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Abstract

Applying deep neural network models to robot-arm grasping tasks requires the laborious and
time-consuming annotation of a large number of representative examples in the training process.
Accordingly, this work proposes a two-stage grasping model, in which the first stage employs learning-
based template matching (LTM) algorithm for estimating the object position, and a self-rotation
learning (SRL) network is then proposed to estimate the rotation angle of the grasping objects in
the second stage. The LTM algorithm measures similarity between the feature maps of the search
and template images which are extracted by a pre-trained model. While the SRL network performs
the automatic rotation and labelling of the input data for training purposes. Therefore, the proposed
model does not consume an expensive human-annotation process. The experimental results show that
the proposed model obtains 92.6% when testing on 2400 pairs of the template and target images. More-
over, in performing practical grasping tasks on a NVidia Jetson TX2 developer kit, the proposed model
achieves a higher accuracy (88.5%) than other grasping approaches on a split of Cornell-grasp dataset.

Keywords: Self-supervised learning, deep learning, robot arm grasping, template matching

1 Introduction

Deep learning is employed in an ever-increasing
number of robotics applications nowadays Jiang
et al (2011); Lenz et al (2015); Redmon and
Angelova (2015); Wang et al (2016, 2020); Zhao
et al (2021); Li and Chang (2019); Morrison
et al (2020). Deep neural network (DNN) models
offer significant advantages over traditional vision-
based systems in the grasping and manipulation
of objects affected by occlusion, illumination vari-
ations, reflection, and so on. However, the success
of DNN models depends on the availability of a
large number of representative examples of the
appropriate class for training purposes. Moreover,

the training process requires each sample anno-
tated in advance, which is laborious, expensive
and time-consuming. Therefore, self-supervised
learning (SSL) models have become increasingly
popular for robot-arm grasping applications in
recent years. In SSL models, the DNN learns the
required weights itself without the need for man-
ually labelled data. In the robot-arm grasping
field, SSL models commonly learn using trial-and-
error methods, in which peripheral devices such
as force sensors, touch sensors, or tactile sensors
feed signals back to the model, and these sig-
nals are then used to annotate the grasping status
as successful, or not Pinto and Gupta (2016);
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Levine et al (2018). However, they incur addi-
tional hardware costs for the sensors needed to
provide the feedback signals and typically involve
a lengthy training time. To address the problems
mentioned above, we propose a two-stage grasp-
ing model in the present work. In the first stage
of the proposed model, the object position is esti-
mated using a learning-based template-matching
algorithm. In detail, the learning-based template-
matching algorithm is enhanced from our previous
work Le and Lien (2021). In that work, based
on the density of the high similarity scores of
the measurement process, the confused similar-
ity scores (note that confused matching scores
are defined here as high similarity scores between
template image and wrong targets) were detected
and removed during the matching process. In the
present study, we improve the matching results
by refining the estimated center coordinates of
the target based on an inspection of the inten-
sity distribution of the high similarity scores. In
comparison to object detection or object tracking
algorithms, template matching algorithms does
not require the manual human-annotation process
for a training process. In the second stage, we pro-
pose a self-rotation learning network to estimate
the rotation angle of the targets. In the training
process of that network, the target region (which
is detected in the first stage) in the search image
is cropped and self-rotated with a random angle.
A Siamese network, which is constructed of two
CNN-layer-based branches, is used to extract rota-
tional representations of the cropped and rotated
images. Two representations are used to calculate
rotation angle by using the arccosine function.
The random rotation-angle serves as a ground-
truth angle for the training task. In that way, the
training process of the rotation-angle estimation
network does not require an expensive human-
annotation process when compared with other
rotation-object detection frameworks.

The main contributions of this work can be
summarized as follows:

• A learning-based template-matching (LTM)
algorithm is proposed to improve the position-
estimation process of the matched object.

• We propose a self-rotation learning net-
work for the rotation angle estimation to tackle
the time-consuming annotation process required
in traditional supervised DNN-based robot-arm
grasping models.

• The experiment results on self-built datasets
and a split of Cornell-grasp dataset show that the
proposed model is a tradeoff between the accu-
racy and speed of the detection process. Moreover,
the proposed model presents a good performance
on unseen objects (not in the training dataset).
Lastly, the practical grasping experiments show
that proposed model is capable of running effec-
tively and efficiently on a limited memory and
computational resource embedded system (i.e.
NVidia Jetson TX2).

The remainder of this paper is organized as fol-
lows. Section 2 briefly introduces the related work.
Section 3 describes the proposed two-stage grasp-
ing model. Section 4 presents and discusses the
experimental results. Finally, Section 5 provides
some brief concluding remarks.

2 Related Work

Template-matching. Template-matching algo-
rithms are widely applied in industrial manufac-
turing systems Chen et al (2019); Zhong et al
(2017); Wang et al (2018); Annaby et al (2019);
Tsai and Huang (2018) and use a variety of
similarity measurement methods to evaluate the
similarity between the template image and tar-
gets in the search image, including Normalization
Cross-Correlation (NCC), Sum of Squared Dif-
ferences (SSD), and Sum of Absolute Differences
(SAD). However, such methods generally achieve
a poor matching performance on rotated objects.
Descriptor feature-based template-matching algo-
rithms, such as Scale Invariant Feature Transform
(SIFT) LOEW (2004) or Oriented FAST and
Rotated BRIEF (ORB) Rublee et al (2011), used
matching points to measure the similarity and
are able to deal with invariant scale and rotation
objects.

In recent years, using pre-trained DNN
models to extract feature maps for template-
matching algorithms was considered. There
existed approaches presented to improve the effec-
tive matching result. Oron et al. Oron et al (2017)
proposed a method to find best-buddy pairs in the
feature maps of the template and search image.
Then using a similarity measurement method
called Best Buddy Similarity (BBS) for measur-
ing the similarity process. Moreover, authors in
Talmi et al (2017); Kat et al (2018) proposed
methods to identify nearest neighborhood (NN)
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pairs between the pixel vectors in the feature maps
of the template and search images for template-
matching processes based on the diversity and
the deformation amounts (DDIS), or based on
the number of co-occurrence pairs (CoTM), of
the pixel vectors. While Cheng et al. Cheng et al
(2019) presented a method to identify quality-
aware NN pairs for the template matching process
(QATM) by measuring similarity between pairs
of pixel vectors in the deep features of the tem-
plate image and search image using a pair-wise
similarity approach. Accordingly, in the present
work, the template-matching algorithm employed
in the first stage of the proposed DNN model used
a pre-trained DNN model to extract feature maps
of template and search images for measuring the
similarity process. After that, based on the den-
sity of the high similarity scores to identify and
remove confused scores during the matching pro-
cess, and then based on the intensity distribution
of the high similarity scores to refine the estimated
center coordinates of the grasping objects.

Deep learning models for robot-arm

grasping. Supervised learning models have
been employed to estimate potential rectangular
boundary boxes of the target object Jiang et al
(2011); Lenz et al (2015); Redmon and Angelova
(2015); Karaoguz and Jensfelt (2019), to seg-
ment graspable objects in the search image Wang
et al (2016); Asif et al (2018), or to measure
grasping quality on depth images Morrison et al
(2020). However, such approaches required a time-
consuming and expensive annotation process. The
application of SSL models to the robot-arm grasp-
ing problem has attracted great interest in the
recent literature. Several trial-and-error methods
have been proposed for supporting the learning
process of SSL models by using force signals or
tactile signals as feedback information to annotate
the grasping process as a success or failure Pinto
and Gupta (2016); Levine et al (2018). However,
the training times were extremely long in both
cases, i.e., 700 hours in Pinto and Gupta (2016)
and two months in Levine et al (2018).

Self-supervised learning model for

rotation-angle estimation. The input images
are self-rotated by multiples of 90 degrees and
assigned into a DNN model to extract rotation
representation features for predicting the rotation
angle of the input image Feng et al (2019); Li

et al (2021). In approach Gidaris et al (2018),
a transformation set was generated to trans-
form the input images with different rotation
angles. The transformed images were assigned
into an unsupervised DNN model to train the
model to classify the transformation of images.
Such approaches predicted discrete angles with
a rotation-angle interval of 90-degree, so the
accuracy of the rotation-angle estimation process
was with discrete angles. In our work, the rota-
tion angle is identified using arccosine operator
between rotation representations of the template
image and the target candidate for estimating the
rotation-angle of object. Therefore, the rotation-
angle estimation result can obtain a smaller
rotation-angle interval.

3 Robot-Arm Grasping Using
Two-Stage Grasping Model

Figure 1 shows the global framework of the grasp-
ing model proposed in the present work. The
details of the proposed model are described in the
following sections.

3.1 Translation Estimation using
Learning-based Template
Matching (LTM) Algorithm

3.1.1 Feature Extraction Using

Pre-trained Mobilenet-v2

The template-matching process takes the tem-
plate image IT and search image IS as the inputs
and assigns them to a two networks for extracting
feature maps. Both networks consist of the first
convolutional layer and following four inverted
residual blocks of MobileNet-v2 Sandler et al
(2018), which generate feature maps with 64 fea-
tures. The MobileNet-v2 was pre-trained with the
ImageNet Deng et al (2009) dataset. In compar-
ison with other models, MobileNet-v2 provides a
trade-off between the accuracy of the classifica-
tion task and the number of model parameters,
and is thus particularly suitable for the imple-
mentation of deep learning models in embedded
systems, which typically have relatively limited
memory and computational resources. The fea-
ture maps extracted from IT and IS , denoted
as T and S, respectively, are then used in the
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Fig. 1: The global framework of the proposed grasping model.

template-matching process, as described in the
following.

3.1.2 Pairwise Similarity Measurement

between the Feature Maps of the

Search and Template Images

As shown in Fig. 2, fmi is referred to as the ith

likelihood similarity map, which contains similar-
ity scores between the ith pixel-vector fti in T
and all of the pixel vectors in S. The pixel vec-
tors have a dimension of 64. The similarity score
between the ith pixel-vector fti in T and the jth

pixel-vector fsj in S, which is denoted as ρij, is

measured using the cosine similarity measurement
method:

ρij(fsj , fti) =
fti · fsj

‖fti‖ × ‖fsj‖
. (1)

i = 0 → N ; j = 0 → M

where wT and hT are the width and height of
the feature maps in T ; while wS and hS are the
width and height of the feature maps in S, respec-
tively. N = wT x hT denotes the totally number
of pixel-vector in T , while M = wS x hS denotes

the totally number of pixel-vector in S. In an ideal
matching process, one fti matches correctly with
just one fsj , where this pixel vector belongs to the
feature maps region corresponding to the target.
In such a situation, the similarity score is referred
to as a “matched score”. However, in some cases,
fti may achieve high similarity scores with mul-
tiple pixel vectors fsj located in regions of the
feature maps not associated with the target. In
such a case, the similarity score is said to be a
“confused score”. The presence of these confused
scores can seriously degrade the accuracy of the
matching results, and thus they should be elimi-
nated before the center coordinates of the target
object are evaluated.

3.1.3 Finding and Zeroing of Confused

Scores in fmi based on Density

of the High Similarity Scores

For the case of a correctly-identified target, the
high similarity scores are expected to form one
concentrated cluster in the spatial domain in the
feature maps, S. By contrast, for mis-matched tar-
gets, the matching scores (confused scores) are
distributed more sparsely throughout S. Thus, in
the present work, a spatial clustering technique is
used to distinguish between the matched scores
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and confused scores, and the confused scores are
then cleared to zero in order to improve the accu-
racy of the matching results. As shown in Fig. 2,
the process of detecting and zeroing the confused
scores is implemented using a four-step proce-
dure. The details of each step are described in the
following.

Step 1. Preprocessing scores in fmi. The
similarity scores in each fmi are processed by
the softmax function to normalize such similar-
ity scores to range of [0,1]. Note that prior to
processing, the similarity scores are divided by a
temperature parameter ρ (see Eq. 2) in order to
widen the gap between the low and high scores
in fmi and hence emphasize the high scores Wu
et al (2018). Then, the high similarity scores are
filtered out by comparing with the mean score of
fmi, ρ̄S. The similarity scores that are smaller
than ρ̄S, are cleared to zeros. Then, the scores
are stored in likelihood similarity maps fm′

i. The
softmax function is computed as:

ρSij(fsj , fti) =
exp(ρij/τ)

M
∑

j

exp(ρij/τ)

. (2)

Step 2. Group likelihood similarity maps.
The likelihood similarity maps, fm′

i, are parti-
tioned into four smaller groups of maps, Gr, in
accordance with the location of fti in T (see note
in Step 1 of Fig. 2). In that way, in such fm′

i,
high matched scores of fti are expected to clus-
ter closely in spatial domain. The four groups are
formulated as,

Gr = {fm′

k|∀k ∈ [(r(N/4)), (r + 1)(N/4)− 1]}.
(3)

where r denotes the group number, i.e., i = 0 → 3;
k is fm′

i number in each group Gr.
Step 3. Find maximum likelihood simi-

larity scores in Gr. Across all the fm′

i in the
same Gr, the maximum likelihood similarity score
at each location in fm′

i is identified and stored in
a group map, gr, as follows:

gr(x, y) = max
i∈[(rk),(r+1)k−1]

fm′

i(x, y). (4)

where (x, y) denote coordinate of the likelihood
similarity score in fm′

i

Step 4. Find coordinates of confused

scores in gr based on density of the high

similarity scores The maximum likelihood sim-
ilarity scores in each gr are clustered using the
Density-Based Spatial Clustering of Applications
with Noise (DBSCAN) algorithm proposed in
Ester et al (1996). In particular, for each gr, the
coordinates of the high similarity scores, i.e., the
scores with values greater than zero (while other
low similarity scores in gr are cleared to zeros
in Step 1), are filtered out, and the Euclidean
distance method is used to measure the spatial
distance between them. If two of the scores are
found to have a spatial distance (d) less than a cer-
tain threshold distance (denoted as eps), they are
considered to be epsilon neighborhood together
(members of the same neighborhood), NEps, as
shown in Eq. 5. One high similarity score hav-
ing the number of NEps is equal to or greater
than a threshold parameter (denoted as Minpts)
be considered as the core of the spatial cluster.
Moreover, the high similarity score being NEps

of the cluster cores are also considered as an
element of that spatial cluster. Accordingly, for
correctly- matched targets in the search image, it
is anticipated that the high similarity scores will
be densely clustered in the same region of the fea-
ture map. In other words, the value of NEps is
expected to be high. By contrast, the confused
scores are expected to be distributed widely in
the feature space, and to appear as either isolated
scores, or in small randomly-located clusters. In
such a case, the value of NEps are expected to be
small. In the present work, we consider high simi-
larity scores, which have got enough eight adjacent
of high similarity scores around, as the cores of the
spatial cluster. Therefore, we chooseMinpts equal
to eight, and eps equal to 1.5 pixels. Nevertheless,
the high similarity scores that do not belong to any
spatial clusters are considered as confused scores.

NEps =

{

1 d < eps

0 d ≥ eps
. (5)

Having determined the confused scores, their val-
ues are cleared to zero in order to avoid affecting
the matching results. The coordinates of the con-
fused scores are referenced to fmi since the origi-
nal similarity measurement scores are expected to
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Fig. 2: Finding and zeroing confused scores based on density of the high similarity scores.

provide greater accuracy in determining the cen-
ter of the target for grasping purposes than those
in fm′

i.

3.1.4 Find Center Coordinates of

Target using Intensity-

Refinement Approach Based on

Likelihood Similarity Scores.

After finding and removing the confused scores in
fmi, the maximum likelihood similarity map, fm,
between the scores in the various fmi is calculated
as follows:

fm(x, y) = max
i=[0,N−1]

fmi(x, y). (6)

It is assumed that there exists just one object
in the search image correctly matched with the
template image. The best-matched region, R, is
calculated by averaging scores in fm inside a
region R as Eq. 7. However, the target in S is
an unknown rotation with large height-and-width
ratio. Thus, the region is with a size of n x n, where
n denotes the maximum size between height or
width of T , such that the object can be bounded
by the window irrespective of the rotation of
target.

R∗ = argmax
R

{
1

n2

n
∑

u=0

n
∑

v=0

fm(u, v)}. (7)

where (u, v) denote coordinate of the likelihood
similarity score in fm. The center of the best
matched region is also the center of the target,

which is denoted as p(x′, y′). The score, which is
referred as ρmax, at the center is the confidence
score of the matching process. To find the exact
position of the target in the search image Is, fm
is first bilinear-interpolation re-sized to the size of
Is, thus causing the coordinates p(x′, y′) in fm to
be re-sized to p(x, y) in Is. In general, re-sizing
any point in a feature map up to its original size
inevitably introduces position errors. Accordingly,
in the present work, the re-sized target position
in the search image is refined based on the inten-
sity distribution of the likelihood similarity scores.
In particular, a search is performed within a l x
l pixel region with p(x, y) as the center of region,
where l denotes the ratio between the search image
size and the feature map size. At each search point
within this region, the average of the likelihood
similarity scores is calculated within the re-sized
fm in a square of m x m, where m denotes the
height or width (whichever is larger) of the tem-
plate image. The search position which returns the
highest average value is then taken as the final
position of the matching process.

3.2 Rotation Angle Estimation
Using Self-Rotation Learning
Network

3.2.1 Rotation-Angle Value Estimation

Using Siamese Network

As shown in Fig. 1, the rotation estimation task
(i.e., the second step in the proposed grasp-
ing model) is performed using a shared-weight
Siamese network consisting of two DNN-based
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branches. In training phase, after having esti-
mated the center coordinates p(x′, y′) of the target
in the feature maps of the search image (S), the
cropped feature maps (Sc) is generated by crop-
ping S at the estimated location (x’, y’) with
a square size of nxn (where n is referred as
mentioned above). Moreover, S is automatically

rotated through a random angle (θ̂) in the counter-
clockwise direction with p(x’, y’) as the center
of the rotation. Then, the rotated S is cropped
at the center p(x’, y’) with the same size as Sc

to generate the feature maps Sr. The value of θ̂
then serves as a self-rotation label in the training
phase. In real-world grasping tasks, the gripper of
the robot arm is required only to rotate through
a range of [−90◦, 90◦] to grasp objects, which
may be rotated in the range of [0◦, 360◦]. There-

fore, the random rotation angle, θ̂, is constrained
to the range of [0◦, 90◦]. The width x height of
Sc and Sr are resized to 32x32 pixels so that
the networks can respond with different sizes of
the template images. Furthermore, to reduce the
training time, the translation estimation process
is first implemented for all of the images in the
training dataset in order to generate a set of fea-
ture maps for the rotation estimation process. In
the training process itself, Sc and Sr are fed into
the Siamese rotation estimation network, and the
branches output two feature descriptor vectors,
ZS and ZT . The prediction rotation angle, θ, is
then calculated as follows:

θ = arccos
zT · zS

‖zT ‖ × ‖zS‖
. (8)

On the other hand, in inference phase, the fea-
ture maps of template T is padded with an average
value in T to generate a padded image Tp with a
size of n x n. Then, the padded image Tp is resized
to 32 x 32 pixels before assigning to the branch
1 of the Siamese network, while the branch 2 of
the Siamese network takes S′

C as the input. The
outputs of the branches (vectors ZS and ZT ) are
used to predict the rotation angle, θ (see Eq. 8),
initially.

3.2.2 Rotation-Angle Direction

Classification Network

However, the arccosine function in Eq. 8 returns
a positive angle (i.e., a counter-clockwise (ccw)

rotation direction in the present work) even in
the event that the real angle is negative (i.e., a
clockwise direction (cw)). Consequently, the fea-
ture maps of the cropped target image after the
second max-pooling layer are flattened and pass
through two fully connected layers to classify the
true rotation sense (i.e., positive or negative) of
the matched object. The network provides two
classes corresponding to the two possible direc-
tions of the object (positive (ccw) or negative
(cw)) as the output.

4 Experimental Results

The performance evaluations commenced by
examining the accuracy of the proposed LTM-
based translation estimation method (stage 1 of
the proposed grasping model). Further experi-
ments were then performed to evaluate the per-
formance of the proposed grasping model. The
template-matching performance was evaluated by
means of simulations using the Object Track-
ing Benchmark 100 (OTB-100) dataset Wu et al
(2013) on a PC equipped with an Intel Core i7-
6700 CPU, 16.0 GB of memory, and an NVidia
RTX 2070 GPU. Meanwhile, the grasping per-
formance was investigated by using a self-built
rotation objects dataset and a split of the Cor-
nell grasp dataset Lenz et al (2015). The grasping
trials were run on an NVidia Jetson TX2.

4.1 Data Collection and Evaluation
Metrics

4.1.1 Data Collection

Object Tracking Benchmark–100. The OTB-
100 dataset consists of sequences of frames. Three
testing datasets were compiled (DB1, DB2, and
DB3) from the frames of OTB-100, where each
dataset contained 270 pairs of template images
and search images. For each testing dataset, a
frame f was randomly selected as the template
image, and frame (f + ∆f) was selected as the
search image, where ∆f denotes the distance
between the two frames in the frame sequence.
The evaluations considered three different settings
of ∆f (i.e., 25, 50, and 100) for testing datasets
DB1, DB2, and DB3, respectively.
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Rotation Dataset. The self-built rotation
dataset used 22 different objects with large height-
to-width ratios to generate 22 template images
with sizes of 220∼420 x 130∼220 pixels (see Fig.
3a). There were 8250 images collected from a fixed
overhead camera with a solution of 1280 x 960 pix-
els for the training and testing process (see Fig.
4). For the training dataset, 7000 images were
split into 70% for the training process and 30%
for validation. Each image contained one object.
As shown in Fig. 3d, the images were evenly col-
lected over the four quadrants of a circle, where
the images in the first and third quadrants were
taken as the positive direction class, while those in
the second and fourth quadrants were taken as the
negative direction class. Meanwhile, the remaining
1250 images were used to generate 2400 pairs of
template images and target images for the testing
dataset. In which, each image contained between
1 and 4 objects, where the objects had various
rotation angles and positions.

A Split of Cornell-Grasp Dataset. To test
the grasping performance of the proposed model
on unseen objects, 20 commonly used objects
were additionally selected from the Cornell grasp
dataset and corresponding template images were
prepared (see Fig. 3b) to build an unseen grasp-
ing dataset. Each object was used to collect 100
images with different rotation angles and posi-
tions.

Mechanical-Tool Dataset. A set of 10
mechanical-tool objects (see Fig. 3c) was used to
build a grasping dataset for further testing the
trial-grasping performance on unseen objects.

4.1.2 Evaluation Metrics

The performance of the LTM algorithm was com-
pared with that of several state-of-the-art methods
using the area under curve (AUC) metric. With
the grasping performance, the proposed grasp-
ing model was evaluated both image-wise (using
the rectangle metric to evaluate the grasping
performance in the testing image) and object-
wise (real-world grasping tasks). With image-wise
mode, the grasping performance was evaluated
using the rectangle metric proposed in Jiang et al
(2011), in which the object grasping task is con-
sidered to be successful if the Jaccard index (see
Eq. 9) exceeds a certain threshold value and the
difference between the predicted angle and the

(a)

(b)

(c)

(d)

Fig. 3: The illustration of the objects used for
the self-built rotation dataset in (a), the unseen
dataset in (b), the mechanical-tool dataset in (c),
and the direction classes for training process in
(d).

ground-truth angle lies within 300. In the present
work, the threshold value was assigned as 0.25,
which is regarded as suitable for grasping tasks
that do not require a high overlap between the
prediction bounding box and the ground-truth
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Fig. 4: The robot arm system with a Yaskawa
robot arm (1), an NVidia Jetson TX2 developer
kit in (2), a fixed overhead eye-to-hand camera in
(3), and the illustration objects in (4).

bounding box Jiang et al (2011); Lenz et al (2015).

J(gp, gt) =
|gp ∩ gt|

|gp ∪ gt|
. (9)

where J() denotes as the Jaccard index, gp is the
predicted oriented bounding box and gt is the
ground-truth oriented bounding box. While with
the object-wise mode, we identified a practical
grasp as a successful grasp when the gripper of the
robot arm picks a matched object successful with
the template image at the position which corre-
sponds to the center of the template image and
the oriented grasping without generating collision
between the gripper and the object (see the exam-
ples of the successful- and failed- grasping cases in
Fig. 6).

4.2 Training and Inference Processes

Training Process. The training process for
rotation-angle estimation uses the Mean Square
Error (MSE) as the loss function. On the other
hand, to classify the direction of objects, fea-
ture maps of Sc on the lower branch of the
Siamese network are passed through two fully
connected layers. This training process uses the
Cross-Entropy as the loss function to measure
the difference between the output of classification

and the actual direction of objects. The final loss
function of the proposed model is built as follows:

L(w) = λ1L1(w) + λ2L2(w) (10)

where L1(w) = 1
B

B
∑

i

(θi − θ̂i)
2 and L2(w) =

1
B

B
∑

i

(pi log (p̂i))
2 are loss functions of self-

rotation learning process and classification learn-
ing process, respectively. In which, B denotes the
batch size of training data, pi and p̂i are pre-
dicted rotation direction and ground-truth rota-
tion direction, respectively, while λ1 and λ2 are
hyper-parameters to weigh two learning processes.
Moreover, we use Adam optimizer with a learning
rate of 0.0001 to optimize the model. The network
was trained in 150 epochs and required almost a
day to complete on a desktop PC equipped with
an Intel Core i7-6700 CPU and an NVidia RTX
2070 GPU.

Inference Process. To reduce the process-
ing time, the template images are extracted and
generated the rotation representation in advance.
In the real-world grasping process, the proposed
DNN model is run on the NVidia Jetson TX2.
The objects are put on a plane with an area of
40cm x 30cm. In the inference process, the loca-
tion and rotation angle of objects are converted
into a 3D coordinate of the robot arm based on a
pre-calibrated transformation matrix between the
3D camera and 3D robot arm base coordinates.
That 3D coordinate is transferred to the controller
of the robot arm via TCP/IP protocol to move
the end-effector to grasp objects.

4.3 Experimental Results and
Discussions

4.3.1 Performance of LTM Algorithm

on OTB-100

The translation estimation performance of the
proposed LTM algorithm was compared with
that of four other deep feature-based template-
matching algorithms (BBSOron et al (2017),
DDISTalmi et al (2017), CoTMKat et al (2018),
and QATMCheng et al (2019)). Figure 5 shows the
AUC performance of the various methods when
applied to the DB1, DB2, and DB3 databases with
∆f= 25, 50, and 100, respectively. It is seen that
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the proposed LTM method achieves a higher AUC
score than any of the other methods for all three
databases. As expected, the maximum AUC score
(0.724) is obtained for DB1 with the lowest frame
separation distance of ∆f= 25. The AUC value
reduces slightly to 0.653 and 0.593 for datasets
DB2 and DB3 with ∆f= 50 and 100, respectively.
However, the AUC value is consistently higher
than that of the other DNN-based template-
matching methods. In other words, the results
confirm the effectiveness of clearing the confused
scores to zero and employing an intensity-based
refinement step to improve the accuracy of the
template-matching process.

4.3.2 Performance of the Proposed

Grasping Model on Rotation

Dataset

The performance of the proposed DNN model
was evaluated initially using the self-built rota-
tion dataset. The grasping accuracy was com-
pared with that of two rotation- and scale-
invariant template-matching algorithms, namely
SIFT LOEW (2004) and ORB Rublee et al (2011).
Both algorithms match certain key points in the
template and search images and use a homogra-
phy matrix based on these key points to find the
oriented bounding box of the target in the search
image. The performance of the three methods
was evaluated both image-wise and object-wise.
The former experiments involved 2400 pairs of
template images and target images. The latter
involved 22 objects, with each object placed with
20 different rotation angles and positions evenly
divided into four cases: one-, two-, three-, and
four-object on screen. The corresponding results
are presented in Table 1. Note that the mean error
was calculated based on results with the Jaccard
index J(gp, gt) greater than zero. It means that
there is an overlap between the prediction bound-
ing box and the ground-truth bounding box. Of
the three methods, although ORB provides the
fastest matching speed, its accuracy (75.8%) is sig-
nificantly lower than that of our model (92.6%).
On the other hand, our model achieves a higher
object-wise accuracy (88.2%) than either ORB
(66%) or SIFT (79.1%). The results from the
image-wise and object-wise modes indicate that
the proposed DNN model, which is based on deep

features, provides a more robust detection per-
formance than two of the most commonly used
template-matching approaches in practical object
detection applications. Note that SIFT, ORB, and
the proposed model do not consume an expensive
human-annotation process. Moreover, the mean
error result of the rotation angle shows that the
proposed method to estimate the rotation angle by
calculating the arccosine functions between two
rotation representations can respond to the prac-
tical grasping task. The examples of the successful
and failed grasping in the real-world grasping
experiments on the Rotation dataset are shown in
Fig. 6a. As shown in the first- and third columns
in Fig. 6a, the objects were detected at the cen-
ter of the template image and the orientations
were estimated parallel with the width of the
objects. Therefore, in those cases, the gripper of
the robot arm was executed successful grasps.
While in the second- and fourth- columns, the esti-
mated orientations of the objects were detected
with low accuracies. As a result, they generated
low qualities of the grasping cases, although the
gripper could pick objects. In those cases, they
were defined as failed-grasping cases.

4.3.3 Performance of the Proposed

Grasping Model on a Split of

Cornell-Grasp Dataset

The performance of the proposed model on
Cornell-grasp objects was evaluated both image-
wise and object-wise. The former experiments
involved 2000 pairs of template images and tar-
get images. The latter involved 20 objects, with
each object was individually tested with 10 differ-
ent rotation angles and positions. In object-wise
mode, the camera solution was set with a reso-
lution of 1280x960 pixels. Table 2 compares the
unseen grasping accuracy of the proposed grasping
model with that of supervised deep learning-based
methods proposed in the literature and trained on
the Cornell Grasp dataset. In particular, the pro-
posed model obtains a grasping accuracy of 90.5%
in the image-wise mode on PC and 88.5% in the
object-wise mode on NVidia Jetson TX2. Such
accuracies are higher than that of other compared
methods in both modes. While although the aver-
age time of the proposed model is longer than
that of the method in Morrison et al (2020), but
is significantly faster than that of the remaining
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(a) (b) (c)

Fig. 5: Accuracy of LTM and other template-matching algorithms for three split datasets (DB1, DB2
and DB3) from OTB-100 dataset. (a) DB1, (b) DB2, and (c) DB3. Note that the AUC values are shown
in the legend. Better viewed in color

Table 1: The performance comparison on Rotation dataset

Image-wise Object-wise

Methods Acc(%) PC-Time(ms) ME of Angle(degree) Acc(%) TX2-Time(ms)

SIFT LOEW (2004) 79.8 356.0 5.9 79.1 815.8
ORB Rublee et al (2011) 75.8 78.2 7.6 66.0 86.3

Ours 92.6 116.6 5.9 88.2 642.7

Note: Acc stands for the average accuracy, PC-Time for the speed performance on PC, ME of angle for the mean error of the
rotation angle, and TX2-Time for the speed performance on NVidia Jetson TX2.

compared methods. It indicates that the proposed
model can obtain the trade-off between the grasp-
ing accuracy and the processing speed. The results
presented in Table 2 also show that, although
running on an embedded platform, the accuracy
and speed performances of the proposed model
is comparable with that of other grasping liter-
ature. Moreover, with the Jaccard index equal
to 0.5 (the overlap between the predicted object
and the ground-truth is over 50%), the proposed
model still obtained a good performance with
82.5% accuracy. The result shows that using the
learning-based template matching in the proposed
model obtained a higher effective accuracy than
that of some compared grasping approaches in
the location estimation task, while the proposed
model does not consume an expensive human-
annotation as the compared grasping approaches.
The examples of the successful and failed grasp-
ing in the real-world grasping experiments on
the Cornell-Grasp dataset are shown in Fig. 6b.

Similar to Section 4.3.2, the first- and third-
columns in Fig 6b show successful-grasps with
high-quality grasping cases, while the second- and
fourth-columns shows low rotation-angle estima-
tions and low-quality grasps which are identified
as failed-grasping cases in our work.

4.3.4 Performance of the Proposed

Grasping Model on

Mechanical-Tool Dataset

Ten mechanical tools were further used as unseen
objects to test the practical-grasping performance
of the proposed algorithm. In which the perfor-
mance was executed on NVidia Jetson TX2. Each
mechanical object’s grasping performance was
implemented ten times with different positions
and rotation angles. Table 3 shows the grasping
accuracy (81%) and execution speed (667ms) of
the algorithm performance. The accuracy perfor-
mance is similar to the results in Section 4.3.3. It
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Table 2: The performance comparison on a Split of Cornell-Grasp dataset

Image-wise Object-wise

Methods Acc1(%) Speed1(ms) Acc(%) Speed(ms)

Jiang et al. Jiang et al (2011) 60.5 5000 58.3 5000
Lenz et al. Lenz et al (2015) 73.9 1350 75.6 1350
Morrison et al. Morrison et al (2020) 75.8 19 75.3 19

Redmon et al. Redmon and Angelova (2015) 88.0 303 87.1 303
Wang et al. Wang et al (2016) 85.3 141 - -
Asif et al. Asif et al (2018) 88.2 - 87.5 -
Karaoguz et al. Karaoguz and Jensfelt (2019) 88.7 200 - -
Ours (IOU≥ 25) 90.5 112.5 88.5 6032

Ours (IOU≥ 50) 82.4 114.1 - -

1Note: Acc and Speed stand for the average accuracy and the speed performance, respectively.
2The speed performance was implemented on NVidia Jetson TX2.

(a) (b)

Fig. 6: The illustration of the successful and failed grasping cases on the rotation dataset (a) and the
unseen dataset in the real-world grasping experiments. The first row shows the template images with
their size. The second row and the third row show the examples of the detected objects and the gripper
states, respectively.

indicates that using the template-matching algo-
rithm (does not need the training process) to
estimate the location of targets and the Siamese
network for estimating the rotation angle, the
proposed model is capable of effective and effi-
cient performance on unseen targets. While Fig.
7 shows the details of the grasping performance
with the different aspect ratios of the template
images. The figure shows that the success rate of
the proposed model is affected by the high aspect
ratio objects. When the aspect ratio increased,
the success rate was reduced. Figure 8 shows
examples of success- and failure-grasps on the

mechanical-tool dataset. It shows that with high
aspect ratio objects, the template-matching pro-
cess obtained a low accuracy when detecting the
center of the target in failed-grasping cases with
high aspect ratio objects. As a result, the ori-
entation of the target was affected. Therefore, it
affects the grasping-performance accuracy of the
proposed algorithm.

5 Conclusion

This work has proposed a two-stage grasping
model for robot-arm grasping applications based

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 



Springer Nature 2021 LATEX template

Title 13

Table 3: The performance of the proposed model
on Mechanical-tool dataset

Methods Acc(%) Speed(ms)

Proposed model 81.0 667

Note: Acc stands for the average accuracy.

Fig. 7: The success rates of the grasping
performance were executed on the mechanical-
tool dataset with different aspect ratios of the
template-image size.

on a template-matching algorithm (stage 1) and
self-rotation learning (SRL) network (stage 2). In
the proposed model, the robustness of the posi-
tion estimation process is improved by detecting
and zeroing confused similarity scores in the like-
lihood similarity map using a spatial clustering
algorithm. The accuracy of the matching results
(i.e., the center coordinate of the target object
in the search image) is then further improved
through a refinement process based on an inspec-
tion of the intensity distribution of the likeli-
hood similarity scores. In the proposed grasping
model, the data required for the rotation estima-
tion training process is self-labeled by randomly
rotating the input image, and a Siamese network
estimates the rotation angle of the object. The
experimental results have shown that the pro-
posed LTM template-matching algorithm achieves
a higher AUC score than other deep feature-based
template-matching algorithms proposed in the lit-
erature. While the success rate of the proposed
grasping model in practical grasping trials is sig-
nificantly higher than that of other supervised

Fig. 8: The examples of the successful- and failed-
grasping cases on the mechanical-tool dataset.
The first row shows the template images with
their size. The second and third rows show the
successful- and failed-grasping images, respec-
tively.

grasping models. Moreover, based on LTM and
SRL, the proposed model is capable of effective
working on untrained objects. It is noted that
the proposed LTM algorithm is obtained at the
expense of a longer computation time due to the
need to detect and remove the confused scores and
perform the intensity-based refinement process.
Overall, however, the results indicate that the pro-
posed grasping model provides an accurate and
robust approach for dealing with real-world grasp-
ing tasks without the need for a time-consuming
manual annotation process.

Declarations

Funding. This study was supported in part by
the Ministry of Science and Technology (MOST)
of Taiwan, R.O.C., under Grant No. MOST 110-
2221-E-006-179 –. The additional support pro-
vided by Tongtai Machine & Tool Co., Ltd. (Tai-
wan) and Contrel Technology Co., Ltd. (Taiwan)
is also gratefully acknowledged.

Conflicts of interest. The authors declare no
competing interests.

Availability of data and material. Not appli-
cable

Code availability. Not applicable

Ethics approval. The authors state that the
present work is in compliance with the ethical
standards.

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 



Springer Nature 2021 LATEX template

Consent to participate. There is no consent
to participate needed in the present study.

Consent for publication. There is no consent
to publish needed in the present study.

Author contribution. All authors contributed
to the study conception and design. Material
preparation, data collection, analysis, and writing-
original draft preparation were performed by
Minh-Tri Le; supervision, project administra-
tion, writing-review and editing were performed
by Jenn-Jier James Lien. All authors read and
approved the final manuscript.

References

Annaby M, Fouda Y, Rushdi M (2019) Improved
normalized cross-correlation for defect detection
in printed-circuit boards. IEEE Transactions on
Semiconductor Manufacturing 32(2):199–211

Asif U, Tang J, Harrer S (2018) Graspnet: An
efficient convolutional neural network for real-
time grasp detection for low-powered devices.
In: IJCAI, pp 4875–4882

Chen F, Ye X, Yin S, et al (2019) Automated
vision positioning system for dicing semicon-
ductor chips using improved template matching
method. The International Journal of Advanced
Manufacturing Technology 100(9):2669–2678

Cheng J, Wu Y, AbdAlmageed W, et al
(2019) Qatm: Quality-aware template match-
ing for deep learning. In: Proceedings of the
IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp 11,553–11,562

Deng J, Dong W, Socher R, et al (2009) Imagenet:
A large-scale hierarchical image database. In:
2009 IEEE conference on computer vision and
pattern recognition, Ieee, pp 248–255

Ester M, Kriegel HP, Sander J, et al (1996) A
density-based algorithm for discovering clusters
in large spatial databases with noise. AAAI
Press, p 226–231

Feng Z, Xu C, Tao D (2019) Self-supervised rep-
resentation learning by rotation feature decou-
pling. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recog-
nition, pp 10,364–10,374

Gidaris S, Singh P, Komodakis N (2018)
Unsupervised representation learning by
predicting image rotations. arXiv preprint
arXiv:180307728

Jiang Y, Moseson S, Saxena A (2011) Effi-
cient grasping from rgbd images: Learning
using a new rectangle representation. In: 2011
IEEE International conference on robotics and
automation, IEEE, pp 3304–3311

Karaoguz H, Jensfelt P (2019) Object detec-
tion approach for robot grasp detection. In:
2019 International Conference on Robotics and
Automation (ICRA), IEEE, pp 4953–4959

Kat R, Jevnisek R, Avidan S (2018) Matching
pixels using co-occurrence statistics. In: Pro-
ceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp 1751–1759

Le MT, Lien JJJ (2021) Learning-based template
matching for robot arm grasping. In: 2021 IEEE
International Conference on Systems, Man, and
Cybernetics (SMC), IEEE, pp 1763–1768

Lenz I, Lee H, Saxena A (2015) Deep learning
for detecting robotic grasps. The International
Journal of Robotics Research 34(4-5):705–724

Levine S, Pastor P, Krizhevsky A, et al (2018)
Learning hand-eye coordination for robotic
grasping with deep learning and large-scale
data collection. The International Journal of
Robotics Research 37(4-5):421–436

Li CHG, Chang YM (2019) Automated visual
positioning and precision placement of a work-
piece using deep learning. The International
Journal of Advanced Manufacturing Technology
104(9):4527–4538

Li X, Hu X, Qi X, et al (2021) Rotation-oriented
collaborative self-supervised learning for reti-
nal disease diagnosis. IEEE Transactions on
Medical Imaging

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 



Springer Nature 2021 LATEX template

Title 15

LOEW DG (2004) Distinctive image features from
scale-invariant keypoints. International journal
of computer vision

Morrison D, Corke P, Leitner J (2020) Learning
robust, real-time, reactive robotic grasping. The
International journal of robotics research 39(2-
3):183–201

Oron S, Dekel T, Xue T, et al (2017) Best-
buddies similarity—robust template matching
using mutual nearest neighbors. IEEE transac-
tions on pattern analysis and machine intelli-
gence 40(8):1799–1813

Pinto L, Gupta A (2016) Supersizing self-
supervision: Learning to grasp from 50k tries
and 700 robot hours. In: 2016 IEEE interna-
tional conference on robotics and automation
(ICRA), IEEE, pp 3406–3413

Redmon J, Angelova A (2015) Real-time grasp
detection using convolutional neural networks.
In: 2015 IEEE International Conference on
Robotics and Automation (ICRA), IEEE, pp
1316–1322

Rublee E, Rabaud V, Konolige K, et al (2011)
Orb: An efficient alternative to sift or surf.
In: 2011 International conference on computer
vision, Ieee, pp 2564–2571

Sandler M, Howard A, Zhu M, et al (2018)
Mobilenetv2: Inverted residuals and linear bot-
tlenecks. In: Proceedings of the IEEE conference
on computer vision and pattern recognition, pp
4510–4520

Talmi I, Mechrez R, Zelnik-Manor L (2017) Tem-
plate matching with deformable diversity simi-
larity. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition,
pp 175–183

Tsai DM, Huang CK (2018) Defect detection in
electronic surfaces using template-based fourier
image reconstruction. IEEE Transactions on
Components, Packaging and Manufacturing
Technology 9(1):163–172

Wang W, Wang Q, Yamane S, et al (2018) Track-
ing using pattern matching of keyhole in visual

robotic plasma welding. The International Jour-
nal of Advanced Manufacturing Technology
98(5):2127–2136

Wang Z, Li Z, Wang B, et al (2016) Robot
grasp detection using multimodal deep convolu-
tional neural networks. Advances in Mechanical
Engineering 8(9):1687814016668,077

Wang Z, Xu Y, He Q, et al (2020) Grasp-
ing pose estimation for scara robot based on
deep learning of point cloud. The International
Journal of Advanced Manufacturing Technology
108(4):1217–1231

Wu Y, Lim J, Yang MH (2013) Online object
tracking: A benchmark. In: Proceedings of the
IEEE conference on computer vision and pat-
tern recognition, pp 2411–2418

Wu Z, Xiong Y, Yu SX, et al (2018) Unsu-
pervised feature learning via non-parametric
instance discrimination. In: Proceedings of the
IEEE conference on computer vision and pat-
tern recognition, pp 3733–3742

Zhao D, Sun F, Wang Z, et al (2021) A novel
accurate positioning method for object pose
estimation in robotic manipulation based on
vision and tactile sensors. The International
Journal of Advanced Manufacturing Technology
116(9):2999–3010

Zhong F, He S, Li B (2017) Blob analyzation-
based template matching algorithm for led
chip localization. The International Journal of
Advanced Manufacturing Technology 93(1):55–
63

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 



Supplementary Files

This is a list of supplementary �les associated with this preprint. Click to download.

00ImageWiseGrasping2400ORB.xlsx

00ImageWiseGrasping2400SIFT.xlsx

00ImageWiseGrasping2400SelfLearn.xlsx

CompareGraspingResultsonRotationData.xlsx

ImageWiseCornellObject.xlsx

ORBGraspingRotationDataset1Object.xlsx

ORBGraspingRotationDataset2Objects.xlsx

ORBGraspingRotationDataset3Objects.xlsx

ORBGraspingRotationDataset4Objects.xlsx

OTBDelta100IoUResults.xlsx

OTBDelta25IoUResults.xlsx

OTBDelta50IoUResults.xlsx

ObjectWiseCornellObjects.xlsx

ObjectWiseMechanicalToolObjects.xlsx

ProposedMethodPracticalGrasp1Object.xlsx

ProposedMethodPracticalGrasp2Objects.xlsx

ProposedMethodPracticalGrasp3Objects.xlsx

ProposedMethodPracticalGrasp4Object.xlsx

SIFTGraspingRotationDataset1Object.xlsx

SIFTGraspingRotationDataset2Objects.xlsx

SIFTGraspingRotationDataset3Objects.xlsx

SIFTGraspingRotationDataset4Objects.xlsx

SelfRotationLearningGraspingDemo.mp4

https://assets.researchsquare.com/files/rs-1402918/v1/b34000f41585081239cb24d1.xlsx
https://assets.researchsquare.com/files/rs-1402918/v1/f1ae9c2e624ae2c8c597fcd4.xlsx
https://assets.researchsquare.com/files/rs-1402918/v1/01c775ed8d0ab6b7352d7c51.xlsx
https://assets.researchsquare.com/files/rs-1402918/v1/fc965ab40e5f48b5e6f8cbc4.xlsx
https://assets.researchsquare.com/files/rs-1402918/v1/76a423369f1029dc59b18286.xlsx
https://assets.researchsquare.com/files/rs-1402918/v1/02c44fe0d7b7dbe61eded2dc.xlsx
https://assets.researchsquare.com/files/rs-1402918/v1/82b03951f6676c5c735c830a.xlsx
https://assets.researchsquare.com/files/rs-1402918/v1/4338a9e9db4aefe3fb1a8fc2.xlsx
https://assets.researchsquare.com/files/rs-1402918/v1/404de1959d362c427f27836d.xlsx
https://assets.researchsquare.com/files/rs-1402918/v1/686cae1fbe6b33a646e7a212.xlsx
https://assets.researchsquare.com/files/rs-1402918/v1/41e0a7fa502db61793ffb688.xlsx
https://assets.researchsquare.com/files/rs-1402918/v1/bf3ecd42d304a7ae1368369a.xlsx
https://assets.researchsquare.com/files/rs-1402918/v1/b633bcb8f17e6188139d3474.xlsx
https://assets.researchsquare.com/files/rs-1402918/v1/29e1c03b326f619fb862b61d.xlsx
https://assets.researchsquare.com/files/rs-1402918/v1/331a33f81f3764960c2f2028.xlsx
https://assets.researchsquare.com/files/rs-1402918/v1/880a3e22c7d34218bf169b27.xlsx
https://assets.researchsquare.com/files/rs-1402918/v1/eeb5d1f59542a8b378526f7e.xlsx
https://assets.researchsquare.com/files/rs-1402918/v1/bb2c7f844cf271c7fbcf9c8e.xlsx
https://assets.researchsquare.com/files/rs-1402918/v1/68690fe7acb4598a125c4f7f.xlsx
https://assets.researchsquare.com/files/rs-1402918/v1/aa40c0e14faf8038609ce3fe.xlsx
https://assets.researchsquare.com/files/rs-1402918/v1/268dbe4fb58ce82a854ec929.xlsx
https://assets.researchsquare.com/files/rs-1402918/v1/fcb22cefb2e3209fa39c8843.xlsx
https://assets.researchsquare.com/files/rs-1402918/v1/10bc500dc6b700919af01711.mp4

