[1] N Hellen, C Pinto Ricardo, K Vauchez, G Whiting, J Wheeler, S E Harding, Proteomic analysis reveals temporal changes in protein expression in human induced pluripotent stem cell-derived cardiomyocytes in vitro, Stem Cells Dev, (2019).
[2] K Breckwoldt, D Letuffe-Breniere, I Mannhardt, T Schulze, B Ulmer, T Werner, A Benzin, B Klampe, M C Reinsch, S Laufer, A Shibamiya, M Prondzynski, G Mearini, D Schade, S Fuchs, C Neuber, E Kramer, U Saleem, M L Schulze, M L Rodriguez, T Eschenhagen, A Hansen, Differentiation of cardiomyocytes and generation of human engineered heart tissue, Nat Protoc, 12 (2017) 1177-1197.
[3] Y Zhou, L Wang, Z Liu, S Alimohamadi, C Yin, J Liu, L Qian, Comparative Gene Expression Analyses Reveal Distinct Molecular Signatures between Differentially Reprogrammed Cardiomyocytes, Cell Reports, 20 (2017) 3014-3024.
[4] I Karakikes, M Ameen, V Termglinchan, J C Wu, Human induced pluripotent stem cell-derived cardiomyocytes: insights into molecular, cellular, and functional phenotypes, Circ Res, 117 (2015) 80-88.
[5] C Denning, V Borgdorff, J Crutchley, K S Firth, V George, S Kalra, A Kondrashov, M D Hoang, D Mosqueira, A Patel, L Prodanov, D Rajamohan, W C Skarnes, J G Smith, L E Young, Cardiomyocytes from human pluripotent stem cells: From laboratory curiosity to industrial biomedical platform, Biochim Biophys Acta, 1863 (2016) 1728-1748.
[6] N Nose, R A Werner, Y Ueda, K Gunther, C Lapa, M S Javadi, K Fukushima, F Edenhofer, T Higuchi, Metabolic substrate shift in human induced pluripotent stem cells during cardiac differentiation: Functional assessment using in vitro radionuclide uptake assay, Int J Cardiol, 269 (2018) 229-234.
[7] S Yoshida, S Tsutsumi, G Muhlebach, C Sourbier, M J Lee, S Lee, E Vartholomaiou, M Tatokoro, K Beebe, N Miyajima, R P Mohney, Y Chen, H Hasumi, W Xu, H Fukushima, K Nakamura, F Koga, K Kihara, J Trepel, D Picard, L Neckers, Molecular chaperone TRAP1 regulates a metabolic switch between mitochondrial respiration and aerobic glycolysis, Proc Natl Acad Sci U S A, 110 (2013) E1604-1612.
[8] D Hu, A Linders, A Yamak, C Correia, J D Kijlstra, A Garakani, L Xiao, D J Milan, P van der Meer, M Serra, P M Alves, I J Domian, Metabolic Maturation of Human Pluripotent Stem Cell-Derived Cardiomyocytes by Inhibition of HIF1alpha and LDHA, Cellular Biology, 123 (2018) 1066-1079.
[9] K M Holmström, R V Kostov, A T Dinkova-Kostova, The multifaceted role of Nrf2 in mitochondrial function, Current Opinion in Toxicology, 1 (2016) 80-91.
[10] K E Hawkins, S Joy, J M Delhove, V N Kotiadis, E Fernandez, L M Fitzpatrick, J R Whiteford, P J King, J P Bolanos, M R Duchen, S N Waddington, T R McKay, NRF2 Orchestrates the Metabolic Shift during Induced Pluripotent Stem Cell Reprogramming, Cell Rep, 14 (2016) 1883-1891.
[11] K M Holmstrom, L Baird, Y Zhang, I Hargreaves, A Chalasani, J M Land, L Stanyer, M Yamamoto, A T Dinkova-Kostova, A Y Abramov, Nrf2 impacts cellular bioenergetics by controlling substrate availability for mitochondrial respiration, Biology Open, 2 (2013) 761-770.
[12] A Abdullah, N R Kitteringham, R E Jenkins, C Goldring, L Higgins, M Yamamoto, J Hayes, B K Park, Analysis of the role of Nrf2 in the expression of liver proteins in mice using two-dimensional gel-based proteomics, Pharmacological Reports, 64 (2012).
[13] A S Agyeman, R Chaerkady, P G Shaw, N E Davidson, K Visvanathan, A Pandey, T W Kensler, Transcriptomic and proteomic profiling of KEAP1 disrupted and sulforaphane-treated human breast epithelial cells reveals common expression profiles, Breast Cancer Res Treat 132 (2012).
[14] M H Ludtmann, P R Angelova, Y Zhang, A Y Abramov, A T Dinkova-Kostova, Nrf2 affects the efficiency of mitochondrial fatty acid oxidation, Biochem J, 457 (2014) 415-424.
[15] Q M Chen, A J Maltagliati, Nrf2 at the heart of oxidative stress and cardiac protection, Physiol Genomics, 50 (2018) 77-97.
[16] S Tohyama, F Hattori, M Sano, T Hishiki, Y Nagahata, T Matsuura, H Hashimoto, T Suzuki, H Yamashita, Y Satoh, T Egashira, T Seki, N Muraoka, H Yamakawa, Y Ohgino, T Tanaka, M Yoichi, S Yuasa, M Murata, M Suematsu, K Fukuda, Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes, Cell Stem Cell, 12 (2013) 127-137.
[17] P Ahuja, P Sdek, W R MacLellan, Cardiac myocyte cell cycle control in development, disease, and regeneration, Physiol Rev, 87 (2007) 521-544.
[18] G Olivetti1, E Cigola, R Maestri, D Corradi, C Lagrasta, S R Gambert, P Anversa, Aging, Cardiac Hypertrophy and Ischemic Cardiomyopathy Do Not Affect the Proportion of Mononucleated and Multinucleated Myocytes in the Human Heart, J Mol Cell Cardiol 28 (1996).
[19] B M Ulmer, T Eschenhagen, Human pluripotent stem cell-derived cardiomyocytes for studying energy metabolism, Biochim Biophys Acta Mol Cell Res, (2019).
[20] D R Green, G Kroemer, Mitochondrial Fusion Directs Cardiomyocyte Differentiation via Calcineurin and Notch Signaling, Science, 305 (2004) 626-629.
[21] T W Kensler, N Wakabayashi, S Biswal, Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway, Annu Rev Pharmacol Toxicol, 47 (2007) 89-116.
[22] D D Zhang, S C Lo, J V Cross, D J Templeton, M Hannink, Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex, Mol Cell Biol, 24 (2004) 10941-10953.
[23] K Itoh, N Wakabayashi, Y Katoh, T Ishii, K Igarashi, J D Engel, M Yamamoto, Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain, Genes Dev, 13 (1999) 76-86.
[24] X Q Xu, S Y Soo, W Sun, R Zweigerdt, Global expression profile of highly enriched cardiomyocytes derived from human embryonic stem cells, Stem Cells, 27 (2009) 2163-2174.
[25] V MAHDAVI, A M LOMPRE, A P CHAMBERS, B NADAL-GINARD, Cardiac myosin heavy chain isozymic transitions during development and under pathological conditions are regulated at the level of mRNA availability, European Heart Journal, (1984).
[26] X Yang, L Pabon, C E Murry, Engineering adolescence: maturation of human pluripotent stem cell-derived cardiomyocytes, Circ Res, 114 (2014) 511-523.
[27] K Ronaldson-Bouchard, S P Ma, K Yeager, T Chen, L Song, D Sirabella, K Morikawa, D Teles, M Yazawa, G Vunjak-Novakovic, Advanced maturation of human cardiac tissue grown from pluripotent stem cells, Nature, 556 (2018) 239-243.
[28] C Correia, A Koshkin, P Duarte, D Hu, M Carido, M J Sebastiao, P Gomes-Alves, D A Elliott, I J Domian, A P Teixeira, P M Alves, M Serra, 3D aggregate culture improves metabolic maturation of human pluripotent stem cell derived cardiomyocytes, Biotechnol Bioeng, 115 (2018) 630-644.
[29] J A Gaspar, M X Doss, J G Hengstler, C Cadenas, J Hescheler, A Sachinidis, Unique metabolic features of stem cells, cardiomyocytes, and their progenitors, Circ Res, 114 (2014) 1346-1360.
[30] R J Mills, D M Titmarsh, X Koenig, B L Parker, J G Ryall, G A Quaife-Ryan, H K Voges, M P Hodson, C Ferguson, L Drowley, A T Plowright, E J Needham, Q D Wang, P Gregorevic, M Xin, W G Thomas, R G Parton, L K Nielsen, B S Launikonis, D E James, D A Elliott, E R Porrello, J E Hudson, Functional screening in human cardiac organoids reveals a metabolic mechanism for cardiomyocyte cell cycle arrest, Proc Natl Acad Sci U S A, 114 (2017) E8372-E8381.
[31] X Yang, M L Rodriguez, A Leonard, L Sun, K A Fischer, Y Wang, J Ritterhoff, L Zhao, S C Kolwicz, Jr., L Pabon, H Reinecke, N J Sniadecki, R Tian, H Ruohola-Baker, H Xu, C E Murry, Fatty Acids Enhance the Maturation of Cardiomyocytes Derived from Human Pluripotent Stem Cells, Stem Cell Reports, 13 (2019) 657-668.
[32] C J A Ramachandra, A Mehta, P Wong, K Ja, R Fritsche-Danielson, R V Bhat, D J Hausenloy, J P Kovalik, W Shim, Fatty acid metabolism driven mitochondrial bioenergetics promotes advanced developmental phenotypes in human induced pluripotent stem cell derived cardiomyocytes, Int J Cardiol, 272 (2018) 288-297.
[33] Y Mitsuishi, K Taguchi, Y Kawatani, T Shibata, T Nukiwa, H Aburatani, M Yamamoto, H Motohashi, Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming, Cancer cell, 22 (2012) 66-79.
[34] A T Dinkova-Kostova, A Y Abramov, The emerging role of Nrf2 in mitochondrial function, Free Radic Biol Med, 88 (2015) 179-188.
[35] D Malhotra, E Portales-Casamar, A Singh, S Srivastava, D Arenillas, C Happel, C Shyr, N Wakabayashi, T W Kensler, W W Wasserman, S Biswal, Global mapping of binding sites for Nrf2 identifies novel targets in cell survival response through ChIP-Seq profiling and network analysis, Nucleic Acids Res, 38 (2010) 5718-5734.
[36] I-g Ryoo, M-K Kwak, Regulatory crosstalk between the oxidative stress-related transcription factor Nfe2l2/Nrf2 and mitochondria, Toxicology and Applied Pharmacology, 359 (2018) 24-33.
[37] A P Gureev, E A Shaforostova, V N Popov, Regulation of Mitochondrial Biogenesis as a Way for Active Longevity: Interaction Between the Nrf2 and PGC-1alpha Signaling Pathways, Front Genet, 10 (2019) 435.
[38] Y Mitsuishi, H Motohashi, M Yamamoto, The Keap1-Nrf2 system in cancers: stress response and anabolic metabolism, Front Oncol, 2 (2012) 200.
[39] L Cheng, Z Jin, R Zhao, K Ren, C Deng, S Yu, Resveratrol attenuates inflammation and oxidative stress induced by myocardial ischemia-reperfusion injury: role of Nrf2/ARE pathway, Int J Clin Exp Med 8(2015).