, the moving window approach used to compute DEV (Fig. S2) was necessary. 329 

Indeed, based on further analyses, the dominant eigen-value derived from the single-time 330 

window approach (Fig. S16) could not reveal reliable early warning patterns and failed to 331 

identify the period-doubling bifurcation (Fig. S16f). Therefore, the moving window 332 

approach is necessary for computation of EWS because some important properties (e.g., 333 

nonlinearity42) of dynamical systems changed as the system approached the tipping point.  334 

 335 

Concluding remarks 336 

In conclusion, the DEV approach developed in this study, for the first time, proposes 337 

an empirical EWS with a quantitative threshold to anticipate occurrence of critical 338 

transition and identify type of bifurcation. Although DEV efficacy is likely undermined 339 

by measurement and process noises, DEV has great potential to effectively anticipate the 340 

occurrence and type of critical transition with a more precautionary defined threshold. 341 

Because both occurrence condition and bifurcation type can be unambiguously 342 

determined, this should enhance real-world management, enabling timely and effective 343 

responses to upcoming new regimes. 344 

 345 

Methods 346 

Empirical dynamic modeling 347 

According to the theory of dynamical systems, a system can be described as a set of 348 

states (e.g., attractor), whose evolution over time is determined by a set of rules (e.g., 349 

equations) that describe how the state of attractor changes as a function of interacting 350 

variables. Motion on the attractor can be projected onto the coordinate axis of associated 351 

variables, forming time series; conversely, time series of the interacting variables can be 352 

projected back to the multidimensional state space to recover the attractor43. Therefore, 353 
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knowing the state and the set of rules that govern the underlying system is equivalent to 354 

knowing the time series of all interacting variables. When studying empirical systems, the 355 

set of rules is unknown. Furthermore, it’s very likely only one or few variables are 356 

measured and their interactions are unknown a priori. However, it’s possible to 357 

reconstruct a topologically invariant shadow version of the attractor using time delayed 358 

scalar measurements of a single dynamical variable: ( )( )1
, , ,

T

t t t t E
X x x x − − −=  , where 𝑥𝑖 359 

are observations at time point i, E is the embedding dimension, and 𝜏 is the time lag. This 360 

idea, called state space reconstruction (SSR), is based on Sauer, Yorke and Casdagli’s 361 

extension44 of Takens’ theorem27 for dynamical systems. An illustration of the SSR 362 

concept is available (tinyurl.com/EDM-intro). Interestingly, due to topological 363 

invariance, the reconstructed attractor preserves the essential mathematical features of the 364 

original dynamical system. Furthermore, SSR facilitates investigating dynamic properties 365 

of the system, including interactions (e.g. Jacobian)45 and stability24,28, plus transitions 366 

between stable and unstable states42. 367 

 368 

Early warning signal based on the dominant eigen-value 369 

Among properties of dynamical systems, a critical issue of practical importance is 370 

the ability to identify and predict critical transition. Mathematically, critical transitions 371 

are associated with local bifurcations, i.e., qualitative changes in system behavior due to 372 

changes in parameter. Bifurcations result from appearance and disappearance of invariant 373 

sets due to changes in stability46 and can be recognized by changed eigen-values of the 374 

Jacobian matrix derived from local linear approximation around a fixed point11 (i.e., local 375 

Jacobian). 376 

Critical transitions can be classified according to changes in the dominant eigen-377 

value, λ, of local Jacobian. In general, there are three types of critical 378 

transitions/bifurcations: the fold (tangent), the period-doubling (flip) and the Neimark-379 

Sacker (Hopf) bifurcations47. If a discrete system undergoes a fold bifurcation, stable and 380 

unstable equilibriums collide and annihilate, or an equilibrium suddenly appears. Fold 381 

bifurcation is indicated by the dominant eigen-value reaching Re(λ)=1 and |λ| = 1. For 382 

period-doubling bifurcation, a regularly repeating series of points double in its period 383 
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when bifurcation occurs. Consecutive period doublings cause chaos in dynamical 384 

systems. The period doubling bifurcation is indicated by the dominant eigen-value 385 

reaching Re(λ)=-1 and |λ| = 1. If a system undergoes a Neimark-Sacker bifurcation, a 386 

closed invariant curve appears from an equilibrium, indicated by a pair of conjugated 387 

dominant eigen-values with Im(λ1/2) ≠ 0 reaching |λ1/2| = 1.  388 

A methodological challenge is then how to estimate local Jacobian in each time 389 

point, to track its change through time. In state space, the Jacobian is the local linear 390 

approximation of the dynamical system. To reconstruct the Jacobian at point XN, 391 

Eckmann and Euelle (1985) proposed an idea that minimize the squared error, 392 

22
1

1

# i
i iX

error X X v


+= − − J
UU

, with respect to the coefficients of matrix J and some 393 

offset vector 𝑣, given the set 𝒰 of all neighbors of 𝑋𝑁 with a distance less than a defined 394 

value, 𝜖. This basic idea has been adapted in subsequent algorithms48,49 to calculate local 395 

Jacobians and to estimate Lyapunov exponents from observed time series. However, a 396 

critical issue of these algorithms is to determine the size of 𝒰; if too small, the system is 397 

under-represented, the coefficients of matrix J cannot be reliably estimated, and 398 

algorithms are sensitive to noise. However, if 𝒰 is too big, noise becomes less important, 399 

but underlying nonlinear dynamics may not be detected46. 400 

In this study, we estimated the local Jacobian using S-map28,45, able to overcome 401 

problems associated with selecting 𝒰 and to account for system nonlinearity. In detail, S-402 

map involves generating an E-dimensional embedding (univariate or multivariate). The 403 

state space at time t is given by ( )( )1
, ,...,

T

t t t t E
X x x x − − −= . For each target time point 404 

ta, the S-map algorithm computes a local linear model C that predicts the future value 405 

+at
Y  using the vector 

at
X  from the reconstructed state space. That is,  406 

( )0 1
1

+  
a a

E

t j t j

j

Y C C x − −
=

= +  407 

The linear model is fitted to other vectors in the state space. However, in contrast to 408 

linear regression models, linear approximation in S-map is done only locally by giving 409 

greater weighting to points close to the target point, 
at

X . The model C is the singular 410 



16 

value decomposition (SVD) solution to the equation, 411 

B C= A  412 

where B is an n-dimensional vector (n is the number of observations) of the weighted 413 

future values of 
it

Y  for each historical point, ti, given by 414 

( ) +

2

i ii t t t
B w X X Y = −  415 

and A is then n × E dimensional matrix given by 416 

( ) ( )
2

1i i
ij t t t j

A w X X x − −= −  417 

The weighting function w is defined by 418 

( ) exp
d

w d
d

 = − 
 

 419 

where 2  denotes the Euclidean distance and d  is the average distance between Yt* and 420 

all other vectors on the attractor. The extent of this weighting is tuned by the nonlinear 421 

parameter  ≥ 0. Note that the model C is separately calculated for each time point, t*. 422 

Thus, C potentially differs for each time point in the series. Coefficients of the local 423 

linear model provided by C are an approximation of local Jacobians24,45 that can be used 424 

as a proxy of the interaction strength between embedded variables.  425 

The original algorithm proposed in Deyle et al.20 aimed to estimate local Jacobians 426 

using multivariate time series of interacting variables. However, these algorithms can be 427 

used for embedded time series from a single variable, following the concept of lagged 428 

coordinate embedding (i.e., univariate embedding). Here, we aimed to estimate the 429 

coefficients of  
t t

X X v+ = +J  with respect to matrix J and offset vector v. Since the 430 

reconstructed state space is a delay embedding space of a univariate time series, almost 431 

all elements of the Jacobian, J, are zero, except the lower-off diagonal, which are unity, 432 

and except the first row, which contains the non-trivial linear approximation. The same 433 

argument holds for the offset vector v. Here, the linearized dynamics read 434 
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 (1) 435 

Following the S-map algorithm, matrix J of parameters j11, …, j1E can be calculated 436 

as the associated S-Map coefficients24,45. Because J is evaluated at each time point (i.e., 437 

local Jacobian J(t)), it is time-varying. With the Jacobians, it is possible to calculate the 438 

dominant eigen-value for each local Jacobian through time and evaluate the system’s 439 

local Lyapunov stability (as an EWS of critical transition), and can further identify the 440 

type of critical transition (see Box 1). As the dominant eigen-value changes through time, 441 

we named this indicator Dynamical Eigen-Value (DEV). More importantly, DEV 442 

anticipates occurrence and type of critical transition (Fig. S2). 443 

 444 

Model data 445 

To demonstrate the efficacy of the DEV approach, we analyzed three representative 446 

models with disparate types of critical transition, including Noy-Meir model (fold 447 

bifurcation), Hénon map (period doubling bifurcation), as well as a discrete version of the 448 

Rosenzweig-MacArthur model (Neimark-Sacker bifurcation). In these model simulations, 449 

bifurcation parameters were chosen to demonstrate critical transitions. For these three 450 

models, equations are: 451 

 The Noy-Meir model50 is described by: 452 

(3) ( )
2

1 2 2
  exp 0.75 0.1

0.75
t

t t t t t

t

N
N N N F N

N
+ = − − +

+
 453 

The bifurcation parameter 𝐹 was linearly increased from 0 to 2 throughout the whole 454 

simulated time series.  455 

 The Hénon map51 reads as 456 

(1) 2
1 1

t t t t t
x ax y x+ = − + +  457 
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(2) 1 0.3
t t

y x+ =  458 

The bifurcation parameter 𝑎 was linearly increased from 0.1 to 0.4 throughout the whole 459 

simulated time series. 460 

Finally, the Rosenzweig-MacArthur model52 reads as 461 

(4) ( ) 2
1 1 4

1 0.5
t t

t t t t t

t

x y
x l x x x

x
 + = + − − +

+
 462 

(5) 1

6
2

1 0.5
t t

t t

t

x y
y y

x
+ = − +

+
 463 

The bifurcation parameter 𝑙 was linearly increased from 3.48 to 3.78 throughout the 464 

whole simulated time series. Following Dakos et al.42, we used a stochastic modeling 465 

framework, applying process noise on the state variable (xt or Nt) based on Gaussian 466 

white noise, ωxt. Noise was multiplied by ζ as ζxt or ζNt. Consequently, the standard 467 

deviation of the noise is ζ times the value of the previous time step. 468 

For each model, we generated the time series. First, we chose fixed parameters (i.e., 469 

those other than the tuning bifurcation parameter) by determining the equilibrium in the 470 

absence of noise with the bifurcation parameter at the initial value. Subsequently, time 471 

series variables at equilibrium were the initial values for modeling the stochastic system, 472 

thereby avoiding the burn-in period. Then, a time series was generated while gradually 473 

changing the bifurcation parameter. For each simulation, a time series of 10000 points 474 

was generated, as reported28.  475 

 476 

Empirical data 477 

The DEV approach (explained in the DEV analysis section below) was applied on five 478 

empirical data sets: (1) cyanobacteria under light stress in a microcosm32, (2) phonation 479 

onset under increasing flow rate, (3) cytosolic ATP dynamics in living plant tissues under 480 

progressing hypoxia 53, (4) calcium carbonate (CaCO3) level in sediments before the end 481 

of last greenhouse Earth 54, and (5) bus voltage frequency before the North Western US 482 

power grid failure in 199655.  483 
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 484 

Cyanobacteria under light stress 485 

We re-analyzed the response of a cyanobacteria population in chemostats to dilution 486 

events under a regime of gradually increasing light intensity32. Population density was 487 

determined as the light attenuation coefficient calculated from continuous measurements 488 

of outgoing light intensity. In total, this time series included 7784 data points spanning 489 

28.86 days, with time interval equal to 0.0035 day (5 min). The overall time series 490 

consisted of six segments separated by dilution events (Fig. 2a and Table S1). Since 491 

dilution events were not part of the population dynamics, only time series segments were 492 

analyzed after recovery from the previous dilution event and before undergoing the new 493 

dilution event. Because the shortest continuous segment (the one prior to dilution event 494 

P2) was 250 time points long (~ 1 day), to be consistent for all dilution events, only the 495 

last 250 data points were used before each dilution event when analyzing all segments 496 

(P1-P6; in total 6*250 = 1500 data points).  497 

 498 

Phonation onset under increasing flow 499 

Phonation onset (i.e., onset of vocal fold oscillation) is regarded as a Hopf 500 

bifurcation in the framework of dynamical systems56. To experimentally realize the 501 

phonation onset using a physical replica the vocal folds, an EPI (i.e., “epithelium”) model 502 

was constructed following an established procedure57. In accordance with vocal fold 503 

physiology, the EPI model had a body-cover structure. The cover layer was based on an 504 

extremely flexible superficial layer of lamina propria (SLLP), covered by a thin 505 

epithelium. The SLLP layer was attached to the body layer by a ligament layer. Individual 506 

layers with varying stiffness and strength were produced with silicone. With the detailed 507 

multi-layer structure, the EPI model oscillated with a pronounced convergent-divergent 508 

motion, resembling real vocal-fold oscillations. 509 

The experimental set-up to realize flow-induced oscillations of the vocal fold model 510 

has been reported58. In this experiment, no supraglottal tube was attached. The subglottal 511 

pressure was measured by a pressure transducer (Differential pressure transducer, PDS 512 

70GA, Kyowa; Signal conditioner, CDV 700A, Kyowa), located 2 cm upstream of the 513 
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vocal fold model, and recorded with 44 kHz sampling rate. During the experiment of 514 

phonation onset, the flow-rate was slowly increased until the vocal folds started to 515 

oscillate. From this experiment, we obtained time series data including 7501 data points, 516 

spanning of 0.375 second overall, with time interval equal to 5*10-5 second (Fig. 2d and 517 

Table S1). 518 

 519 

Cellular energy status under hypoxia 520 

The data are dynamics of ATP concentrations in the cytosol of living leaf cells over 521 

time, measured by fluorimetry using an intracellular FRET-sensor that responds to 522 

MgATP2-. In the dark, leaves respire and gradually deplete ambient oxygen within a 523 

sealed compartment, creating cellular hypoxia, and decreasing energy charge. The ATP 524 

remained relatively stable while oxygen was gradually depleted, then suddenly dropped 525 

(Fig. 2g). Interestingly, this drop appeared to occur before the oxygen concentration was 526 

limiting for the mitochondrial respiratory chain (responsible for most cellular ATP 527 

production). How ATP stabilization and collapse are modulated mechanistically in the 528 

living cell is unknown. 529 

The data represented the fluorescent readout of a genetically-encoded fluorescent 530 

protein-based Förster Resonance Energy Transfer (FRET) sensor that indicated ambient 531 

concentrations of the biological energy carrier molecule ATP (i.e., its dominant 532 

bioavailable form in the cell, MgATP2-)59. The sensor (ATeam 1.03-nD/nA) consists of a 533 

blue fluorescent protein (the CFP derivative mseCFP), a yellow fluorescent protein (the 534 

YFP derivative cp178-mVenus) and an ATP-binding domain (ε-subunit from Bacillus 535 

subtilis FoF1-ATP synthase)59. The more MgATP2- is present in the direct environment of 536 

the protein, the higher the FRET; therefore, the fluorescence emission of the YFP 537 

acceptor increased, while that of the CFP donor simultaneously decreased. For the 538 

measurement, the sensor protein is genetically expressed in the cytosol of leaves of the 539 

model plant Arabidopsis thaliana (5- to 6-weeks-old)60. Leaf slices (30 mg fresh weight) 540 

were placed in a single well of a 96-well multititer plate53. The well was filled with 541 

medium and sealed with a transparent, air-tight film to prevent oxygen diffusion. In the 542 

dark, the tissue respires available oxygen, causing gradual hypoxia. After sealing the well 543 

and starting fluorescence recording, the sensor indicated a slight gradual decline of 544 
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cytosolic MgATP2- until the FRET ratio suddenly decreased, indicating cytosolic 545 

MgATP2- concentrations had collapsed (Fig. 2d). Leaf tissue fluorescence was measured 546 

every 40 s, background fluorescence was subtracted for isolating the sensor signal, and 547 

the fluorescence emission ratio YFP/CFP was calculated. Five biological replicates were 548 

measured with similar observations, and the experiment was repeated twice. The dataset 549 

analyzed here was recently reported53, and we used time series data including 271 data 550 

points, spanning an overall of 3 min, with time interval equal to 0.011 min (Fig. 2g and 551 

Table S1). 552 

 553 

Calcium carbonate in the end of greenhouse Earth 554 

We re-analyzed the calcium carbonate (CaCO3) time series associated with the end 555 

of greenhouse Earth54 that marked the transition of an ice-cap free Earth to an Earth with 556 

polar ice-caps. In this study, the time series had an increase in autocorrelation while 557 

approaching the climate shift. In total, this time series includes 462 data points, spanning 558 

an overall of 5.9 million years with time interval equal to 0.013 million years. (Fig. 2j and 559 

Table S1). 560 

 561 

Bus voltage frequency before power grid failure 562 

We analyzed bus voltage frequency data measured before the Western Interconnect 563 

Blackout of August 1996. The time series consist of ~10 min of measurements at a 564 

sampling rate of ∆t= 0.02415s from the Bonneville Power Administration territory, until 565 

the point of separation. This time series exhibited critical fluctuation approaching the 566 

point of blackout61. For our study, data were prepared as in a previous study61. In total, 567 

this time series included 23393 data points, spanning an overall of 565 seconds with time 568 

interval equal to 0.024 second. (Fig. 2m and Table S1). 569 

 570 

Dynamical Eigen-Value (DEV) analysis 571 

The most critical step for the DEV approach is to reconstruct the attractor. As system 572 

dynamics may change through time, we employed a windowing approach, instead of 573 

estimating the Jacobians using the whole time series, as reported.24 Thus, a proper 574 

window size, w, (i.e., length of time series segment for estimating DEV) needs to be 575 



22 

chosen for each time series analysis, to best describe the associated dynamics of the 576 

system. In addition, best embedding dimension, E, and time lag, 𝜏, need to be estimated. 577 

As in previous publications applying S-map, we screened for the parameter 578 

orchestration resulting in the best performance (i.e., S-map prediction skill62). To 579 

determine the optimal window size for computation, we screened various window sizes; 580 

for each, we evaluated S-map skill (predictability, ρ) for various combinations of 581 

embedding dimensions E (1 to 12) and time lags τ (1 to 12) and obtained the highest ρ 582 

(ρmax). While searching the optimal window size, for simplifying the calculation, we 583 

chose θ = 0 in S-map, as recommended.63 When θ = 0, S-map is equivalent to an 584 

autoregressive model of order E64. The optimal window size (w) close to the plateau is 585 

determined visually, beyond which increasing the window size leads to very minor 586 

improvements in predictability (Fig. S2a). Considering the paucity of time series data and 587 

avoiding the risk of overfitting, we chose a window size close to the plateau phase. The 588 

best E and 𝜏 associated with the optimal window size resulting in best ρ were used 589 

throughout the analysis. Then, sensitivity analysis for various E, τ, and w should be done 590 

to ensure results are robust. Selected parameters for the state space reconstruction of each 591 

dataset are summarized in Table S1. 592 

After determining w, E, and τ, we proceeded to estimate the time series of Jacobian 593 

for the window segment (Fig. S2b, c & d). To account for changing nonlinearity of the 594 

reconstructed attractor 42, for each time series segment defined by the moving window, S-595 

map analyses were run for various θ (0 to 2.5); the best θ giving the best S-map forecast 596 

skill was chosen. After obtaining the time series of Jacobian, we subsequently calculated 597 

the dominant eigen-value at each time point within the window. Then, we averaged all 598 

eigen-values derived in the time window as our DEV indicator. The averaging process 599 

smoothed out the uncertainty of estimating DEV at each time point; furthermore, the 600 

averaged DEV indicated the vulnerability to critical transition for that region of attractor. 601 

Finally, moving the window forward and repeating the calculation for every time step, we 602 

obtained the time series of DEV. Absolute of DEV approaching 1 was indicative of 603 

critical transition. Using time series segments of the chosen window size, we 604 

consecutively estimated the early warning signals. The signals were reported and matched 605 

to the time index associated with the last point of the window. However, extrapolation 606 
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can be done using a simple linear regression between DEV versus time (Fig. 2), to 607 

visualize and anticipate the occurrence of critical transition. If DEV approaches 1 608 

nonlinearly, a nonlinear curve can be fit.  609 

 610 

Sensitivity of DEV approach to stochasticity 611 

Noise (process and observation error) may undermine DEV efficacy. Thus, we 612 

examined effects of noise on our three mathematical models. To create observation error, 613 

after generating a time series, observation error was added by substituting each time point 614 

xt by a normally-distributed random value with mean xt and standard deviation φ, where φ 615 

determined the level of observation noise. The process error was intrinsically included in 616 

our stochastic models. To increase process noise, we increased the parameter ζ (see the 617 

section of Model data).  618 

For a given combination of process noise and observation error (see Supplementary 619 

Figs. S4-7 for combinations), 100 simulations were run for each model. For each run, the 620 

DEV estimates at the first window and the window immediately prior to bifurcation were 621 

used for further analysis. Consequently, we demonstrated both quantitative and 622 

qualitative properties of the DEV as an EWS. Mathematically, the absolute value of the 623 

dominant eigen-value is 1 at bifurcation; therefore, the estimated DEV should be close to 624 

1, too, to be a robust quantitative indicator. Furthermore, eigen-values are expected to 625 

increase prior to bifurcation. Thus, ∆DEV, defined as the difference between DEV prior 626 

to bifurcation and DEV at the initial phase of the simulation, was calculated to 627 

demonstrate that DEV was a qualitative EWS. 628 

Note that for the Rosenzweig-MacArthur model, even intermediate level of process 629 

noise resulted in breakdown of the system (infinite values); thus, only limited level of 630 

process noise can be examined (Fig. S6). 631 

 632 

Comparison with AR1 and variance 633 

For comparative purposes, all data were also analyzed using the two most commonly 634 

used resilience indicators, autocorrelation and variance. We estimated 1-lag 635 
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autocorrelation (AR1) as the Pearson correlation for lagged time series at one point, and 636 

variance as the standard deviation (SD). To make results comparable, the same window 637 

size as that for the DEV approach was used. Prior to analysis, linear trends in the time 638 

series segment were removed using simple regression.  639 

 640 

Computation 641 

All analyses were done with R (ver. 3.1.2). The S-map analyses were implemented 642 

using the rEDM, and AR1 and variance were computed using the built-in functions in R. 643 

All analytical procedures and R codes noted above are documented (https://github.com/f-644 

grzi/DEV).  645 

https://github.com/f-grzi/DEV
https://github.com/f-grzi/DEV
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  646 

Figure 1. Efficacy of Dynamical Eigen-Value (DEV) method as early warning signal 647 

indicating critical transitions in the three mathematical models. (a) Exemplary time 648 

series of the Noy-Meir model (blue), Hénon map (red), and Rosenzweig-MacArthur 649 

model (purple). (b) The bifurcation diagram illustrates effects of changing bifurcation 650 

parameters (See Supplementary Table S1 for parameter values) on the averaged variable 651 

states calculated from moving windows. (c) The estimated |DEV| increase over time and 652 

approach 1 at the bifurcation point (shown in panel a and b). (d) The classification of 653 

bifurcation types based on |DEV| estimates on the complex plane (sensu Box 1). The 654 

|DEV| estimates move from interior of the unit circle toward the border through time, 655 

signaling critical transition; the color gradients from light to dark represent time 656 

progression from initial time to the time right before critical transitions. Note that for 657 

each eigen-value with a nonzero imaginary part a pair of conjugated eigen-values exist 658 

and show mirror symmetry on the complex plane. In panel (d), the minor values in the 659 

imaginary axis appear in the Noy-Meir model (blue) and Hénon map (red), owing to 660 

process noises included in models. Black lines within the circle labeled the theoretical 661 

dominant eigen-values.  662 
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 663 
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Figure 2. Empirical evaluations showing that |DEV|s can be early warning signal for 664 

critical transition and indicate type of bifurcation. |DEV|s signal: fold-bifurcation in a 665 

microcosm experiment of a cyanobacteria population undergoing dilution perturbations 666 

and increasing light stress (a-c); Neimark-Sacker-bifurcation in an experiment of voice 667 

onset under increasing flow rate (measured subglottal pressure) (d-f); fold-bifurcation in 668 

an in vivo biosensing experiment of cytosolic ATP at progressing hypoxia (g-i); fold-669 

bifurcation in climate data of CaCO3 abundance in sediments from the end of the last 670 

greenhouse earth (j-l); fold-bifurcation in electricity data of “1996 Western North 671 

America blackouts” (m-o). Panels (a), (d), (g), (j), and (m) illustrate time series data; the 672 

red dashed area delineates the regime after critical transition. In (a), arrows indicate 673 

external perturbations, and we estimated |DEV|s from the 250 data points (~1 day) before 674 

each perturbation (gray area). Panels (b), (e), (h), (k), and (n) illustrate the time series of 675 

estimated |DEV|; the red lines derived from the linear regression of |DEV| versus time, 676 

and the |DEV| value of 1 (grey dash line) indicates the bifurcation point. Panels (c), (f), 677 

(i), (l), and (o) indicate type of bifurcation. For better visualization, in panel (c), we 678 

averaged |DEV| estimates associated with the same perturbations event; while in panels 679 

(f), (i), (l), and (o), |DEV| estimates are averaged in time intervals prior to the bifurcation 680 

(delineated by dashed lines in d, g, j, and m). The color gradients from light to dark 681 

present time progression from initial time to the time right before critical transitions. 682 

 683 
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 684 

Figure 3. Uncertainty of DEV as a function of predictability (𝝆) for the 685 

mathematical models with different combinations of noises. Results of the Noy-Meir 686 

model (blue), Hénon map (red), and Rosenzweig-MacArthur model (purple) under a 687 

specific combination of observation noise and process error. Each curve was obtained by 688 

plotting the uncertainty (defined as the Euclidean distance between the analytic eigen-689 

value and the estimated DEV in complex plane) as a function of predictability (ρ) 690 

measured within each moving window in the DEV analysis. For all combinations of 691 

noises, the uncertainty decreased with increasing one-step forward predictability. In 692 

addition, there was no noticeable difference between the analytically solved and DEV 693 

derived eigen-value when the predictability was high (e.g., ρ>0.8). Thus, the one-step 694 

forward predictability could be used to evaluate the reliability of DEV as quantitative 695 

early warning signal.   696 
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Box 1. Information about bifurcations.  697 

 Critical transition is initiated from local bifurcation, which results from 698 

destabilization of the dynamical system accompanied with appearance and disappearance 699 

of invariant sets47 (Box Table 1). Mathematically, bifurcation was recognized by changes 700 

in the dominant eigen-value, λ, of the Jacobian matrix, J. The Jacobian matrix J of a n-701 

dimensional dynamical system is defined as 702 

1 1 1

1 2

2 2 2

1 2

1 2

n

n

n n n

n

f f f

x x x

f f f

x x x

f f f

x x x

       
   

   =  
 
 
   

    

J  703 

, where n functions ( )1 1, ,
n

f x x ,…, ( )1, ,
n n

f x x  describe the dynamics of n variables 704 𝑥1,… , 𝑥𝑛, respectively. Based on the dominant eigen-values of Jacobian matrices, three 705 

types of bifurcation, including the fold (or saddle-node), the period-doubling (or flip) and 706 

the Neimark-Sacker (or Hopf) bifurcations47, can be explicitly distinguished in complex 707 

plane (Box Table 1 and Box Figure 1).  708 

 To infer the dominant eigen-values at each time point, it is well known that local 709 

Jacobian matrices can be estimated from time series by reconstructing the local linear 710 

approximations of the dynamics in state space (see Methods). Because time series data 711 

are discrete, the absolute value of the dominant eigen-value reaches 1 (i.e., |λ|→1) at the 712 

bifurcation point in all types of bifurcations. Note that the time series data simulated from 713 

continuous systems, such as differential equations, are also discrete as they are solved 714 

numerically. The properties of dominant eigen-values inferring the bifurcations in 715 

continuous systems are described in Fig. S1. 716 

  717 
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Box Table 1: System change and dominant eigen-value of different bifurcation types 718 

Bifurcation 

type 

Change in invariant sets Dominant eigen-value, 

λ 

Fold  Appearance or disappearance of 

stable and unstable equilibria 

Im(λ)=0 and Re(λ) → 1 

Period-

doubling 

Doubling the periods of limit 

cycles 

Im(λ)=0 and Re(λ) → -1 

Neimark-

Sacker 

Appearance of a closed invariant 

curve 

Im(λ1/2)≠0 and |λ1/2| → 1 

 719 

 720 

Box Figure 1: Schematic illustration of the dominant eigen-value in complex plane 721 

at the bifurcation point for three types of bifurcation. 722 

  723 
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