1 Mahowald, M. W. & Schenck, C. H. Insights from studying human sleep disorders. Nature 437, 1279-1285, doi:10.1038/nature04287 (2005).
2 Saper, C. B., Chou, T. C. & Scammell, T. E. The sleep switch: hypothalamic control of sleep and wakefulness. Trends Neurosci 24, 726-731, doi:10.1016/s0166-2236(00)02002-6 (2001).
3 Moruzzi, G. & Magoun, H. W. Brain stem reticular formation and activation of the EEG. Electroencephalogr Clin Neurophysiol 1, 455-473 (1949).
4 Xu, M. et al. Basal forebrain circuit for sleep-wake control. Nat Neurosci 18, 1641-1647, doi:10.1038/nn.4143 (2015).
5 Carter, M. E. et al. Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat Neurosci 13, 1526-1533, doi:10.1038/nn.2682 (2010).
6 Lu, J., Sherman, D., Devor, M. & Saper, C. B. A putative flip-flop switch for control of REM sleep. Nature 441, 589-594, doi:10.1038/nature04767 (2006).
7 Chen, L. et al. Basal Forebrain Cholinergic Neurons Primarily Contribute to Inhibition of Electroencephalogram Delta Activity, Rather Than Inducing Behavioral Wakefulness in Mice. Neuropsychopharmacology 41, 2133-2146, doi:10.1038/npp.2016.13 (2016).
8 Fuller, P. M., Sherman, D., Pedersen, N. P., Saper, C. B. & Lu, J. Reassessment of the structural basis of the ascending arousal system. J Comp Neurol 519, 933-956, doi:10.1002/cne.22559 (2011).
9 Pedersen, N. P. et al. Supramammillary glutamate neurons are a key node of the arousal system. Nat Commun 8, 1405, doi:10.1038/s41467-017-01004-6 (2017).
10 Ren, S. et al. The paraventricular thalamus is a critical thalamic area for wakefulness. Science 362, 429-434, doi:10.1126/science.aat2512 (2018).
11 Eban-Rothschild, A., Rothschild, G., Giardino, W. J., Jones, J. R. & de Lecea, L. VTA dopaminergic neurons regulate ethologically relevant sleep-wake behaviors. Nat Neurosci 19, 1356-1366, doi:10.1038/nn.4377 (2016).
12 Chemelli, R. M. et al. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 98, 437-451, doi:10.1016/s0092-8674(00)81973-x (1999).
13 Sherin, J. E., Shiromani, P. J., McCarley, R. W. & Saper, C. B. Activation of ventrolateral preoptic neurons during sleep. Science 271, 216-219, doi:10.1126/science.271.5246.216 (1996).
14 Gerashchenko, D., Blanco-Centurion, C., Greco, M. A. & Shiromani, P. J. Effects of lateral hypothalamic lesion with the neurotoxin hypocretin-2-saporin on sleep in Long-Evans rats. Neuroscience 116, 223-235, doi:10.1016/s0306-4522(02)00575-4 (2003).
15 Adamantidis, A. R., Zhang, F., Aravanis, A. M., Deisseroth, K. & de Lecea, L. Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450, 420-424, doi:10.1038/nature06310 (2007).
16 Guyenet, P. G. & Bayliss, D. A. Neural Control of Breathing and CO2 Homeostasis. Neuron 87, 946-961, doi:10.1016/j.neuron.2015.08.001 (2015).
17 Yokota, S., Kaur, S., VanderHorst, V. G., Saper, C. B. & Chamberlin, N. L. Respiratory-related outputs of glutamatergic, hypercapnia-responsive parabrachial neurons in mice. J Comp Neurol 523, 907-920, doi:10.1002/cne.23720 (2015).
18 Kaur, S. et al. Glutamatergic signaling from the parabrachial nucleus plays a critical role in hypercapnic arousal. J Neurosci 33, 7627-7640, doi:10.1523/jneurosci.0173-13.2013 (2013).
19 Bollu, P. C., Manjamalai, S., Thakkar, M. & Sahota, P. Hypersomnia. Mo Med 115, 85-91 (2018).
20 Vong, L. et al. Leptin action on GABAergic neurons prevents obesity and reduces inhibitory tone to POMC neurons. Neuron 71, 142-154, doi:10.1016/j.neuron.2011.05.028 (2011).
21 Xu, Y. et al. Glutamate mediates the function of melanocortin receptor 4 on Sim1 neurons in body weight regulation. Cell Metab 18, 860-870, doi:10.1016/j.cmet.2013.11.003 (2013).
22 Ziegler, D. R., Cullinan, W. E. & Herman, J. P. Organization and regulation of paraventricular nucleus glutamate signaling systems: N-methyl-D-aspartate receptors. J Comp Neurol 484, 43-56, doi:10.1002/cne.20445 (2005).
23 Zhang, X. et al. Brain control of humoral immune responses amenable to behavioural modulation. Nature 581, 204-208, doi:10.1038/s41586-020-2235-7 (2020).
24 Sterley, T. L. et al. Social transmission and buffering of synaptic changes after stress. Nat Neurosci 21, 393-403, doi:10.1038/s41593-017-0044-6 (2018).
25 Holmes, M. C., Antoni, F. A., Aguilera, G. & Catt, K. J. Magnocellular axons in passage through the median eminence release vasopressin. Nature 319, 326-329, doi:10.1038/319326a0 (1986).
26 Lu, J., Jhou, T. C. & Saper, C. B. Identification of wake-active dopaminergic neurons in the ventral periaqueductal gray matter. J Neurosci 26, 193-202, doi:10.1523/jneurosci.2244-05.2006 (2006).
27 Kroeger, D. et al. Cholinergic, Glutamatergic, and GABAergic Neurons of the Pedunculopontine Tegmental Nucleus Have Distinct Effects on Sleep/Wake Behavior in Mice. J Neurosci 37, 1352-1366, doi:10.1523/jneurosci.1405-16.2016 (2017).
28 Erickson, E. T. M., Ferrari, L. L., Gompf, H. S. & Anaclet, C. Differential Role of Pontomedullary Glutamatergic Neuronal Populations in Sleep-Wake Control. Front Neurosci 13, 755, doi:10.3389/fnins.2019.00755 (2019).
29 Anaclet, C. et al. Basal forebrain control of wakefulness and cortical rhythms. Nat Commun 6, 8744, doi:10.1038/ncomms9744 (2015).
30 Venner, A., Anaclet, C., Broadhurst, R. Y., Saper, C. B. & Fuller, P. M. A Novel Population of Wake-Promoting GABAergic Neurons in the Ventral Lateral Hypothalamus. Curr Biol 26, 2137-2143, doi:10.1016/j.cub.2016.05.078 (2016).
31 Li, M. M. et al. The Paraventricular Hypothalamus Regulates Satiety and Prevents Obesity via Two Genetically Distinct Circuits. Neuron 102, 653-667 e656, doi:10.1016/j.neuron.2019.02.028 (2019).
32 Hung, L. W. et al. Gating of social reward by oxytocin in the ventral tegmental area. Science 357, 1406-1411, doi:10.1126/science.aan4994 (2017).
33 Xu, Y. et al. Identification of a neurocircuit underlying regulation of feeding by stress-related emotional responses. Nat Commun 10, 3446, doi:10.1038/s41467-019-11399-z (2019).
34 Morton, A. A quantitative analysis of the normal neuron population of the hypothalamic magnocellular nuclei in man and of their projections to the neurohypophysis. J Comp Neurol 136, 143-157, doi:10.1002/cne.901360203 (1969).
35 Wierda, M. et al. Oxytocin cell number in the human paraventricular nucleus remains constant with aging and in Alzheimer's disease. Neurobiol Aging 12, 511-516, doi:10.1016/0197-4580(91)90081-t (1991).
36 Purba, J. S., Hofman, M. A., Portegies, P., Troost, D. & Swaab, D. F. Decreased number of oxytocin neurons in the paraventricular nucleus of the human hypothalamus in AIDS. Brain 116 ( Pt 4), 795-809, doi:10.1093/brain/116.4.795 (1993).
37 Purba, J. S. et al. Increased number of corticotropin-releasing hormone expressing neurons in the hypothalamic paraventricular nucleus of patients with multiple sclerosis. Neuroendocrinology 62, 62-70, doi:10.1159/000126989 (1995).
38 Kondoh, K. et al. A specific area of olfactory cortex involved in stress hormone responses to predator odours. Nature 532, 103-106, doi:10.1038/nature17156 (2016).
39 Mezey, E., Kiss, J. Z., Skirboll, L. R., Goldstein, M. & Axelrod, J. Increase of corticotropin-releasing factor staining in rat paraventricular nucleus neurones by depletion of hypothalamic adrenaline. Nature 310, 140-141, doi:10.1038/310140a0 (1984).
40 Winter, J. & Jurek, B. The interplay between oxytocin and the CRF system: regulation of the stress response. Cell Tissue Res 375, 85-91, doi:10.1007/s00441-018-2866-2 (2019).
41 Agostinelli, L. J., Geerling, J. C. & Scammell, T. E. Basal forebrain subcortical projections. Brain Struct Funct 224, 1097-1117, doi:10.1007/s00429-018-01820-6 (2019).
42 Yuan, Y. et al. Reward Inhibits Paraventricular CRH Neurons to Relieve Stress. Curr Biol 29, 1243-1251 e1244, doi:10.1016/j.cub.2019.02.048 (2019).
43 Gasparini, S., Howland, J. M., Thatcher, A. J. & Geerling, J. C. Central afferents to the nucleus of the solitary tract in rats and mice. J Comp Neurol 528, 2708-2728, doi:10.1002/cne.24927 (2020).
44 Baloyannis, S. J., Mavroudis, I., Mitilineos, D., Baloyannis, I. S. & Costa, V. G. The hypothalamus in Alzheimer's disease: a Golgi and electron microscope study. Am J Alzheimers Dis Other Demen 30, 478-487, doi:10.1177/1533317514556876 (2015).
45 Purba, J. S., Hofman, M. A. & Swaab, D. F. Decreased number of oxytocin-immunoreactive neurons in the paraventricular nucleus of the hypothalamus in Parkinson's disease. Neurology 44, 84-89, doi:10.1212/wnl.44.1.84 (1994).
46 Manaye, K. F. et al. Selective neuron loss in the paraventricular nucleus of hypothalamus in patients suffering from major depression and bipolar disorder. J Neuropathol Exp Neurol 64, 224-229, doi:10.1093/jnen/64.3.224 (2005).
47 Zhang, Z., Wang, H. J., Wang, D. R., Qu, W. M. & Huang, Z. L. Red light at intensities above 10 lx alters sleep-wake behavior in mice. Light Sci Appl 6, e16231, doi:10.1038/lsa.2016.231 (2017).
48 Luo, Y. J. et al. Nucleus accumbens controls wakefulness by a subpopulation of neurons expressing dopamine D(1) receptors. Nat Commun 9, 1576, doi:10.1038/s41467-018-03889-3 (2018).
49 Li, J. et al. Primary Auditory Cortex is Required for Anticipatory Motor Response. Cereb Cortex 27, 3254-3271, doi:10.1093/cercor/bhx079 (2017).
50 Zhang, Z. et al. Superior Colliculus GABAergic Neurons Are Essential for Acute Dark Induction of Wakefulness in Mice. Curr Biol 29, 637-644.e633, doi:10.1016/j.cub.2018.12.031 (2019).