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Abstract 
 Surface roughness is a crucial factor affecting the surface quality of workpieces in the manufacturing industries. 
Thus, it is important to provide an accurate performance of surface roughness prediction and optimal parameters 
to reduce the burden of time and costs during the process. In this study, two predict models, namely multiple 
linear regression and deep belief network(DBN) models, were performed to accurately predict change in surface 
roughness in the rotational-electro magnetic finishing(REMF). Compared to the statistical-based model, the 
data-driven model based on the DBN architecture was a significantly considerable effect on surface roughness 
prediction in the REMF process. Among the considered DBN models, DBN5 architecture as [7, 14, 14, 1] 
showed effective features of the non-linear relationship between process parameters and response with the 
highest determination coefficient(R2) of 0.9340 and the lowest mean squared error(MSE) of 1.3037×10-3 in the 
testing datasets. In addition, a genetic algorithm(GA) as a heuristic optimization technique was adopted to 
optimize the input parameters of the best derived DBN model. As a result, it proved that the DBN model 
integrated GA was able to be adopted for the accurate prediction of surface roughness and process optimization. 
 

Keywords Surface roughness prediction · Rotational Electro-Magnetic Finishing · Hierarchical neural 
structure · Deep belief network · Genetic algorithm 

 

1. Introduction 

Recently, with the fast-growing requirements to improve surface integrity and functional performance in the 
ultra-precision engineering fields, the superior surface quality of manufactured components is in great demand. 
Surface roughness is one of the aspects of surface quality assessment that significantly affects the reliability, 
durability, wettability, reflection, and friction of products. Hence, a number of researchers are making 
considerable efforts to develop surface finishing technologies to improve surface roughness [1-3]. Traditional 
finishing processes are applied in a wide range of industries in practice. However, it still faces inherent limits in 
terms of surface defects and uneven surface finish, especially in complicated geometries. In the current 
manufacturing field, the latest research shows a trend away from traditional finishing methods towards advanced 
capabilities to achieve high surface finishing performance for micro-sized components having a complex shape. 
Magnetic energy-assisted finishing processes have proven effective for ultra-smooth surface among the 
advanced finishing technologies in the last few decades, where multiple cutting edges of tools with controllable 
magnetic force are able to obtain a high degree of micro/nano surface finishing performance [4,5]. 
 Numerous studies of magnetic surface finish have been extensively conducted from diverse points of view to 
develop process efficiency and establish a predictive model representing a relationship between process 
parameters and surface roughness improvement. Singh and Singh simulated magnetic flux density in 
magnetorheological finishing(MRF) operation to determine a theoretically optimized experimental setup that 
enabled magnetic intensity on the external surface of conical-shaped material to be uniform. Based on the 
simulated approach, a theoretical surface roughness model and optimal condition for the fine surface finish were 
established. In addition, actual experiments at the optimal condition were carried out to the validated predictive 
model. It was concluded that the suggested MRF method was adequate for improving micrometric surface 
characteristics on the conducted materials [6]. Sirwal et al. developed magnetic-assisted tools that can perform 
reciprocating and rotational motion to achieve high surface quality with tight tolerance for the cylindrical blind 
surface in the MRF process. Based on the response surface methodology(RSM), researchers made an effort to 
analyze the influences of process parameters on better surface characteristics and to derive a mathematical 
statistical model of finished surface variation. In experimental and statistical analysis, finishing efficiency was 
dominantly determined by rotational speed, and surface roughness of the conducted areas improved by 85% at 
the optimal condition. Furthermore, the error rate of the predictive model was less than 10% compared to the 
experimental work. Thus, it was said that the derived model for surface roughness improvement was quite 
reliable [7]. Nagdeve et al. obtained precise surface of an intricate implant by adopting rotational 
magnetorheological abrasive flow finishing(MAFF) with the help of a special fixture that maintained constant 
abrasive velocity and magnetic field intensity in the finishing zone. To provide a predictive model of surface 
improvement and to optimize input variables, RSM as a statistical analysis was employed. The results showed 
that surface quality improved by 73% with less time compared to the previous MAFF process [8]. Misra et al. 
established theoretical models by applying a genetic algorithm to fulfill multi-objective optimization in terms of 
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maximum surface roughness improvement and minimum material loss in the ultrasonic-assisted magnetic 
abrasive finishing(MAF) process. In order to validate optimized models, linear regression models were given 
from the experimental approach based on a Taguchi orthogonal array method. Consequently, the findings 
indicated that the results obtained from confirmatory experiments were in good agreement with the theoretical 
model [9]. Ahmad et al. applied the MAF process with various diametric sintering magnetic abrasives to 
improve the capability for micrometric surface finish. Based on experimental observations, the statistical models 
for the ratio of change in surface roughness were derived. It clearly showed that the trend of both results was 
quantitative similar [10]. Although the mathematical models for surface roughness prediction by regression 
analysis are widely available, it is impractical to accurately describe the complex non-linearity of the processes 
due to uncontrollable factors that influence the relative motion between the workpiece surface and flexible tools 
[11-13]. 

With the development of computer technologies, artificial neural networks(ANNs) have become more popular 
as a robust predictive strategy to accurately establish the non-linear relationship between input variables and 
respond, unlike the statistical model. Deep neural network(DNN), which is one of the supervised learning 
models in the ANNs, is commonly used and has demonstrated outstanding predictive ability. Thus, in the 
literature, a number of researchers attempt to build predictive models of surface roughness to capture complex 
nonlinear relationships. Peng et al. presented a cutting force model based on the both linear regression and DNN 
methodologies. Consequently, the DNN-based model yielded exceptional performance rather than the existing 
model [14]. Ahmad et al. developed a DNN-based model for tri-objective models in terms of change in surface 
roughness, microhardness, and modulus of elastic indentation for Ti-6Al-4V material in the MAF process. 
Moreover, a genetic algorithm(GA) was employed for optimizing the system. As a result, the combined DNN-

GA-based model was recommended to obtain suitable output in comparison with the experimental trials [15]. 
Singh et al. introduced an ANN-MFO learning algorithm in the MAF process to improve final surface integrity 
and optimize process parameters. The effectiveness of this hybrid methodology was successfully verified with a 
minimum error rate [16]. Kooialippor et al. made a predictive model for the performance assessment of the 
penetration rate of a tunnel boring machine. In order to evaluate prediction performance between ANN and deep 
belief network(DBN) models, root mean square(RMSE) and coefficient of determination(R2) were compared. 
Based on the results, this study was proved that DNN was a promising tool for prediction with a large amount of 
data [17]. Stojanović et al. used the DNN for predicting friction coefficient and wear rate on hybrid aluminum 
matrix composites. From the observation of this study, the accuracy performance of the predictive model driven 
by the DNN was similar to the experimental verification with 99% [18]. Despite success of the effective 
prediction, DNN still experiences difficulties in terms of local minima, gradient vanishing, and slow 
convergence rate. In order to address these limitations, the DBN with hierarchical structures has attracted 
attention as a promising tool in current studies and practice.  

This study established two types of predictive models driven by multiple linear regression and hierarchical 
DBN models for providing an accurate predictive model for surface roughness of stainless steel(SS)316 in the 
rotational electro-magnetic finishing(REMF) process. To train both models, a total of 72 experiments were 
carried out by the mixed-level orthogonal array L18(21x37) with 4 iterations. The best model showed the accurate 
prediction was selected by three statistical indicators, namely R2, mean squared error(MSE) as the cost function, 
and F-test. In addition, a genetic algorithm was employed to define the optimal input parameters of the best 
predictive model. 

 

2. Theoretical background of deep belief network 

The DBN is a hierarchical neural network with stacked numerous restricted Boltzmann machines(RBMs). 
Therefore, in this chapter, the theoretical background of the RBMs as a basis of DBN is introduced in detail.  

 

2.1 Restricted Boltzmann machine  

RBM is an energy-based stochastic graphical model consisting of visible layer 𝒗 with m neurons at the 
bottom and hidden layers 𝒉 with n neurons at the top, as shown in Fig. 1. In the RBM structure, neurons in the 
adjacent layers are fully connected by symmetric weight 𝒘  without intralayer connection. Due to the 
independence of neurons, this data-driven method enables simplifying the training process and improving 
training efficiency. There are two types of RBM, called Bernoulli-Bernoulli RBM and Gaussian-Bernoulli RBM 
dependent upon data distribution of the visible neurons.  

 

2.1.1 Bernoulli -Bernoulli RBM 

Bernoulli-Bernoulli RBM consists of binary states 𝒗 ∈ {0, 1}𝑚 in the visible layer and stochastic binary 
features 𝒉 ∈ {0, 1}𝑛 in the hidden layer extracted from the visible units. The energy function for a joint 
configuration (𝒗, 𝒉) in the Bernoulli-Bernoulli RBM could be expressed as follows.  

 



𝐸(𝒗, 𝒉; 𝜽) =  −𝒗𝑻𝒘𝒉 − 𝒂𝑻𝒗 − 𝒃𝑻𝒉 

 =  − ∑ ∑ 𝑤𝑖𝑗𝑣𝑖ℎ𝑗𝑛
𝑗=1

𝑚
𝑖=1 − ∑ 𝑣𝑖𝑎𝑖𝑚

𝑖=1 − ∑ ℎ𝑗𝑏𝑗𝑛
𝑗=1  

(1) 
 

where 𝒗 is a visible vector 𝒗 = {𝑣1, 𝑣2, ⋯ , 𝑣𝑚} ⊂ {0, 1}, 𝑣𝑖 is the ith visible variable, 𝒉 is a hidden vector 𝒉 = {ℎ1, ℎ2, ⋯ , ℎ𝑚} ⊂ {0, 1}, ℎ𝑗 is the jth hidden variable, 𝒘 denotes weight matrix which connects visible 
and hidden variables, 𝑤𝑖𝑗  is the weight connection between 𝑣𝑖 and ℎ𝑗, 𝒂 and 𝒃 are biases of visible and 
hidden nodes, respectively. 𝜽 is (𝒂, 𝒃, 𝒘) as model parameters. 
 

Given the energy function, the joint probability distribution over all neurons in the each layer is defined as 
follows. 
 𝑝(𝒗, 𝒉; 𝜽) =  1𝑍 exp (−𝐸(𝒗, 𝒉; 𝜽)) (2) 

 

where 𝑍 is partition function or normalization constant, in which the variables of 𝑝(𝒗, 𝒉; 𝜽) is defined in 
range of [0, 1]. 
The marginal probability regarding the visible vector 𝒗 is shown in Eq. (3). 
 𝑝(𝒗; 𝜽) =  1𝑍 ∑ exp (−𝐸(𝒗, 𝒉; 𝜽))ℎ  (3) 

 

In the training procedure of RBM, the model parameter 𝜽 is optimized by stochastic gradient descent to 
maximize the log-likelihood of training data(input variables), which is corresponding to minimizing the energy 
function of the system. Log-likelihood function with a set of training data 𝑇 = {𝑣1, 𝑣2, ⋯ , 𝑣𝑡}, (𝑡 = 1, 2, ⋯ , 𝑇) 
is defined as follows. 
 𝐿(𝜽) =  ∑ [log ∑ exp (−𝐸(𝒗, 𝒉; 𝜽)) − log 𝑍ℎ ]𝑇

𝑡=1  

           =  ∑ [log ∑ exp (−𝐸(𝒗, 𝒉; 𝜽))ℎ ]𝑇
𝑡=1 − 𝑇 log 𝑍 

(4) 
 

In order to update main parameters, the derivative of the log-likelihood with respect to weight, visible bias, and 
hidden bias should be calculated. Each derivative and updated parameter are expressed as following Eq. (5), Eq. 
(6), and Eq. (7). 
 𝜕 log 𝑝(𝒗; 𝜽)𝜕𝑤𝑖𝑗 =  〈𝑣𝑖ℎ𝑗〉𝑑𝑎𝑡𝑎 − 〈𝑣𝑖ℎ𝑗〉𝑚𝑜𝑑𝑒𝑙 

 ∆𝑤𝑖𝑗 =  ε(〈𝑣𝑖ℎ𝑗〉𝑑𝑎𝑡𝑎 − 〈𝑣𝑖ℎ𝑗〉𝑚𝑜𝑑𝑒𝑙) (5) 
 

 
 

Fig. 1 Graphical structure of RBM 



 𝜕 log 𝑝(𝒗; 𝜽)𝜕𝑎𝑖 =  〈𝑣𝑖〉𝑑𝑎𝑡𝑎 − 〈𝑣𝑖〉𝑚𝑜𝑑𝑒𝑙  
 ∆𝑎𝑖 =  ε(〈𝑣𝑖〉𝑑𝑎𝑡𝑎 − 〈𝑣𝑖〉𝑚𝑜𝑑𝑒𝑙) (6) 

 𝜕 log 𝑝(𝒗; 𝜽)𝜕𝑏𝑗 =  〈ℎ𝑗〉𝑑𝑎𝑡𝑎 − 〈ℎ𝑗〉𝑚𝑜𝑑𝑒𝑙  
 ∆𝑏𝑖 =  ε(〈ℎ𝑖〉𝑑𝑎𝑡𝑎 − 〈ℎ𝑖〉𝑚𝑜𝑑𝑒𝑙) (7) 

 

where 〈∙〉𝑑𝑎𝑡𝑎  is expectation computed over the given training data, 〈∙〉𝑚𝑜𝑑𝑒𝑙  is expectation over the 
distribution obtained from the resulting model, ε is a learning rate.  

However, the latter term is computationally intractable. Thus, a contrast divergence(CD) algorithm as an 
approximation method with t iterations of Gibbs sampling, where 〈∙〉𝑚𝑜𝑑𝑒𝑙  is substituted for 〈∙〉𝑡 to calculate 
model distribution easily. Fig. 2 shows a stochastic procedure of t steps of Gibbs sampling. In the general RBM, 
one step of Gibbs sampling is suitable to acquire adequate values. Each neurons is independent, so the stochastic 
binary features of the hidden neurons 𝒉(0) are determined by given visible variables 𝒗(0). Relevant conditional 
probability term is given in Eq. (8) 
 𝑝(ℎ𝑗 = 1|𝒗; 𝜽) =  𝑎 (∑ 𝑤𝑖𝑗𝑣𝑖𝑚

𝑖=1 + 𝑏𝑗) (8) 

 

where 𝑎(∙) is a sigmoid activation function. 
In the next step, visible units 𝒗(1) are reconstructed based on computed 𝒉(0) by using following Eq. (9). 
 𝑝(𝑣𝑖 = 1|𝒉; 𝜽) =  𝑎 (∑ 𝑤𝑖𝑗ℎ𝑗𝑛

𝑗=1 + 𝑎𝑖) (9) 

 

2.1.2 Gaussian-Bernoulli RBM 

In numerous practical applications, input variables as the visible neurons are real values rather than binary. 
Thus, Gaussian-Bernoulli RBM consisting of normalized data obtained from observed variables with Gaussian 
distribution and binary variables in the hidden layer is adopted instead of Bernoulli -Bernoulli RBM. The energy 
function for a joint configuration (𝒗, 𝒉) in the Gaussian-Bernoulli RBM could be expressed as follows.  

 𝐸(𝒗, 𝒉; 𝜽) =  − ∑ ∑ 𝑤𝑖𝑗ℎ𝑗 𝑣𝑖𝜎𝑖
𝑛

𝑗=1
𝑚

𝑖=1 − ∑ (𝑣𝑖 − 𝑎𝑖)𝜎𝑖2
𝑚

𝑖=1 − ∑ ℎ𝑗𝑏𝑗𝑛
𝑗=1  (10) 

 

where 𝜎𝑖 denotes standard deviation related to visible neurons 𝑣𝑖.  

 

 
 

Fig. 2 Stochastic procedure of CD algorithm 



 

Conditional probability of hidden and visible features is expressed as Eq. (11) and Eq. (12), respectively.  

 𝑝(ℎ𝑗 = 1|𝒗; 𝜽) =  𝑎 (∑ 𝑤𝑖𝑗 𝑣𝑖𝜎𝑖2
𝑚

𝑖=1 + 𝑏𝑗) (11) 

 𝑝(𝑣𝑖 = 𝑣|𝒉; 𝜽) =  𝑁 (𝒗| ∑ 𝑤𝑖𝑗ℎ𝑗𝑛
𝑗=1 + 𝑎𝑖 , 𝜎𝑖2) (12) 

 

where 𝑁(∙ |𝜇, 𝜎𝑖2) is a probability density function of the normal distribution with mean 𝜇 and standard 
deviation 𝜎𝑖2. 
 

2.2 Deep belief network  

The basic architecture of DBN consists of the multiple stacked RBM as shown in Fig. 3. There are two phases 
to train a DBN model, namely pre-training and fine-tuning algorithms.  

In the pre-training step, a set of stacked RBMs is independently trained from the bottom to the top to initialize 
weights and biases layer by layer. Each trained hidden layer in the lower RBM is served as the visible layer in 
the next upper RBM. This unsupervised learning process is repeated until training for the last hidden layer is 
finished. After the upward training, the fine-tuning phase in which the model parameters are adjusted from top 
to bottom by means of supervised learning with a back-propagation algorithm is performed to minimize errors 
between output and the actual measurement. 

The DBN model through these processes is determined by following joint probability distribution. 
 𝑃(𝒗, 𝒉1 , 𝒉2, ⋯ , 𝒉𝑙−1, 𝒉𝑙) 

 = 𝑃(𝒗|𝒉1)𝑃(𝒉1|𝒉2) ⋯ 𝑃(𝒉𝑙−2|𝒉𝑙−1)𝑃(𝒉𝑙−1, 𝒉𝑙)  

(13) 

 

where 𝑙 is the number of hidden layer in the DBN architecture. 
 

 
 

Fig. 3 Basic architecture of DBN model with regression analysis 

 



Conditional probability distribution for 𝑃(𝒉𝑖|𝒉𝑖+1) can be obtained as Eq. (14). 
 𝑃(𝒉𝑖|𝒉𝑖+1) =  ∏ 𝑃(ℎ𝑗𝑖|𝒉𝑖+1)𝑗  

 𝑃(ℎ𝑗𝑖 = 1|𝒉𝑖+1) = 𝜎(𝑏𝑗𝑖 + ∑ 𝑤𝑖𝑗𝑖+1ℎ𝑗𝑖+1𝑗 ), 𝑖 = 0, 1, ⋯ , 𝑙 − 2 

(14) 

 

3. Experimental setup and DBN architecture 

3.1 Principle of REMF operation 

The REMF process is able to finish any complex geometries up to micro/nano-level surface finish. Fig. 4 
showed the schematic drawing of the REMF process. It was separated into three parts dependent upon operating 
steps; a finishing area, a driving disc, and a controller. In the container as the finishing area, there were 
workpieces and a number of cylindrical-shaped abrasive particles with diluted water. On the application of the 
magnetic field induced by the driving disc embedded with permanent magnets, the abrasive particles not only 
aligned in the direction of the magnetic field but also started to experience an attractive force. Permanent 
magnets on the driving disc were alternatively arranged. When the driving disc was rotated by an AC motor as a 
part of the controller, the alternating magnetic field was induced. As a result, abrasives shown in Fig. 5 exhibited 
dynamic behavior that included radial and rotating motions laid along the direction of the magnetic field. The 
magnetic force and torque acting on the abrasives were represented as following Eq. (15) and Eq. (16), 
respectively. 
 

pF md H VH H     (15) 
 

pT md H VH H     (16) 
 

where 
pF  and 

pT  were magnetic force and torque acting on the abrasive particle, m  was magnetic pole, 
and V  denoted susceptibility and volume of the abrasive particle, respectively, H was the magnetic field. 
The dynamic motion induced by the magnetic energy generated kinetic energy, which improved surface 
roughness by colliding with the workpiece. Total kinetic energy acting on the abrasive particle was given as 

 

 
 

Fig. 4 Schematic drawing of REMF process 



 

follows. 
 

  2 21

2
kE Mv Iw   (17) 

 

where M and v  defined mass and velocity of abrasive particle, respectively, I  was the moment of inertia, 
and w  was angular velocity.  

 

3.2 Experimental setup and measurement 
The surface finishing performance in the REMF process was affected by magnetic and kinetic energy. As 

mentioned in section 3.1, the energy intensity was determined by the physical properties of the abrasive particles 
and rotating speed. Thus, six parameters as controllable factors, which included particle length, particle diameter, 
particle weight, diluted water quantity, rotational speed, and finishing time were selected as listed in Table 1. 

Other fixed conditions were as follows. Fig. 6 showed external and internal views of an experimental 
device(SS370, Bhl) of the REMF process. The diameter of the finishing region was 370mm. In this study, the 
abrasive particles were cylindrical-shaped SS304, and the workpiece was SS316 plate in the dimensions of 
50×35×5mm. The workpiece was placed at a radial distance of 65mm from the center, which measured a 
maximum magnetic flux density of 185mT. The diluted liquid was a mixture of compound and water at the 
volume ratio of 1:100 to help that abrasive particles were dispersed uniformly over the finishing region. 

On the basis of the determined parameters with corresponding levels, mixed-level orthogonal array L18(21×37) 
were established. Each combination for experiments was iterated four times. In order to investigate the effect of 
the REMF process on the surface finish of the SS316 workpiece, a quantitative measure of surface roughness 

a
R  was evaluated by a stylus profilometer(SJ-301, Mitutoyo). A diamond stylus tip diameter of 2mm, the cut- 
 

 
 

Fig. 5 Dynamic behavior of abrasive particle driven by magnetic force and torque 

 

Table 1 Experimental factors and levels 

Factor 
Level 

1 2 3 

Particle length (mm), A 3.0 5.0 - 

Particle diameter (mm), B 0.3 0.5 0.7 

Particle weight (kg), C 1.0 1.4 1.8 

Diluted water quantity (ℓ), D 1.0 2.0 3.0 

Rotational speed (rpm), F 800 1,100 1,400 

Finishing time (min), G 20 30 40 

 



off value of 0.8mm, total measuring length of 4mm were designated for measurement. Fig. 7 illustrated 
measurement points selected in this study. Surface roughness at each point was measured ten times, and then 
three values that were close to the mean value were chosen to improve the accuracy of the measurement. Since 
the initial surface condition was not equal over all the workpieces, the ratio of change in surface roughness as a 
dimensionless coefficient was adopted for the assessment as given in Eq. (18). 
 

 
, ,

,

a initial a final

Measure

a initial

R R
SR

R


   (18) 

 

where 
,a initialR  and ,a finalR  were initial and final surface roughness, respectively. 

 

3.3 DBN architecture 

The predictive performance of the data-driven model was dependent upon network architecture. In this study, 
the architecture of DBN consisted of two sets of RBMs, where one visible layer and two hidden layers, with an 
additional regression layer as output with ReLU activation function. There were seven neurons corresponding to 
six process parameters designated in section 3.2 and 𝑅𝑎,𝑖𝑛𝑖𝑡𝑖𝑎𝑙  in the visible layer. Output layer for regression 
had one neuron represented as predictive ∆𝑆𝑅𝐸,𝐷𝐵𝑁 . The number of the first visible neurons and the output 
neuron was set to be the same while the number of neurons in the hidden layers varies from {7, 14, 21}.  

Total datasets for developing the predictive model were 72 obtained from experimentation. In order to improve 
the accuracy and reliability of the model, this study randomly divided 72 of whole data in the ratio of 5:1, which 
meant that 83% of the total, being 60 train datasets, was considered for network training and 17% of the total, 
being 12 test datasets, was used for model evaluation. 

In the pre-training stage of ∆𝑆𝑅𝐸,𝐷𝐵𝑁 prediction, the input variables were preprocessed. Since the input 
variables were continuous data laid in different ranges and units, it needed to be normalized from 0 to 1. These 
numerical values were used as the visible units in the first step of RBM, so Gaussian-Bernoulli RBM was 
adopted as the first RBM structure to convert real values into binary stochastic variables for the next RBM 
training. A remaining structure of the DBN was Bernoulli-Bernoulli RBM. The initial weights at the beginning 
of the RBM were sampled from a Gaussian distribution with mean of 0 and standard deviation of 0.01. The 
biases were initialized to 0. The training ran for 1,000 epochs with a learning rate of 0.001. On the basis of the 
above information, the greedy layer-wise unsupervised training was carried out to obtain the network parameters 
in terms of weights and biases in each RBM structure. 

When the pre-training was completely finished, initial parameters of the output layer on the top of the 

 

 
 

Fig. 6 External and internal view of experimental apparatus in REMF process 

 



architecture and the model parameters derived from the unsupervised training were adjusted in a supervised 
manner with the back-propagation algorithm to minimize prediction error. An activation function of two sets of 
hidden layers and output layer were logistic sigmoid and ReLU, respectively. In order to accelerate convergence 
speed, Adam optimizer was introduced with a learning rate of 0.001. The epochs were set to 30,000 and an early 
stopping algorithm with 100 patiences was used to prevent underfitting and overfitting. 

The performance of the predictive surface roughness model was evaluated with three statistical indicators, 
namely R2, MSE as the cost function, and F-test. 
 

4. Predictive model for surface roughness 

4.1 Multiple linear regression model  

Table 2 showed the calculated 
Measure

SR  of all experimental combinations in this study. Based on the 
experimental results, this section proposed predictive models with the help of statistical and deep learning 
approaches.  

A multi regression model as the statistical analysis was an effective way of determining relationships between  

 

 

Fig. 7 Measurement method of surface roughness 

 

Table 2 The ratio of change in surface roughness 

Exp. 
no. 

Factor and level M
SR  

A B C D F G i) ii) iii) iv) 
1 1 1 1 1 1 1 0.1114 0.0514 0.1199 0.1554 

2 1 1 2 2 2 2 0.1415 0.0602 0.2440 0.2060 

3 1 1 3 3 3 3 0.0742 0.0882 0.2892 0.2301 

4 1 2 1 1 2 2 0.1278 0.0758 0.5074 0.4334 

5 1 2 2 2 3 3 0.1940 0.1547 0.4818 0.5229 

6 1 2 3 3 1 1 0.0574 0.0692 0.1204 0.1422 

7 1 3 1 2 1 3 0.1471 0.1317 0.2884 0.3218 

8 1 3 2 3 2 1 0.1203 0.1425 0.3461 0.3071 

9 1 3 3 1 3 2 0.2288 0.2149 0.4218 0.4067 

10 2 1 1 3 3 2 0.1296 0.0547 0.1897 0.1625 

11 2 1 2 1 1 3 0.0827 0.0926 0.0876 0.0805 

12 2 1 3 2 2 1 0.0392 0.0691 0.1367 0.1692 

13 2 2 1 2 3 1 0.0675 0.0556 0.2524 0.2383 

14 2 2 2 3 1 2 0.1739 0.1100 0.1515 0.2101 

15 2 2 3 1 2 3 0.0796 0.1176 0.2931 0.2929 

16 2 3 1 3 2 3 0.0642 0.1211 0.4310 0.4491 

17 2 3 2 1 3 1 0.1174 0.1098 0.3686 0.3687 

18 2 3 3 2 1 2 0.1518 0.0829 0.1772 0.2099 

 



independent and dependent variables. In order to predict ∆𝑆𝑅𝑃𝑟𝑒𝑑,𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛  in this study, second-order 
polynomial regression was employed as following Eq. (19). 
 ∆𝑆𝑅𝑃𝑟𝑒𝑑,𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 = 𝛽0 + ∑(𝛽𝑖𝑥𝑖 + 𝛽𝑖+6𝑥𝑖2)6

𝑖=1  (19) 

 

where ∆𝑆𝑅𝑃𝑟𝑒𝑑,𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 was the estimated response obtained from the second-order equation, 𝛽0 and 𝛽𝑖 
were regression coefficients, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, and 𝑥6 denoted normalized process parameters, which were 
particle length(A), particle diameter(B), particle weight(C), diluted liquid amount(D), rotational speed(F), 
working time(G), respectively.  

Based on the experimental results, the second-order mathematical model for the ratio of change in surface 
roughness was given as follows. 
 ∆𝑆𝑅𝑃𝑟𝑒𝑑,𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 = 0.0852 − 0.0485𝐴 + 0.1997𝐵 + 0.0531𝐶 

                                       −0.0374𝐷 +  0.1873𝐹+ 0.1319𝐺 − 0.0887𝐵2 

                                       −0.0750𝐶2 + 0.0077𝐷2− 0.1001𝐹2 − 0.0743𝐺2 

(20) 

 

The most dominant factor by comparing absolute values of coefficients was particle diameter, followed by 
rotational speed, working time, particle weight, particle length, and diluted liquid quantity. 
 In order to evaluate the performance of the developed regression model, three statistical indicators, namely R2, 
MSE, and F-test were applied same as evaluation criteria for the DBN model. The R2 had a high explanatory 
value of 0.9199 close to 1, which meant that there was a consistent agreement between predicted results and 
experimental data. The difference between predicted and observed values was defined as MSE. This model had 
a small value of 0.4432 10-3, which was close to the best fit of 0. Fig. 8 showed residual plot with histogram 
for the multiple linear regression-based model. As can be seen, the residual had approximately constant variance 
and followed the normal distribution. Table 3 listed the results of analysis of variance(ANOVA). From the result 
of F-ratio, the regression model had reasonable accuracy with a confidence level of 95%. Therefore, it was said 
that it provided reliable prediction for change in surface roughness in the REMF process. 
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Fig. 8 Scatter plot and histogram regarding residues 

 

Table 3 ANOVA for multiple linear regression model 
Factor SS DOF V F0 

Regression 0.09166 11 0.00833 6.27* 



Residue 0.00798 6 0.00133  

Total 0.09964 17   

 

4.2 DBN model 
 Table 4 showed the average R2 and MSE of the considered 9th DBN architecture in this study after 3 iterations 
of the training. As can be seen, the ranges of R2 for training datasets and testing datasets were from 0.9787 to 
0.9910 and from 0.8733 to 0.9340, respectively. Both values were significantly high and laid on the straight line, 
which indicated a good fit of the suggested hierarchal network model. In terms of MSE, the average MSE of 
testing datasets was 1.6581 10-3, which was 5 times higher than training one of 0.3126 10-3. This was because 
testing datasets as new data for the derived model based on the training ones were never used before. However, 
all values were low degree, so it could be concluded that the DBN model for prediction ∆𝑆𝑅𝑃𝑟𝑒𝑑,𝐷𝐵𝑁 in this 
study showed the excellent generalization capability to new samples. Among the architecture, DBN5 having 7-

14-14-7 was the best predictive model with the minimum MSE of 1.3037×10-3 and maximum R2 of 0.9340 in 
the testing datasets as shown in Fig. 9. From the results of ANOVA as listed in Table 5, the DBN5 models for 
training and testing datasets were statistically significant at 99% and 95% of confidence levels, respectively. 
Therefore, the derived model by mean of the DBN was sufficiently reliable for surface roughness prediction in 
the REMF process. 
 

Table 4 Average R2 and MSE results of DBN architectures 

Architecture 
no. 

Architecture 

(𝒗- 𝒉𝟏-𝒉𝟐-out) 
Training datasets Testing datasets 

R2 MSE(×10-3) R2 MSE(×10-3) 
DBN1 7-7-7-1 0.9797 0.3078 0.8923 1.4884 

DBN2 7-7-14-1 0.9837 0.3153 0.9027 1.8651 

DBN3 7-7-21-1 0.9843 0.2486 0.8970 1.6912 

DBN4 7-14-7-1 0.9870 0.8710 0.8733 2.3187 

DBN5 7-14-14-1 0.9900 0.1518 0.9340 1.3037 

DBN6 7-14-21-1 0.9860 0.2224 0.8747 1.4972 

DBN7 7-21-7-1 0.9910 0.1493 0.8813 1.8786 

DBN8 7-21-14-1 0.9850 0.2344 0.9087 1.5696 

DBN9 7-21-21-1 0.9787 0.3127 0.9167 1.3106 
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Fig. 9 Correlation between predicted and observed data for testing datasets in DBN5 

 

Table 5 ANOVA for training and testing datasets in DBN5 

DBN5 Factor SS DOF V F0 

Training 

datasets 

Regression 0.86491 7 0.12356 2182.43** 

Residue 0.00294 52 0.00005  

Total 0.86785 59   

Testing 

datasets 

Regression 0.21424 7 0.03061 9.77* 

Residue 0.01253 4 0.00313  



Total 0.22677 11   

 

4.3 Comparison 

In this study, two different types of prediction approaches, which were the traditional statistical model and the 
deep neural network model, were suggested to estimate the ratio change in surface roughness on SS316 in the 
REMF process. Table 6 presented calculated R2 and MSE for each model. From the comparison of R2 between 
both models, the values obtained from training and testing phases of the DBN5 model yielded 7% and 1.5% 
higher prediction performance, respectively compared to the multiple linear regression model. Fig. 10 showed 
the predictive values of both models against actual experimental results. As can be seen, the predictive value of 
DBN5 had less deviation compared with the multiple linear regression model. It was proved that the well-
trained DBN model had a good agreement between observed and predicted data. In terms of MSE, all the values 
of both approaches, close to 0, were satisfactory for predicting surface roughness with high accuracy and 
reliability rate. Although the multiple linear regression model provided the low MSE of 0.443  10-3, the 
predictive model was derived by mean value, which was the insufficient tool to predict non-linear characteristics. 
 

5. Genetic algorithm optimization 

Based on the training DBN model, it was found that the DBN5 architecture that consisted of 7 neurons of input 
variables, 14 neurons of each hidden layer, and 1 neuron of output. In order to improve the practical 
applicability of the REMF process, it was important to optimize the process parameters for the best ∆𝑆𝑅 
performance of the DBN5 model. In this study, GA as a heuristic optimization technique was applied to obtain 
the optimal solution. 
 GA involved five main stages, which included population initialization, selection, crossover, mutation, and 
evaluation. In the first stage, population randomly created 10 chromosomes having the binary state of 27 genes 
that contain characteristics of input parameters. Afterward, the best two chromosomes were selected by 
comparing ∆𝑆𝑅 as a fitness function with tournament selection. From the superior chromosomes, offspring as a 
new solution was produced by exchanging a group of genes between the selected parameters in the crossover 
process. After the crossover operator, some of the genes in the offspring were randomly modified with a 
mutation rate of 0.01 to avoid local optima. The algorithm iterated 50 generations until finding out the best ∆𝑆𝑅. 
Fig. 11 illustrated the convergence curve toward maximizing ∆𝑆𝑅 in the REMF process as the objective 
function during 50 generations. As can be seen, a trend of ∆𝑆𝑅 increased sharply before 7 generations. After 
that convergence curve was stable and reached the maximum ∆𝑆𝑅 of 0.530 at 25 generations. Table 7 listed the 
best combination of process parameters at the optimal condition. In comparison with the results of a Taguchi 
 

Table 6 Statistical comparison between DBN5 and multiple linear regression models 

Statistical criteria 
Multiple linear 

regression 

DBN5 

Training datasets Testing datasets 

R2 0.9199 0.9900 0.9340 

MSE 0.4432 0.1518 1.3037 
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Fig. 10 Comparison between multiple linear regression model and DBN5 against observed data 
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Fig. 11 Comparison of best ∆𝑆𝑅 between the DBN5 integrated GA and Taguchi methods 

 

Table 7 Optimal process parameters of the DBN5 integrated GA and Taguchi methods 

Optimal strategy 
Process parameters 

A B C D F G ,a initialR  

DBN5 integrated GA 3mm 0.7mm 1.3kg 1.0ℓ 1,323rpm 35min 2.478𝜇m 

Taguchi method 3mm 0.7mm 1.4kg 1.0ℓ 1,400rpm 30min - 

 

method, the convergence ∆𝑆𝑅 of GA was close to that of the Taguchi strategy of 0.515. Thus, it proved that the 
DBN model integrated GA was able to be adopted for the accurate prediction of ∆𝑆𝑅 and process optimization. 

 

6. Conclusions 

This study aimed to provide an accurate prediction model for surface roughness in the REMF process to 
improve surface quality. In order to develop the best predictive model well-explained non-linearity of the 
process, the statistical model based on the multiple linear regression and the data-driven model based on the 
DBN architecture were compared with three criteria which were R2, MSE, and F-test. Based on the best model 
resulting from comparison, the GA algorithm was adopted to optimize the process parameters. The main 
observations of this study were summarized as follows. 
 R2 and MSE of the mathematical regression model were 0.9199 and 0.4432×10-3, respectively. From the 

ANOVA, this model had the confidence level of 95%.  

 From the developed 9th DBN architecture, the range of R2 from the training datasets was from 0.9787 to 
0.9910, which yielded about 7% higher prediction performance than the multiple linear regression model. 
The average MSE from the training datasets was 0.3126×10-3, which was less than 30% compared to the 
statistical model. Therefore, it proved that the DBN model was practical to accurately predict the complex 
non-linear relationship between input and output variables in the process. 



 Among the considered DBN structures, DBN5 achieved excellent prediction performance with R2 of 
0.9900 and MSE 0.1518×10-3 in the training datasets, and R2 of 0.9340 and MSE 1.3037×10-3 in the 
testing datasets. In addition, training and testing datasets were statistically significant at 99% and 95% of 
confidence levels, respectively.  

 From the comparison between the DBN5 and multiple linear regression model, DBN5 was close to actual 
experimental results. It meant that the well-trained model suggested in this study improved prediction 
accuracy and reliability for surface roughness in the REMF process. 

 At the optimal input parameters of the DBN5 obtained from the GA algorithm, which were 3mm of particle 
length of 3mm, particle diameter of 0.7mm, particle weight of 1.3kg, liquid water quantity of 1.0 ℓ, 
rotational speed of 1,323rpm, working time of 35min, and initial surface roughness of 2.478  𝜇m, 
maximum ∆𝑆𝑅 was about 0.530.  
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Fig. 1 Schematic structure of RBM 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 2 Stochastic procedure of CD algorithm 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 3 Basic architecture of DBN model with regression analysis 
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Fig. 5 Dynamic behavior of abrasive particle driven by magnetic force and torque 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 6 External and internal view of experimental apparatus in REMF process 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 Measurement method of surface roughness 
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Fig. 8 Scatter plot and histogram regarding residues 
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Fig. 9 Correlation between predicted and observed data for testing datasets in DBN5 
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Fig. 10 Comparison between multiple linear regression model and DBN5 against observed data 
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Fig. 11 Comparison of best ∆𝑆𝑅 between the DBN5 integrated GA and Taguchi methods 
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Table 1 Experimental factors and levels 

Factor 
Level 

1 2 3 

Particle length (mm), A 3.0 5.0 - 

Particle diameter (mm), B 0.3 0.5 0.7 

Particle weight (kg), C 1.0 1.4 1.8 

Diluted water quantity (ℓ), D 1.0 2.0 3.0 

Rotational speed (rpm), F 800 1,100 1,400 

Finishing time (min), G 20 30 40 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 The ratio of change in surface roughness 

Exp. 
no. 

Factor and level M
SR  

A B C D F G i) ii) iii) iv) 
1 1 1 1 1 1 1 0.1114 0.0514 0.1199 0.1554 

2 1 1 2 2 2 2 0.1415 0.0602 0.2440 0.2060 

3 1 1 3 3 3 3 0.0742 0.0882 0.2892 0.2301 

4 1 2 1 1 2 2 0.1278 0.0758 0.5074 0.4334 

5 1 2 2 2 3 3 0.1940 0.1547 0.4818 0.5229 

6 1 2 3 3 1 1 0.0574 0.0692 0.1204 0.1422 

7 1 3 1 2 1 3 0.1471 0.1317 0.2884 0.3218 

8 1 3 2 3 2 1 0.1203 0.1425 0.3461 0.3071 

9 1 3 3 1 3 2 0.2288 0.2149 0.4218 0.4067 

10 2 1 1 3 3 2 0.1296 0.0547 0.1897 0.1625 

11 2 1 2 1 1 3 0.0827 0.0926 0.0876 0.0805 

12 2 1 3 2 2 1 0.0392 0.0691 0.1367 0.1692 

13 2 2 1 2 3 1 0.0675 0.0556 0.2524 0.2383 

14 2 2 2 3 1 2 0.1739 0.1100 0.1515 0.2101 

15 2 2 3 1 2 3 0.0796 0.1176 0.2931 0.2929 

16 2 3 1 3 2 3 0.0642 0.1211 0.4310 0.4491 

17 2 3 2 1 3 1 0.1174 0.1098 0.3686 0.3687 

18 2 3 3 2 1 2 0.1518 0.0829 0.1772 0.2099 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 ANOVA for multiple linear regression model 
Factor SS DOF V F0 

Regression 0.09166 11 0.00833 6.27* 

Residue 0.00798 6 0.00133  

Total 0.09964 17   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 Average R2 and MSE results of DBN architectures 

Architecture 
no. 

Architecture 

(𝒗- 𝒉𝟏-𝒉𝟐-out) 
Training datasets Testing datasets 

R2 MSE(×10-3) R2 MSE(×10-3) 
DBN1 7-7-7-1 0.9797 0.3078 0.8923 1.4884 

DBN2 7-7-14-1 0.9837 0.3153 0.9027 1.8651 

DBN3 7-7-21-1 0.9843 0.2486 0.8970 1.6912 

DBN4 7-14-7-1 0.9870 0.8710 0.8733 2.3187 

DBN5 7-14-14-1 0.9900 0.1518 0.9340 1.3037 

DBN6 7-14-21-1 0.9860 0.2224 0.8747 1.4972 

DBN7 7-21-7-1 0.9910 0.1493 0.8813 1.8786 

DBN8 7-21-14-1 0.9850 0.2344 0.9087 1.5696 

DBN9 7-21-21-1 0.9787 0.3127 0.9167 1.3106 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 ANOVA for training and testing datasets in DBN5 

DBN5 Factor SS DOF V F0 

Training 

datasets 

Regression 0.86491 7 0.12356 2182.43** 

Residue 0.00294 52 0.00005  

Total 0.86785 59   

Testing 

datasets 

Regression 0.21424 7 0.03061 9.77* 

Residue 0.01253 4 0.00313  

Total 0.22677 11   

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6 Statistical comparison between DBN5 and multiple linear regression models 

Statistical criteria 
Multiple linear 

regression 

DBN5 

Training datasets Testing datasets 

R2 0.9199 0.9900 0.9340 

MSE 0.4432 0.1518 1.3037 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7 Optimal process parameters of the DBN5 integrated GA and Taguchi methods 

Optimal strategy 
Process parameters 

A B C D F G ,a initialR  

DBN5 integrated GA 3mm 0.7mm 1.3kg 1.0ℓ 1,323rpm 35min 2.478𝜇m 

Taguchi method 3mm 0.7mm 1.4kg 1.0ℓ 1,400rpm 30min - 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 


