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Retrosynthetic Planning with Experience-Guided Monte Carlo Tree Search

Abstract

Retrosynthetic planning problem is to analyze a complex1

molecule and give a synthetic route using simple building2

blocks. The huge number of chemical reactions leads to a3

combinatorial explosion of possibilities, and even the ex-4

perienced chemists often have difficulty to select the most5

promising transformations. The current approaches rely on6

human-defined or machine-trained score functions which7

have limited chemical knowledge or use expensive estima-8

tion methods such as rollout to guide the search. In this pa-9

per, we propose EG-MCTS, a novel MCTS-based retrosyn-10

thetic planning approach, to deal with retrosynthetic plan-11

ning problem. Instead of exploiting rollout, we build an Ex-12

perience Guidance Network to learn knowledge from syn-13

thetic experiences during the search. Experiments on bench-14

mark USPTO datasets show that, our EG-MCTS gains sig-15

nificant improvement over state-of-the-art approaches both in16

efficiency and effectiveness. Routes designed by EG-MCTS17

for real drugs or compounds exhibit the effectiveness of18

our approach on assisting chemists performing retrosynthetic19

analysis. Our EG-MCTS system solves for almost a quarter20

more and twice times faster than the traditional computer-21

aided MCTS search method. In a comparative experiment22

with the literature, our computer-generated routes were gen-23

erally viewed to be equivalent to reported literature routes by24

chemists.25

1 Introduction26

Chemical synthetic analysis, i.e., retrosynthesis, aims at de-27

signing a pathway to synthesize the target molecule using28

a set of available building blocks (Corey 1991). Computer-29

assisted approaches have been an active research topic since30

Corey and Wipke (1969) created the first computer pro-31

gram for retrosynthetic planning, after which great progress32

(Segler and Waller 2017; Segler, Preuss, and Waller 2018;33

Schreck, Coley, and Bishop 2019; Kishimoto et al. 2019;34

Chen et al. 2020; Gottipati et al. 2020; Wang et al. 2020;35

Kim et al. 2021) has been made with the development of36

large reaction databases (Lowe 2017). The retrosynthetic37

task is challenging since the search space of available re-38

actions in each step is prohibitively large.39

There have been approaches on single-step retrosynthe-40

sis, such as template-based (Coley et al. 2017b; Dai et al.41

2019; Coley, Green, and Jensen 2019) and template-free42

(Liu et al. 2017; Zheng et al. 2020; Somnath et al. 2020;43

Yan et al. 2020; Lin et al. 2020; Tetko et al. 2020), which 44

aim to predict the most promising reactions for target 45

molecules. Different from single-step retrosynthesis, in this 46

paper we focus on the multi-step retrosynthesis, which is 47

more challenging since we need to consider various com- 48

binations of substantial reactions of multiple steps. There 49

have been approaches proposed to tackle this challenge by 50

building score functions, which are either human-defined or 51

machine-trained, to guide the search of reactions. For ex- 52

ample, Segler, Preuss, and Waller (2018) combined Monte 53

Carlo Tree Search (MCTS) (Kocsis and Szepesvári 2006) 54

with two policy networks and a filter network, called 3N- 55

MCTS, to perform chemical synthesis planning. Jiang et al. 56

(2019) viewed this problem as a Markov decision process 57

and used deep reinforcement learning techniques to deal 58

with it. DINGOS (Button et al. 2019) combined the em- 59

pirical rule-based strategy with a machine learning model 60

to produce design molecules with high similarity to the 61

given targets. Kishimoto et al. (2019) proposed a human- 62

defined score function to select reactions that have low- 63

est cost based on a depth-first proof-number search. Coley 64

et al. (2019) proposed an approach toward fully autonomous 65

chemical synthesis that combines techniques in artificial in- 66

telligence for planning and robotics for execution. Molga, 67

Dittwald, and Grzybowski (2019) proposed Chematica pro- 68

gram, a commercial software platform to design synthetic 69

pathways. Klucznik et al. (2018) executed the routes planned 70

autonomously by Chematica in the laboratory and provided 71

the validation of the computer approach in synthetic design. 72

Chen et al. (2020) proposed an approach, called Retro∗, to 73

do A∗ search of reactions with the guidance of previously 74

trained neural networks. Recently, Kim et al. (2021) pro- 75

posed a self-improving procedure to enhance the existing 76

approaches, such as Retro∗. We call this enhanced approach 77

Retro∗+ for simplicity. Toniato et al. (2021) firstly proposed 78

a machine learning-based, unassisted approach to clean the 79

reaction datasets and improved the prediction quality of 80

single-step retrosynthesis. Reinforcement learning based ap- 81

proaches (Schreck, Coley, and Bishop 2019; Wang et al. 82

2020) were also proposed to build score functions with the 83

similarity of the retrosynthetic problems to strategy games 84

(Szymkuć et al. 2016). The score functions were trained 85

through self-play to evaluate the synthesis cost of molecules. 86

Despite the success of previous approaches, the learn- 87



AF G𝑇𝐴2H I𝑇𝐺1J K𝑇𝐻1 𝑇𝐼1
(a) A sub-
optimal route.

AB C𝑇𝐴1D E𝑇𝐵1 𝑇𝐶1

(b) An opti-
mal route.

AF G 𝑇𝐴2
H I𝑇𝐺1J K𝑇𝐻1 𝑇𝐼1

B C𝑇𝐴1D E𝑇𝐵1 𝑇𝐶1
𝑇𝐴3OP Q𝑇𝑂1R S𝑇𝑃1 T𝑇𝑄1

(c) Our approach to collect ex-
perience, performing MCTS on
molecule A.

Figure 1: The sub-optimal route, optimal route and search
tree of molecule A. Each box contains a molecule and every
arrow is a reaction template. Those molecules marked in red
are building blocks.

ing components they relied on are often based on exist-88

ing single-step reaction databases (such as USPTO (Lowe89

2017)), such as the three networks in 3N-MCTS (Segler,90

Preuss, and Waller 2018), the policy and value networks91

in Retro∗ (Chen et al. 2020). The knowledge they can ac-92

quire largely depends on the quality and quantity of the93

databases. More importantly, the existing databases contain94

only single-step reactions. Machines cannot derive multi-95

step information and knowledge from them, that it is difficult96

to build a path-level and forward-looking score function.97

For example, a retrosynthetic route (with four steps) con-98

structed by previous approach Retro∗ (Chen et al. 2020)99

based on the reaction database is shown in Figure 1(a),100

where molecule A is decomposed into molecules F and G101

with template TA2
, G is decomposed into H and I , H is102

decomposed into J , and I is decomposed into K. However,103

instead of TA2
, there may exist another reaction template,104

namely TA1
, which can be used to decompose molecule A105

in the template library and generate an optimal route (with106

three steps), as shown in Figure 1(b), where molecule A107

is decomposed into B and C with template TA1
, B is de-108

composed into D, and C is decomposed into E. Since there109

is no reaction1 decomposing A into B and C in the reac-110

tion database, such optimal route will not be constructed by111

Retro∗ (Chen et al. 2020) based on the reaction database.112

This results in the estimated probability for TA1
being lower113

than TA2
. Likewise, the self-improved approach Retro∗+114

(Kim et al. 2021) is not able to find the optimal route, since115

Retro∗+, as a Greedy Best-First Search algorithm, prefers116

those templates with higher probability. Once Retro∗+ finds117

template TA2
lead to a successful route, it will improve the118

probability of TA2
, which will further reduce the possibility119

of finding the optimal route with TA1
. Based on this obser-120

vation, we conjecture that leveraging all potential tem-121

plates from the template library to help construct syn-122

thetic routes could be helpful for guiding the retrosyn-123

thetic planning.124

1Note that “reaction” is different from “reaction template”. A
reaction can be seen as an instance of its corresponding reaction
template.

Besides, we also observe that there are many experiences 125

that fail to construct successful route to synthesize target 126

molecules with the building blocks during self-play. For ex- 127

ample, the synthetic route through molecule O and P is not 128

a successful one in Figure 1(c), since S does not belong 129

to the building blocks. Those failed experiences can be 130

used to learn score functions for guiding retrosynthetic 131

planning without similar failures. Note that previous ap- 132

proaches, such as Retro∗ (Chen et al. 2020), Retro∗+ (Kim 133

et al. 2021), and those RL-based approaches (Schreck, Co- 134

ley, and Bishop 2019; Wang et al. 2020), only consider suc- 135

cessful constructed experiences when learning score func- 136

tions. 137

Based on the above-mentioned two observations, we 138

propose a novel MCTS-based search approach, namely 139

EG-MCTS
2, standing for Experience-Guided Monte Carlo 140

Tree Search, to generate routes for synthesizing target 141

molecules.3 We first learn an Experience Guidance Network 142

(EGN) to estimate the score function of reaction templates 143

by collecting retrosynthetic experiences. We then generate 144

retrosynthetic routes for target molecules with the learnt 145

EGN. To explore the low-probability but potentially success- 146

ful reaction templates in the template library when collecting 147

synthetic experiences, EG-MCTS uses MCTS to explore re- 148

action templates and records the scores of these templates 149

for training the score function. For example, in Figure 1(c), 150

our EG-MCTS approach performs MCTS on molecule A and 151

finds that template TA1
leads to a fewer-step route during 152

the MCTS exploration. EG-MCTS records the experiences 153

about TA1
. To leverage the failed experiences, we estimate 154

the scores of reaction templates with the failed experiences 155

along with the successful experiences. For example, in Fig- 156

ure 1(c), the route through molecule O and P fails (or has 157

not been verified) to reach a successful synthetic route. We 158

estimate that the score of reaction template TP1
is 1/2, con- 159

sidering it breaks molecule P into R and S, where R be- 160

longs to the building blocks while S does not belong to the 161

building blocks. 162

2 Results and Discussion 163

2.1 Formulation of Retrosynthetic Planning 164

In general, the input of retrosynthetic planning, or RS plan- 165

ning, is composed of a target molecule m0, a building blocks 166

set B, and a single-step retrosynthetic model S(·). B is com- 167

posed of a set of simple, commercially available molecules. 168

A single-step retrosynthetic model S(·) takes a molecule 169

m as input, predicts k reaction templates T with the high- 170

est probability, and outputs their probabilities P as well. It 171

can be formulated as S(m) : {Tj , P (m,Tj)}
k
j=1, where 172

P (m,Tj) indicates the probability jth template Tj given 173

molecule m. There have been off-the-shelf approaches (Co- 174

ley et al. 2017b; Segler and Waller 2017; Segler, Preuss, and 175

Waller 2018; Chen et al. 2020) developed to build this model 176

2Codes for reproducing this paper are released in supplemen-
tary material.

3We follow the common practice to ignore the reagents and
other chemical reaction conditions.
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(a) EG-MCTS approach consists of two phases, learning EGN and generating routes for new targets with the help of the well-trained EGN.
In phase I, we first collect experience based on the search trees built by EG-MCST planning for every molecule in training set. Then we use
these experience as the training data of EGN and update EGN. In the third part, we validate the new EGN performance by applying it on the
validation set. If it reaches the best performance, the first phase stops. Otherwise, go back to the first part, experience collecting. In phase II,
we use the well-trained EGN to guide the EG-MCST planning for a new target molecule and analyze the synthetic routes from the search tree.
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Select the most promising 
molecule leaf node.
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(b) Three modules of the EG-MCTS planning procedure. Section, expansion and update are executed in a loop until the search cost is
exhausted.

Figure 2: Overview of EG-MCTS approach and the procedure of the key part, EG-MCTS planning.

effectively. In this work, we borrow the single-step model177

developed by Kim et al. (2021). The output of RS planning178

is a synthetic route from B to m0, i.e., a series of chemical179

reactions whose reactants are directly from B or synthesized180

from B.181

2.2 EG-MCTS Overview182

Our EG-MCTS approach is composed of two phases, i.e.,183

(I) learning an Experience Guidance Network (EGN) for184

guiding the search, and (II) generating synthetic routes for185

molecules with the learnt EGN (shown in Fig 2(a)).186

In order to deal with the difficulty in defining a score func-187

tion and the lack of path-level synthetic routes for learning,188

in Phase I we aim to use a network-guided MCTS planning189

to collect synthetic experience, and then use the experience190

to update the network. Monte Carlo Tree Search (MCTS) 191

(Kocsis and Szepesvári 2006) as a general search approach, 192

has been demonstrated successful in games, such as Go (Sil- 193

ver et al. 2016, 2017, 2018). The core component of MCTS 194

is to use an “upper confidence bound” (UCB) to balance 195

the trade-off between exploration and exploitation, such that 196

MCTS can solve problems with large branching factors. A 197

variant of MCTS, PUCT (Rosin 2011), has been success- 198

fully applied for RS planning (Segler, Preuss, and Waller 199

2018). We use a neural network instead of the traditional 200

Rollout strategy to calculate heuristic values of searching 201

nodes. This network, namely Experience Guidance Network 202

(EGN), estimates a score for each template acting on each 203

molecule as the initial evaluation value. 204

In Phase I shown in Fig 2(a), we first initialize the EGN 205



with random weights. For each target molecule in train-206

ing set, we build a search tree using EG-MCTS planning207

with EGN and collect the synthetic experience based on the208

search tree as the training data of EGN. Then we update the209

EGN. After getting the new EGN, we verify its performance210

on the validation set. If it reaches the optimal performance,211

Phase I stops and returns the well-trained EGN. Otherwise,212

the Phase I will loop in the order of experience collecting,213

EGN updating and EGN validating.214

So far we have obtained the well-trained EGN from Phase215

I and in Phase II, we use it to guide EG-MCTS planning.216

After generating the search tree for a new target molecule,217

we analyze the synthetic routes from the tree.218

The key part, EG-MCTS planning appears in both Phase219

I and II, helping to collect synthetic experience and gener-220

ate the synthetic routes. The search tree built by EG-MCTS221

planning is represented as an AND-OR tree. The OR node222

(molecule node) contains a molecule and the AND node (re-223

action node) contains a reaction template. The planning pro-224

cedure can be found from Figure 2(b), which is composed225

of three modules, i.e., Selection, Expansion and Update. The226

Selection module selects the most promising molecule node227

m, and the Expansion module expands the selected node228

using the single-step retrosynthetic model and predicts the229

initial value using EGN. After that, the Update module up-230

dates upwards along the tree. These three molecule mod-231

ules loop continuously until the search cost is exhausted.232

Note that “circles” and “squares” indicate molecule nodes233

and reaction nodes, respectively. “Double circles” indicate234

the molecule nodes are selected by the Selection module and235

the path marked orange shows the Selection process. Those236

nodes marked green are expanded by the Expansion module,237

and the blue path shows the Update process.238

2.3 Experimental Details239

Datasets In order to train the single-step retrosynthetic240

model S(·), we use the publicly available reaction dataset241

extracted from United States Patent Office (USPTO) up to242

September 2016 provided by Lowe (2017). The building243

blocks set B comes from eMolecules4, a collection of 231M244

commercially available molecules. The single-step retrosyn-245

thetic model S(·) is a template-based model that treats the246

template prediction problem as a multi-class classification247

problem following previous literature (Coley et al. 2017b,a).248

S(·) is trained on the reaction dataset from USPTO with the249

assistance of RDChiral5 (Coley, Green, and Jensen 2019),250

and the training details refer to literature (Chen et al. 2020;251

Kim et al. 2021).252

The input of S(·) is a molecule, and the input of the EGN253

is the combination of a molecule and a reaction template. We254

need to represent them by real vectors. For a molecule, we255

use the Morgan fingerprint of radius 2 with 2048 bits. For a256

reaction template, its fingerprint could be computed by rd-257

kit6, using the function CreateStructuralFingerprintForRe-258

4http://downloads.emolecules.com/free/2019-11-01/
5https://github.com/connorcoley/rdchiral
6https://www.rdkit.org/

action and the fingerprint is then folded into 2048 dimen- 259

sions. 260

We hope the EGN to have strong generalization ability 261

through learning the synthetic experience of molecules in 262

training set. In order to obtain those molecules with rich 263

and valuable experience, we build a Network of Organic 264

Chemistry (NOC) (Fialkowski et al. 2005; Bishop, Klajn, 265

and Grzybowski 2006; Grzybowski et al. 2009) based on 266

USPTO and eMolecules. The construction details and filter 267

process refer to Appendix. After processing, we get 1, 193 268

training molecules rich in experience as training set, 165 val- 269

idation molecules and 180 test molecules. We also use the 270

test set of Retro∗ (Chen et al. 2020) and Retro∗+ (Kim et al. 271

2021), called Retro∗-190, which consists of 190 molecules. 272

In order to ensure the fairness and effectiveness of the ex- 273

periment, we do some similarity statistical experiments: for 274

a test molecule m ∈ Mtest, we calculate the highest similar- 275

ity and the average similarity between it and the molecules 276

in the training set, denoted as Smax(m) and Savg(m). For 277

all molecules in our test set, the average of Smax is 0.62 278

and the average of Savg is 0.36. And the average of Smax in 279

Retro∗-190 is 0.61 and the average of Savg is 0.35. 280

Baselines To verify the effectiveness of EG-MCTS, we 281

compare our approach against other representative baselines 282

in RS planning problem: (1) Retro∗+ and Retro∗-0+ (Kim 283

et al. 2021) are neural-based A*-like algorithms based on 284

Retro∗ (Chen et al. 2020) with a self-improved single-step 285

retrosynthetic model. Retro∗+ uses a neural value network 286

trained in the USPTO and Retro-0*+ is its non-learning 287

version. Its code and test set is available.7 (2) DFPN-E 288

(Kishimoto et al. 2019) combines the Depth-First Proof- 289

Number (DFPN) Search with Heuristic Edge Initialization. 290

Following the implementation details and parameter set- 291

tings in the literature, we have implemented DFPN-E. (3) 292

MCTS-rollout uses a basic tree structure whose nodes are 293

molecule sets and edges are reaction templates and uses roll- 294

out to evaluate the values of templates. The tree structure 295

and search algorithm can be referred to Segler, Preuss, and 296

Waller (2018). The max rollout depth is 5 and the explo- 297

ration constant c is 0.5. (4) Greedy DFS always gives pri- 298

ority to the reaction with the highest probability. And we set 299

its max depth to be 10. And the node of DFS search tree 300

is defined as a set of molecules like MCTS-rollout. To un- 301

derstand more about the importance of the EGN , we also 302

perform an ablation study by testing the non-learning ver- 303

sion (5) EG-MCTS-0 set the initial Q value to be 0.5 for all 304

actions. 305

All experiments use the same building blocks set B. As 306

for single-step retrosynthetic model S(·), all algorithms use 307

the model of Retro∗+, except Retro∗-0+ (because it has its 308

own model). 309

2.4 Experimental Results 310

We test several baseline algorithms together with our 311

EG-MCTS in the test set of 180 molecules and Retro∗-190. 312

Our evaluation metrics include the efficiency of the planning 313

and the quality of the solution routes. 314

7https://github.com/binghong-ml/retro star



Success rate of iter limit(%)

Algorithm 100 200 300 400 500 Avg iter Avg T nodes Avg M nodes

EG-MCTS 85.00 90.00 92.78 93.33 94.44 60.75 837.56 1133.90
EG-MCTS-0 77.78 78.89 80.56 80.56 81.11 128.96 1411.80 1904.21

Retro∗+ 81.11 85.56 86.67 87.22 90.56 85.97 927.46 1396.27
Retro∗-0+ 80.56 82.78 86.67 86.675 89.44 87.87 1056.01 1612.05

MCTS-rollout 73.33 77.78 74.21 74.21 78.89 133.69 - -
DFPN-E 56.11 62.22 68.89 72.22 76.67 170.34 2271.56 3012.49

Greedy DFS 45.00 48.89 50.00 51.11 54.44 268.59 - -

Table 1: Planning efficiency performance on our test set of 180 molecules.

Success rate of iter limit(%)

Algorithm 100 200 300 400 500 Avg iter Avg T nodes Avg M nodes

EG-MCTS 85.79 92.63 94.21 95.79 96.84 55.84 869.59 1193.79
EG-MCTS-0 57.37 63.68 68.42 71.05 73.68 186.15 2525.20 3339.52

Retro∗+ 71.05 85.26 88.95 90.00 91.05 100.15 1209.79 1767.81
Retro∗-0+ 67.37 82.10 93.16 95.26 96.32 96.14 1421.90 2108.50

MCTS-rollout 43.68 47.37 54.74 58.95 62.63 254.32 - -
DFPN-E 50.53 58.42 64.21 68.42 75.26 208.12 3123.33 4635.08

Greedy DFS 38.42 40.53 44.21 45.26 46.84 300.56 - -

Table 2: Planning efficiency performance on the test set Retro∗-190 of 190 molecules.

Planning Efficiency For the efficiency of planning, since315

the call of S(·) occupies most of running time, and there is316

always a model call in every iteration, we use the average317

number of iterations (avg iter) as a measure of time and we318

compare the success rate of all approaches under the same319

iteration limit, referred to others (Chen et al. 2020; Kim et al.320

2021; Kishimoto et al. 2019) . We also compare the average321

number of molecule nodes (avg M nodes) and reaction nodes322

(avg T nodes) expanded by the various approaches during323

the searching processes.324

Table 1 and Table 2 show the planning efficiency perfor-325

mance of all approaches on our test set and Retro∗-190,326

respectively. The metrics avg iter, avg T nodes and avg327

M nodes are under the iteration limit of 500. With the328

assistance of our EGN, the performance of EG-MCTS is329

much better than the non-learning version in all metrics,330

demonstrating the performance improvement brought by our331

EGN. EG-MCTS is 3.88% more successful than the sub-332

optimal approach, Retro∗+ and uses 25.22 fewer iterations333

than Retro∗+ in our test set. In Retro∗-190, our EG-MCTS334

also has a great advantage in the metric avg iter. The suc-335

cess rate of iter limit of the Table 1 and Table 2 show the ef-336

fect of iteration limit on the success rate of these algorithms.337

We can see that our EG-MCTS performs super well at the338

beginning on both two test sets. These phenomena indicate339

that our collected experience through self-play is of better340

quality and more instructive. The EGN can help the search341

to focus on more promising actions and to avoid entering a342

hopeless path so that accelerate the searching process.343

Our test set Retro∗-190

Algorithm LR SR Avg LR SR Avg

EG-MCTS 7 117 5.85 13 51 5.07
EG-MCTS-0 90 20 8.15 20 23 5.87

Retro∗+ 96 12 8.37 26 24 6.03
Retro∗-0+ 104 10 8.48 40 24 6.25

MCTS-rollout 98 13 8.23 30 26 6.06
DFPN-E 100 15 8.31 23 17 6.00

Table 3: Route quality performance on 132 molecules suc-
cessfully solved on our test set and 103 molecules success-
fully solved on Retro∗-190.

Route Quality Except Greedy DFS, there are 132 344

molecules successfully solved by all approaches on our test 345

set and 103 molecules successfully solved on Retro∗-190. 346

To measure the quality of the solution routes, we com- 347

pare the route length, that is the number of reactions in 348

the route. The results are shown in Table 3. The metric 349

LR (longest routes) of an approach indicates the number of 350

longest routes generated by the approach over all of the suc- 351

cessfully solved molecules. Specifically, for each molecule 352

successfully solved by all approaches, if an approach gen- 353

erates the longest route over all approaches, LR of this ap- 354

proach is increased by one. Similarly, the metric SR (short- 355

est routes) of an approach indicates the number of shortest 356

routes generated by the approach over all of the successfully 357

solved molecules. The metric Avg indicates an average of 358



O=C1OCc2cc(CCN3CCN(C4CCc5cc6nonc6cc5C4)CC3)ccc21

c1c2c(cc3nonc13)CC(N1CCNCC1)CC2 O=CCc1ccc2c(c1)COC2=O

C1CNCCN1O=C1CCc2cc3nonc3cc2C1

O=C(O)Cc1ccc2nonc2c1 O=C(Cl)C(=O)Cl

Cc1ccc2nonc2c1 O=C=O

(a) Solution route given by EG-MCTS.

O=C1OCc2cc(CCN3CCN(C4CCc5cc6nonc6cc5C4)CC3)ccc21

c1c2c(cc3nonc13)CC(N1CCNCC1)CC2 O=CCc1ccc2c(c1)COC2=O

CC(C)(C)OC(=O)N1CCN(C2CCc3cc4nonc4cc3C2)CC1

CC(C)(C)OC(=O)N1CCNCC1 O=C1CCc2cc3nonc3cc2C1

O=C(O)Cc1ccc2nonc2c1 O=C(Cl)C(=O)Cl

Cc1ccc2nonc2c1 O=C=O

(b) Solution route given by Retro∗+.

Figure 3: Solutions given by EG-MCTS and Retro∗+ for the same target (CAS NO.:1374357-00-2). Orange nodes are from B.
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Figure 4: Chemical information of solution routes shown in Figure 3. The molecules over the arrow are from B. The atoms and
bonds marked red are reaction center, which change in the reaction.

length of all routes generated by each approach.359

Our approach EG-MCTS has superior comprehensive per-360

formance among all approaches, showing the guiding role of361

our EGN in finding high-quality routes. Although Retro∗+362

and Retro∗-0+ perform well in planning efficiency, but the363

quality of the routes they give is not so good on both two364

test sets. We consider the reason may be that when perform-365

ing self-improvement, they simply increase the probability366

of those paths which have been proven successful. In our367

EG-MCTS, we learn a a comprehensive score for the path,368

so we can fully consider all potential paths.369

We illustrate two solution routes for the same target370

molecule (CAS NO.:1374357-00-2) given by our EG-MCTS371

and Retro∗+ in Figure 3 and their chemical information in372

Figure 4. The dotted box parts show that two routes share373

the same first reaction and bottom decomposition. Our ap-374

proach leaves out an extra step in the middle, selecting the375

better decomposition template in the second step with the376

help of EGN.377

2.5 Case study378

EG-MCTS Versus Literature In order to verify the va-379

lidity of the routes our EG-MCTS generated, we com-380

pare the routes generated by EG-MCTS with the published381

routes for 30 testing molecules. The information of 30 test-382

ing molecules refer to Appendix. Similar to previous work383

(Chen et al. 2020; Kim et al. 2021), we set the maximal num- 384

ber of iterations to be 500 for each target molecule. The dif- 385

ference is that we will not stop the search until 500 itera- 386

tions have been run out, so for each target molecule, multi- 387

ple routes can be found. We only choose the route that best 388

matches the published route. Then we calculate the match- 389

ing degree between the best route and the published route for 390

each test molecule. The calculation method of the matching 391

degree is that if the step of the route appears in the pub- 392

lished route, it is considered that the step is matched. Note 393

that we only match the decomposition reactants and the main 394

products, and don’t care about the by-products. We use the 395

number of matching steps divided by the number of steps of 396

generated route as the matching degree. Figure 5(a) shows 397

the statistics of the matching degree over 30 test molecules. 398

There are 40% of the generated routes that almost ex- 399

actly match the published routes. Note that “almost exactly 400

match” indicates the each step of generated routes appears 401

in the published routes but the final molecules (buliding 402

blocks) in the generated routes continue to be decomposed 403

in the published routes. Figure 5(b) shows an exemplary 404

11-step route generated by our EG-MCTS for the molecule 405

(CAS NO.:1392842-01-1) of inhibiting HIF hydroxylase en- 406

zyme activity reported in 2012, which fully matches the pub- 407

lished route in the patent (Ng et al. 2012). 408

Another 40% of the generated routes mostly match the 409
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Figure 5: (a). The statistics of the matching degree. (b). An exemplary route which matches the published route.
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Figure 7: Another highly-matching example showing the differences between our EG-MCTS generated route and the published
one in the patent (Firooznia et al. 2013). Steps 1 to 7 are the same. The molecules in the red dotted frame are the same
intermediate molecules, but are obtained through different decomposition ways. The CAS Number of the target moleuclue is
1443043-01-3. The atoms and bonds marked red are reaction center, which change in the reaction.

published routes, with an average matching ratio of 77.23%.410

We observe that the difference mainly occurs in the later part411

of the retrosynthetic routes, while the routes are completely, 412

especially in the first 5 to 7 steps. We also observed that there 413
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are two main differences. One is that because our EG-MCTS414

is goal-oriented, i.e., to break target molecules into building415

blocks, EG-MCTS gives priority to the successful decompo-416

sition ways which are different from the published routes, as417

the step 8 in Figure 6(a) compared to steps 8 to 10 in Figure418

6(b). Note that identical steps 1 to 7 are not shown in the419

Figure 6. The route shown in Figure 6(b) is reported in the420

patent (Aso et al. 2009). In step 8 of EG-MCTS in Figure421

6(a), compound a.2, methyl 4-chloro-2, 3-diaminobenzoate422

is reacted with 3-Bromopropyl alcohol. But it may not work423

since EG-MCTS chooses the less reactive amino group be-424

tween the two amino groups in compound a.2. Another425

is that although the intermediate decomposition steps are426

different, the final decomposition results are identical. As427

shown in Figure 7, the generated route and the published428

route reported in the patent (Firooznia et al. 2013) have dif-429

ferent intermediate steps, i.e., steps 8 to 11 in Figure 7(a) and430

steps 8 to 10 in Figure 7(b), but have the same intermediate431

decomposition compound b.12, which is in the red dotted432

frame. In the generated route, the carboxylic ester (b.12) is433

firstly reduced to the alcohol (b.11) in step 11, and in step434

10 the alkyl halide (b.10) is obtained from the alcohol (b.11)435

by chlorination. These two reactions have been included in436

the patent (Chen et al. 2010). Step 9 is the substitution re-437

action of the alkyl halide (b.10) with cyanide reagent and438

produces the nitrile-containing compound b.9. Step 8 is the439

alcoholysis of nitriles to esters under the catalysis of acids.440

The number of steps of the generated route is one more than441

the published route, but each step also seems to be accept-442

able.443

There are 6 of 30 generated routes whose matching de-444

gree is lower than 60%. Figure 8 shows a route different445

from the published route reported in the patent (Nara et al.446

2013a). Step 10 is the acylation of acid chloride and the447

amine (c.11) to the amide (c.10) and step 9 is the substi-448

tution reaction of alcohol hydroxyl of compound c.10 with449

trifluoromethanesulfonic anhydride to provide the trifluo-450

romethanesulfonyl of compound c.9. In step 8, the amide451

group of compound c.9 undergoes the amidohydrolysis. Step452

7 is the substitution reaction that turns the secondary amine453

(c.8) to the tertiary amine (c.7). Step 6 is the coupling of aryl454

compounds with arylboronic acid derivatives (Suzuki Cou- 455

pling) and step 5 is the halogenation of aromatic compounds, 456

both of which have been included in the patent (Nara et al. 457

2013b). The substitution reaction on alkyl halide (c.5) with 458

cyanide reagent gives the nitrile-containing compound c.4 459

in step 4. Compound c.4 is then deprotected to the lactam 460

by demethylation in step 3. The ester group of compound 461

c.3 is then hydrolyzed to the acid in step 2. In the last step, 462

compound c.2 is aminated to give the amide (c.1). 463

Although each step of these routes follows some chemical 464

reaction principles, some intermediate molecules of these 465

routes may not exist in reality or have not yet been synthe- 466

sized, due to the failure to consider the chemical environ- 467

ment. For example, the groups of the molecule itself cannot 468

coexist and the positions and groups at which reactions can 469

occur are various and do not definitely proceed as they do 470

in the planning routes. After searching, we could not find 471

the CAS number of compounds c.2, c.3, c.4, c.8, c.9, c.10 472

appearing in the route shown in Figure 8, which means that 473

they may not exist in reality or have not yet been synthe- 474

sized. These disturbing problems are common in existing 475

retrosynthetic planning approaches. 476

Drug Design We apply our EG-MCTS approach to the 477

synthesis of some commercialized star drug molecules with 478

complex structures to find out whether the planning syn- 479

thetic routes have practical guiding significance. Here are 480

five used molecules in drug design experiments: mannopep- 481

timycin aglycone, Paxlovid, Sofosbuvir, Taxol and Molnupi- 482

ravir. 483

The first drug molecule used in drug design experiments 484

is mannopeptimycin aglycone, which is the cyclic hexapep- 485

tide aglycone of the mannopeptimycins, a group of gly- 486

copeptides known for potent activity against drug-resistant 487

bacteria. The CAS number of mannopeptimycin aglycone 488

is 1622135-35-6. We ignore its stereochemical structure to 489

get the target molecule for EG-MCTS, as compound d.1 490

shown in Figure 9. The generated retrosynthetic route for 491

mannopeptimycin aglycone is shown in Figure 9. Note that 492

our EG-MCTS sometimes ignores some side intermediates. 493

We add the necessary intermediates to the route and mark 494
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Figure 10: The generated route given by our EG-MCTS for Paxlovid. The CAS number of Paxlovid is 2628280-40-8 and we
ignore its stereochemical structure. The atoms and bonds marked red are reaction center, which change in the reaction. We add
the necessary intermediates to the route and mark them in blue.

them in blue.495

The designed route starts from the esterification of com-496

pound d.8 with ethanol (step 7). In step 6, the amine group of497

compound d.7 undergoes the condensation reaction with the498

carboxyl group of aid (the blue compound) to form the amid499

(d.6). Step 5 is the hydrolysis of the ester into the carboxyl.500

Compound d.5 then undergoes the acylation reaction with501

Methyl 2-amino-3-(4-hydroxyphenyl)propanoate in step 4,502

followed by two successive condensation reactions of car-503

boxyl and amino groups in steps 3 and 2. The last step is the504

intramolecular acylation reaction, in which the amine group505

and the ester group of compound d.2 are involved to form a506

hexapeptide ring.507

The second molecule used in drug design experiments is508

Paxlovid, which is the first oral antiviral drug authorized by509

the FDA for the treatment of COVID-19. The CAS number510

of Paxlovid is 2628280-40-8. We also ignore its stereochem- 511

ical structure and use our EG-MCTS to get its retrosynthetic 512

route as shown in Figure. Note that we also add the neces- 513

sary intermediates to the route and mark them in blue. 514

The generated route starts with two building blocks, com- 515

pound e.7 and e.10. The hydroxyl group of compound e.10 516

undergoes the esterification reaction with oxalyl chloride in 517

step 8 and the amide (e.9) is then hydrolyzed in step 7. On 518

the other side, compound e.7 first reacts with bromoacetic 519

acid to produce the acid derivative (e.6) in step 6 and then 520

the carboxylic acid (e.6) is reduced to the aldehyde (e.5) in 521

step 5. In step 4, compounds e.5, e.8 and cyanide participate 522

in a ternary reaction to get the compound e.4 with the cyano 523

group and the amide group. Step 3 is the amide hydroly- 524

sis and generates compound e.3. In step 2, a condensation 525

reaction occurs between compound e.3 and the compound, 526



which is above the “step 2” arrow, and the amide hydrolysis527

occurs at the same time, resulting in compound e.2. The last528

step is also the condensation reaction of carboxyl group and529

amino group, happening between compound e.2 and trifluo-530

roacetic acid.531

The generated routes for the other three drugs are listed532

in Appendix. From the two routes, even ignoring the stereo-533

chemical structure and some reactants, our generated routes534

are definitely not perfect. There are many details to be per-535

fected, such as whether the presence of intermediate com-536

pounds is reasonable and whether the reactions will go as537

planned. For a specific example, the structural stability of538

compound e.8 in the Figure 10(a) is questionable, as acyla-539

tion may occur between the amine group and the acid chlo-540

ride inside compound e.8. Although the generated routes541

given by our EG-MCTS are not mature enough, but they are542

heuristic for synthetic organic chemists while performing543

retrosynthesis for complex compounds and can guide them544

in which direction to consider. It would be even more help-545

ful if chemists could adjust the generated routes according546

to these imperfect and inaccurate details and finally get a547

relatively feasible path. For example, for the detail of the548

structural instability of compound e.8, we can make minor549

adjustments to the generated route as shown in Figure 10(b).550

In the adjusted route, we use compound e.9 instead of com-551

pound e.8 to participate in the ternary reaction with com-552

pound e.5 and cyanide to generate new compound e.11 (step553

3). The two amide groups of compound e.11 are then hy-554

drolyzed at the same time in step 3, discarding the two tert-555

butyl hydrogen carbonate. Small adjustments like this make556

the resulting routes more reasonable.557

2.6 Conclusion558

In this paper, we propose EG-MCTS, a novel MCTS-based559

retrosynthetic planning approach. Different from existing560

machine-trained approaches which are limited to the ex-561

isting datasets, we investigate the way of acquiring chem-562

ical synthetic knowledge and experience. Our experimen-563

tal results on real-world benchmark datasets exhibit our564

EG-MCTS gains significant improvement over existing ap-565

proaches. The comparison between the generated routes and566

the published routes also confirms the validity and feasibility567

of our approach. We use our EG-MCTS to perform retrosyn-568

thetic planning for realistic drugs or compounds, and the re-569

sults exhibit that EG-MCTS is instructive. At the same time,570

the experiments on real compounds have exposed the inad-571

equacies of our approach, which are also common problems572

of retrosynthetic planning approaches, that is, the under-573

standing and learning of chemical reaction principles are not574

thorough and comprehensive. It can be embodied as whether575

the presence of compounds is reasonable and whether the re-576

actions will go as planned and so on. We believe that if these577

problems are solved, the quality of the generated routes can578

be greatly improved.579

In planning community, there have been techniques of580

high-performance with respect to planning and learning581

Zhuo and Kambhampati (2017); Zhuo and Yang (2014);582

Zhuo, Muñoz-Avila, and Yang (2014); Zhuo et al. (2010);583

Shen et al. (2020). It would be interesting to investigate584

“borrowing” those techniques to deal with the retrosynthetic 585

planning problem in the future. 586

In general, EG-MCTS can be applied to those planning 587

problems which need a forward score function to guide the 588

search but lack path-level datasets to learn the score function 589

of high-quality. We will consider this as our future work. 590

3 Method 591

We first describe the RS planning problem as a Markov De- 592

cision Process. Then we introduce the key part, EG-MCTS 593

planning. Finally, we describe the two phases of EG-MCTS 594

approach in detail. 595

3.1 Retrosynthetic Planning Problem 596

RS planning can be viewed as a Markov Decision Process 597

(MDP) (Sutton and Barto 2018), defined by a state space 598

S , an action space A(s), a transition model T (s, a, s′), a 599

policy π(a|s) and a reward function R(s, a, s′). In RS plan- 600

ning, a state s ∈ S is a set of molecules, and the initial state 601

s0 = m0 is composed of the target molecule m0. Actions 602

are reaction templates applied to one of the molecules m in 603

state s. The transition function T (s, a, s′) is deterministic 604

for simplicity. The policy π(a|s) is the probability distribu- 605

tion of all allowed functions. The reward function R(s, a, s′) 606

can be simplified as R(m,T ), indicating the reward taken by 607

applying reaction template T on molecule m. 608

3.2 EG-MCTS Planning 609

We first introduce the key part, EG-MCTS Planning. We ob- 610

serve that AND-OR tree structure is suitable for RS planning 611

(Heifets and Jurisica 2012; Kishimoto et al. 2019; Chen et al. 612

2020; Kim et al. 2021), capturing the relations between reac- 613

tions and corresponding molecules. The result of EG-MCTS 614

planning can be represented as an AND-OR tree. 615

An AND-OR tree has two different types of nodes, i.e., 616

AND node that succeeds only if all of its child nodes are suc- 617

cessful, and OR node that succeeds only if at least one child 618

node is successful. In RS planning, a molecule is viewed as 619

successful if there exists at least one reaction that can break 620

it down to B. A reaction is viewed as successful if all of its 621

reactants are successful. The retrosynthetic searching pro- 622

cess can be represented as an AND-OR tree, whose OR and 623

AND nodes are molecules and reaction templates, respec- 624

tively. Note that a reaction template can be seen as a reac- 625

tion relation among substructures of reactants and products. 626

For example, “x̄ → ā + b̄” is a reaction template, where 627

x̄, ā, b̄ are substructures of molecules x, a and b in reac- 628

tion “x → a + b”, respectively. In EG-MCTS planning, the 629

OR node (molecule node) contains a molecule and a value 630

Vm, and the AND node (reaction node) contains a reaction 631

template and a value Q̄. We denote a molecule node m as 632

successful if its molecule belongs to B or one of its child re- 633

action nodes is denoted as successful. We denote a molecule 634

node as unsuccessful if all of its child nodes are denoted 635

as unsuccessful or there is no reaction template available to 636

be applied to m. Likewise, we denote a reaction node T as 637

successful if all of its child molecule nodes are denoted as 638



successful, and denote it as unsuccessful if one of its child639

nodes is denoted as unsuccessful.640

We address the three modules of EG-MCST planning in641

detail below.642

Selection In order to select a promising molecule node, we643

need to build a selection module to repeatedly select reac-644

tion templates for molecule nodes and (sub-)molecules for645

reaction nodes, until a leaf molecule node is found. Intu-646

itively, for a molecule node, we select the most promising647

reaction templates based on the PUCT policy as used by648

(Rosin 2011), as shown in Equation (1):649

T ∗ = argmax
T∈child(m)

(

Q̄(m,T )

N(T )
+ cP (m,T )

√

N(T ′)

1 +N(T )

)

(1)
In Equation (1), Q̄(m,T ) is an average score over all pre-650

vious scores, which will be repeatedly updated according651

Equation (3) given by the Update module. P (m,T ) is given652

by the single-step retrosynthetic model S(·), and N(T )653

records the number of times that node T has been updated.654

T ′ is the grandparent reaction node of the reaction node T .655

The exploration constant c is a hyper-parameter.656

For a reaction node, if it has child nodes which have not657

been expanded, the algorithm will give priority to this kind658

of child nodes and randomly choose one. Otherwise, ran-659

domly select one among the child nodes which have not been660

proved successful.661

Expansion The single-step retrosynthetic model S(·) is662

applied to the molecule m contained in the selected663

molecule node, and it predicts the top-k promising reac-664

tion templates. If the output set is empty, indicating no665

available reaction templates, the node is unsuccessful. Oth-666

erwise, each reaction template Tj is added to the tree as667

a child reaction node of the selected molecule node with668

Q̄(m,Tj) = Q0(m,Tj) given by the EGN. After applying669

the template Tj on m, we get the corresponding reactant set670

Rj . Each reactant r in Rj is also added as a child molecule671

node of the reaction node Tj .672

Update The update step starts from the selected molecule673

node and upwards along the tree. At the molecule node, the674

algorithm checks whether the node is successful or unsuc-675

cessful. If it is not proved to be unsuccessful, the algorithm676

updates its Vm to the highest Q̄ among its child nodes:677

Vm(m) = max
T∈child(m)

Q̄(m,T ) (2)

At the reaction node, the algorithm firstly updates its update678

count N(T ) = N(T ) + 1. Then the algorithm records its679

Q value in the N(T )th update, denoted as QN(T )(m,T ).680

QN(T )(m,T ) is given by the reward function R(m,T ). The681

reward function returns z > 1 if the reaction node is proved682

to be successful, and −z if it is unsuccessful. Otherwise, the683

reward function calculates the average Vm among its child684

nodes. After getting the reward in the N(T )th update, the685

algorithm updates the average score Q̄ of the reaction node:686

Q̄(m,T ) =
1

N(T ) + 1

N(T )
∑

j=0

Qj(m,T ) (3)

Note that Q0(m,T ) is given by EGN when the reaction node 687

T is added to the tree, which is not counted in its update 688

count, and Qj(m,T ), j ∈ [1, N(T )] is given by the reward 689

function. 690

Algorithm 1: Learning EGN

Input: Training molecule set Mtrain, validation molecule
set Mvalidation, building blocks set B, one-step retrosyn-
thetic model S(·)
Output: well-trained EGN fθ

1: Initialize EGN fθ0 with random parameters θ0;
2: for i=1, max round do
3: Initialize a training data D i

train = {};
4: for m ∈ Mtrain do
5: Build search tree Tm:

Tm = EG-MCTS-planning(m,B, S(·), fθi−1
);

6: Collect training data D from Tm:
D = experience-collecting(Tm);

7: D i
train = D i

train ∪ D;
8: end for
9: Update EGN with D i

train:
fθi = EGN -updating(fθi−1

,D i
train);

10: for m ∈ Mvalidation do
11: search m using EG-MCTS-planning:

EG-MCTS-planning(m,B, S(·), fθi);
12: end for
13: Complete the success rate Rsi and the average num-

ber of iterations Rai
on Mvalidation;

14: Complete the highest success rate Rsmax
and the low-

est average number of iterations Ramin
of the last five

rounds on Mvalidation;
15: if Lloop(Rsi ,Rsmax

,Rai
,Ramin

) is false then
16: return fθi ;
17: end if
18: end for

3.3 Phase I: Learning EGN 691

The detailed learning procedure can be found from Algo- 692

rithm 1. We first initialize the EGN with random weights θ0, 693

which is denoted by fθ0 . At each training round i ≥ 1, for 694

each target molecule m ∈ Mtrain, we build a search tree 695

Tm using EG-MCTS planning with fθi−1
(Step 5). We then 696

collect the training data based on Tm (Step 6). After that we 697

update the EGN with the training data and get the new EGN 698

fθi (Step 9). We verify the performance of the new EGN 699

on the validation molecule set, i.e., perform EG-MCTS- 700

planning for each molecule m ∈ Mvalidation(Step 11). If 701

the success rate and average number of iterations can not 702

satisfy the loop condition Lloop, then the learning algorithm 703

stops and return the well-trained EGN. In the following 704

subsections, we will address three procedures experience- 705

collecting, EGN-updating and EGN validating of Algorithm 706

1, respectively. 707

Experience Collecting The Experience Guidance Net- 708

work learns from chemical synthetic experience and uses 709

experience to guide the future search. It takes a reaction tem- 710

plate T and a molecule m as inputs, then predicts the score 711



of template T acting on molecule m. It works based on the712

following assumptions:713

• The score of a reaction template acting on a molecule is714

independent of others, so independent prediction is rea-715

sonable.716

• The same decomposition action (m,T ) may appear in717

the search of different target molecules, so EGN, which718

has learned the value of action (m,T ) from past search-719

ing, will give a more accurate value while meeting the720

same action.721

• The most potential reaction templates of two similar722

compounds are likely to be the same. The well-trained723

network which has learned from the past synthetic expe-724

rience showing that the reaction template T works well in725

molecule m will encourage the search to select T when726

similar molecule m′ is encountered.727

We hope that the learned network could be universally ap-728

plied to guide any searches, even for molecules that have729

never been seen before. Specifically, in the ith round of730

training of the EGN, for every molecule m in the training731

set Mtrain, EG-MCTS planning builds a search tree Tm.732

For every reaction node T in the tree Tm, it and its parent733

molecule node m composes a decomposition action (m,T ).734

We collect every decomposition action (m,T ) and the Q̄735

stored in the corresponding reaction node T to form the ex-736

perience set D i
train = {(m,T ), Q̄}.737

EGN Updating The EGN is a single-layer fully connected738

neural network with input dimension of 4096 and hidden739

dimension of 256. It outputs a scalar Q ∈ (0, 1) representing740

the predicted value. At training round i, the neural network741

Q = fθi−1
(m,T ) is trained for 20 epochs on dataset D i

train742

to minimize LMSE , using Adam optimizer (Kingma and Ba743

2015). We apply dropout (Srivastava et al. 2014) as a means744

of regularization with the dropout rate 0.1.745

LMSE =
(

Q− Q̄(m,T )
)2

(4)

EGN Validating We then verify the new EGN fθi on the746

validation set. Specifically, the algorithm records the high-747

est success rate Rsmax
and the lowest average number of748

iterations Ramin
of the last five training round on the vali-749

dation set. At the training round i, the algorithm completes750

the success rate Rsi and the average number of iterations751

Rai
of EG-MCTS planning with fθi on the validation set.752

The loop condition Lloop can be expressed as: Lloop is true753

if Rsi − Rsmax
> ε1 or Ramin

− Rai
> ε2. Otherwise, it754

is false. ε1 and ε2 are hyper-parameters.755

3.4 Phase II: Generating Synthetic Routes for756

New Target Molecules757

To generate synthetic routes for the target molecule m0, we758

first exploit the EG-MCTS-planning procedure, i.e., Step 5759

of Algorithm 1, to generate a tree with the learnt EGN fθ:760

EG-MCTS-planning(m0,B, S(·), fθ).

We then initialize a queue with the root node of the tree and761

an empty reaction list. The following process is repeated un-762

til the queue is empty:763

• We get the first node m from the queue. 764

• If m is not from B and it has a successful child reaction 765

node T , we put all children {rj}
n
j=1 of this reaction node 766

T into the queue and add the reaction m → {rj}
n
j=1 to 767

the reaction list. If it is not from B and it does not have 768

a successful child reaction node, the search fails and the 769

reaction list is set to empty. 770

• If the queue is empty, the search succeeds and the algo- 771

rithm returns the reaction list. 772

With the above process, we have the reaction list as the syn- 773

thetic route of a target molecule. 774

Note that in our experiment, we empirically set the ex- 775

ploration constant c to be 0.5, the reward z to be 10 for a 776

successful reaction node and −10 for a failed reaction node, 777

respectively. We set ε1 of the loop condition Θ to be 0.015, 778

and ε2 to be 3, respectively. 779

Data and code availability 780

The data used in the experiment and the source code of 781

EG-MCTS are both available at https://github.com/jjljkjljk/ 782

EG-MCTS. 783
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Appendix 996

(I) NOC Construction 997

The Network of Organic Chemistry (NOC) is a directed 998

graph. Every node consists of a molecule and the edge from 999

node A to node B indicates that there is a reaction where A 1000

belongs to its reactants and B to its products. 1001

We first initialize the directed graph, adding each 1002

molecule in eMolecules as a node to the graph. The fol- 1003

lowing process is then repeated until the graph is no longer 1004

changing: we traverse each reaction in USPTO, and if all 1005

of its reactants are in the graph, then each of its products 1006

will be added to the graph as a new node. And for each new 1007

node, new edges from every reactant to it will be added to 1008

the graph. 1009

In this directed graph, every node has its outdegree and 1010

cost. The definition of outdegree is the same as that of a 1011

normal directed graph. After the graph is constructed, every 1012

molecule in the graph has its synthetic route, which forms a 1013

synthetic tree. So the cost of a molecule is the longest path 1014

length from its root to its leaf nodes in the synthetic tree. 1015

There are 4650 molecules with outdegree ≥ 2 and 1016

cost ≥ 4, from which 907 molecules which are difficult 1017

to solve using Greedy DFS are selected. Outdegree ≥ 2 1018

means that the molecule is on the synthetic pathways of at 1019

least two complex molecules so has richer experience. Be- 1020

cause the molecules with higher cost would be break down 1021

to those with lower cost, EG-MCTS will collect the experi- 1022

ence of these lower-cost molecules during the searching for 1023

those with higher cost. Due to this, we put a limit on the 1024

cost to avoid experience redundancy. In order to enrich the 1025

synthetic experience, we also select some molecules with 1026

higher cost. There are 1499 molecules with cost ≥ 9, and 1027

after DFS search we select 631 molecules which are then 1028

divided randomly into three parts: 286, 165, and 180 respec- 1029

tively. These 286 molecules will be combined with the 907 1030

molecules mentioned above as the final training set of 1, 193. 1031

The remaining 165 and 180 compounds are used as the val- 1032

idation set and the test set. 1033

(II) Testing Molecules Used in EG-MCTS Versus 1034

Literature 1035

The Table 4 shows the 30 testing molecules used in 1036

the experiment comparing the generated routes given by 1037

EG-MCTS and the published routes. It shows the CAS Num- 1038

ber of each molecule. If the corresponding synthetic route is 1039



Index CAS Number Published Route

1 1448441-60-8 WO 2013107283
2 895520-52-2 WO 2006069153
3 1100216-25-8 WO 2009009411
4 1392842-01-1 WO 2012106472
5 1443043-01-3 US 20130150407
6 1173981-96-8 US 20090186879
7 1173980-10-3 US 20090186879
8 866920-26-5 WO 2005097786
9 1352087-71-8 FR 2960876

10 1448441-53-9 International Journal of Cancer
11 749922-13-2 WO 2006028451
12 1451094-21-5 US 20130225588
13 1100217-13-7 WO 2009009411
14 1100216-27-0 WO 2009009411
15 1617516-73-0 US 20140194476
16 1173979-95-7 US 20090186879
17 1203552-27-5 WO 2010000773 and WO 2013079708
18 1040247-00-4 WO 2008089459
19 1173978-72-7 Bioorganic Medicinal Chemistry
20 1173979-96-8 US 20090186879
21 1392843-72-9 WO 2012106472
22 769169-77-9 US 20040198778
23 1451094-35-1 US 20130225588
24 1498291-86-3 WO 2013180265
25 1801756-11-5 WO 2013107283
26 1392841-71-2 WO 2012106472
27 1873306-29-6 WO 2016016368
28 345963-30-6 WO 2002018361
29 1392841-74-5 WO 2012106472
30 1246199-40-5 US 20090186879

Table 4: 30 testing molecules used in the experiment.

reported in the patent, the table also shows the Patent Num-1040

ber. Otherwise it shows the journal name.1041

(III) The Generated Routes for Other Three Drug1042

Molecules1043

Figure 11 shows the generated routes given by our1044

EG-MCTS for Sofosbuvir, Molnupiravir and Taxol. We1045

also ignore their stereochemical structures to get the target1046

molecules for EG-MCTS.1047
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(a) Route given by our EG-MCTS for Sofosbuvir, whose CAS Number is 1190307-88-0.
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(b) Route given by our EG-MCTS for Molnupiravir, whose CAS Number is 2349386-89-4.
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(c) Route given by our EG-MCTS for Taxol, whose CAS Number is 33069-62-4.

Figure 11: The generated routes given by our EG-MCTS for other three drug molecules. The atoms and bonds marked red are
reaction center, which change in the reaction.


