1 Kerr, R. A. Natural Gas From Shale Bursts Onto the Scene. Science 328, 1624-1626 (2010).
2 Schwarz, H. Chemistry with Methane: Concepts Rather than Recipes. Angew. Chem. Int. Ed. 50, 10096-10115 (2011).
3 Tang, P., Zhu, Q., Wu, Z. & Ma, D. Methane activation: the past and future. Energy Environ. Sci. 7, 2580-2591 (2014).
4 Schwach, P., Pan, X. & Bao, X. Direct Conversion of Methane to Value-Added Chemicals over Heterogeneous Catalysts: Challenges and Prospects. Chem. Rev. 117, 8497-8520 (2017).
5 Choudhary, V. R., Kinage, A. K. & Choudhary, T. V. Low-Temperature Nonoxidative Activation of Methane over H-Galloaluminosilicate (MFI) Zeolite. Science 275, 1286-1288 (1997).
6 Xu, Y., Bao, X. & Lin, L. Direct conversion of methane under nonoxidative conditions. J. Catal. 216, 386-395 (2003).
7 Guo, X. et al. Direct, Nonoxidative Conversion of Methane to Ethylene, Aromatics, and Hydrogen. Science 344, 616-619 (2014).
8 Ma, D. et al. Carbonaceous Deposition on Mo/HMCM-22 Catalysts for Methane Aromatization: A TP Technique Investigation. J. Catal. 208, 260-269 (2002).
9 Yuliati, L. & Yoshida, H. Photocatalytic conversion of methane. Chem. Soc. Rev. 37, 1592-1602 (2008).
10 Meng, X. et al. Direct Methane Conversion under Mild Condition by Thermo-, Electro-, or Photocatalysis. Chem 5, 2296-2325 (2019).
11 Liang, Z., Li, T., Kim, M., Asthagiri, A. & Weaver, J. F. Low-temperature activation of methane on the IrO2 (110) surface. Science 356, 299-303 (2017).
12 Weaver, J. F., Hakanoglu, C., Antony, A. & Asthagiri, A. Alkane activation on crystalline metal oxide surfaces. Chem. Soc. Rev. 43, 7536-7547 (2014).
13 Meng, L. et al. Gold plasmon-induced photocatalytic dehydrogenative coupling of methane to ethane on polar oxide surfaces. Energy Environ. Sci. 11, 294-298 (2018).
14 Wu, S. et al. Ga-Doped and Pt-Loaded Porous TiO2-SiO2 for Photocatalytic Nonoxidative Coupling of Methane. J. Am. Chem. Soc. 141, 6592-6600 (2019).
15 Jiang, W. et al. Pd-Modified ZnO-Au Enabling Alkoxy Intermediates Formation and Dehydrogenation for Photocatalytic Conversion of Methane to Ethylene. J. Am. Chem. Soc. 143, 296-278 (2021).
16 Yu, X. et al. Stoichiometric methane conversion to ethane using photochemical looping at ambient temperature. Nat. Energy 5, 511-519 (2020).
17 Li, L. et al. Synergistic Effect on the Photoactivation of the Methane C-H Bond over Ga3+-Modified ETS-10. Angew. Chem. Int. Ed. 51, 4702-4706 (2012).
18 Li, L. et al. Efficient Sunlight-Driven Dehydrogenative Coupling of Methane to Ethane over a Zn+-Modified Zeolite. Angew. Chem. Int. Ed. 50, 8299-8303 (2011).
19 Yuliati, L., Hamajima, T., Hattori, T. & Yoshida, H. Nonoxidative Coupling of Methane over Supported Ceria Photocatalysts. J. Phys. Chem. C 112, 7223-7232 (2008).
20 Chen, Z. et al. Non-oxidative Coupling of Methane: N-type Doping of Niobium Single Atoms in TiO2-SiO2 Induces Electron Localization. Angew. Chem. Int. Ed. 60, 11901-11909 (2021).
21 Li, L., Fan, S., Mu, X., Mi, Z. & Li, C.-J. Photoinduced Conversion of Methane into Benzene over GaN Nanowires. J. Am. Chem. Soc. 136, 7793-7796 (2014).
22 Wang, G. et al. Light-Induced Nonoxidative Coupling of Methane Using Stable Solid Solutions. Angew. Chem. Int. Ed. 60, 20760-20764 (2021).
23 Yuliati, L., Hattori, T., Itoh, H. & Yoshida, H. Photocatalytic nonoxidative coupling of methane on gallium oxide and silica-supported gallium oxide. J. Catal. 257, 396-402 (2008).
24 Kaspar, J., Fornasiero, P. & Graziani, M. Use of CeO2-based oxides in the three-way catalysis. Catal. Today 50, 285-298 (1999).
25 Di Monte, R. & Kaspar, J. Nanostructured CeO2-ZrO2 mixed oxides. J. Mater. Chem. 15, 633-648 (2005).
26 Hinuma, Y. et al. Density Functional Theory Calculations of Oxygen Vacancy Formation and Subsequent Molecular Adsorption on Oxide Surfaces. J. Phys. Chem. C 122, 29435-29444 (2018).
27 Wang, H.-F. et al. Oxygen vacancy formation in CeO2 and Ce1-xZrxO2 solid solutions: electron localization, electrostatic potential and structural relaxation. Phys. Chem. Chem. Phys. 14, 16521-16535 (2012).
28 Bellardita, M., Fiorenza, R., Palmisano, L. & Scirè, S. in Cerium Oxide (CeO₂): Synthesis, Properties and Applications (eds Salvatore Scirè & Leonardo Palmisano) 109-167 (Elsevier, 2020).
29 Si, R., Zhang, Y.-W., Li, S.-J., Lin, B.-X. & Yan, C.-H. Urea-Based Hydrothermally Derived Homogeneous Nanostructured Ce1-xZrxO2 (x = 0-0.8) Solid Solutions: A Strong Correlation between Oxygen Storage Capacity and Lattice Strain. J. Phys. Chem. B 108, 12481-12488 (2004).
30 Nagai, Y. et al. XAFS and XRD Analysis of Ceria-Zirconia Oxygen Storage Promoters for Automotive Catalysts. Top. Catal. 47, 137-147 (2008).
31 Li, Z. et al. Electronic and Interface Regulation of Wurtzite Surfaces Promotes Photocatalytic Ammonia Synthesis under Visible Light Irradiation. ACS Sustain. Chem. Eng. 9, 13630-13639 (2021).
32 Wu, H. et al. Citric acid-assisted ultrasmall CeO2 nanoparticles for efficient photocatalytic degradation of glyphosate. Chem. Eng. J. 425, 130640 (2021).
33 Kozlov, S. M. & Neyman, K. M. O vacancies on steps on the CeO2(111) surface. Phys. Chem. Chem. Phys. 16, 7823-7829 (2014).
34 Nilius, N. et al. Formation of One-Dimensional Electronic States along the Step Edges of CeO2(111). ACS Nano 6, 1126-1133 (2012).
35 Li, N. et al. Direct Regulation of Double Cation Defects at the A1A2 Site for a High-Performance Oxygen Evolution Reaction Perovskite Catalyst. ACS Appl. Mater. Interfaces 13, 332-340 (2021).
36 Xu, W. et al. A-site Excessive (La0.8Sr0.2)1+xMnO3 Perovskite Oxides for Bifunctional Oxygen Catalyst in Alkaline Media. ACS Catal. 9, 5074-5083 (2019).
37 Cargnello, M. et al. Exceptional Activity for Methane Combustion over Modular Pd@CeO2 Subunits on Functionalized Al2O3. Science 337, 713-717 (2012).
38 Di Cosimo, J. I., Apesteguı, ́a, C. R., Ginés, M. J. L. & Iglesia, E. Structural Requirements and Reaction Pathways in Condensation Reactions of Alcohols on MgyAlOx Catalysts. J. Catal. 190, 261-275 (2000).
39 Ma, S., Guo, X., Zhao, L., Scott, S. & Bao, X. Recent progress in methane dehydroaromatization: From laboratory curiosities to promising technology. J. Energy Chem. 22, 1-20 (2013).
40 Chen, L., Smith, R. S., Kay, B. D. & Dohnálek, Z. Adsorption of small hydrocarbons on rutile TiO2(110). Surf. Sci. 650, 83-92 (2016).
41 Li, C. & Xin, Q. FT-IR spectroscopic investigation of methane adsorption on cerium oxide. J. Phys. Chem. 96, 7714-7718 (1992).
42 Zhang, L.-W., Wang, L. & Zhu, Y.-F. Synthesis and Performance of BaAl2O4 with a Wide Spectral Range of Optical Absorption. Adv. Funct. Mater. 17, 3781-3790 (2007).
43 Khan, M. E., Khan, M. M. & Cho, M. H. Ce3+-ion, Surface Oxygen Vacancy, and Visible Light-induced Photocatalytic Dye Degradation and Photocapacitive Performance of CeO2-Graphene Nanostructures. Sci. Rep. 7, 5928 (2017).
44 Su, Y.-Q., Filot, I. A. W., Liu, J.-X., Tranca, I. & Hensen, E. J. M. Charge Transport over the Defective CeO2(111) Surface. Chem. Mater. 28, 5652-5658 (2016).
45 Pidol, L. et al. EPR study of Ce3+ ions in lutetium silicate scintillators Lu2Si2O7 and Lu2SiO5. J. Phys. Chem. Solids 67, 643-650 (2006).
46 Li, L. et al. Thermal non-oxidative aromatization of light alkanes catalyzed by gallium nitride. Angew. Chem. Int. Ed. 53, 14106-14109 (2014).