1 Zhao, P. et al. High-Performance Relaxor Ferroelectric Materials for Energy Storage Applications. Adv. Energy. Mater. 9, 1803048, (2019).
2 Kim, J. et al. Ultrahigh capacitive energy density in ion-bombarded relaxor ferroelectric films. Science 369, 81-84, (2020).
3 Palneedi, H., Peddigari, M., Hwang, G.-T., Jeong, D.-Y. & Ryu, J. High-Performance Dielectric Ceramic Films for Energy Storage Capacitors: Progress and Outlook. Adv. Func. Mater. 28, 1803665, (2018).
4 Lv, X., Zhang, X.-x. & Wu, J. Nano-domains in lead-free piezoceramics: a review. J. Mater. Chem. A 8, 10026-10073, (2020).
5 Li, F. et al. The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals. Nat. Comm. 7, 13807, (2016).
6 Li, F., Zhang, S., Damjanovic, D., Chen, L.-Q. & Shrout, T. R. Local Structural Heterogeneity and Electromechanical Responses of Ferroelectrics: Learning from Relaxor Ferroelectrics. Adv. Func. Mater. 28, 1801504, (2018).
7 Pan, H. et al. Ultrahigh–energy density lead-free dielectric films via polymorphic nanodomain design. Science 365, 578-582, (2019).
8 Hilczer, B. Effect of neutron irradiation on the ferroelectric properties of barium titanate ceramics. physica status solidi (b) 2, 447-455, (1962).
9 Kobayashi, S. Effect of neutron irradiation on dielectric properties of barium titanate ceramics. Electr. Eng. Jpn. 94, 15-20, (1974).
10 Medhi, N. & Nath, A. K. Gamma Ray Irradiation Effects on the Ferroelectric and Piezoelectric Properties of Barium Titanate Ceramics. J. Mater. Eng. Perform. 22, 2716-2722, (2013).
11 Zhang, Q. M., Bharti, V. & Zhao, X. Giant Electrostriction and Relaxor Ferroelectric Behavior in Electron-Irradiated Poly(vinylidene fluoride-trifluoroethylene) Copolymer. Science 280, 2101-2104, (1998).
12 Cai, Z. et al. Grain-size–dependent dielectric properties in nanograin ferroelectrics. J. Am. Ceram. Soc. 101, 5487-5496, (2018).
13 Exner, J., Nazarenus, T., Hanft, D., Kita, J. & Moos, R. What Happens during Thermal Post-Treatment of Powder Aerosol Deposited Functional Ceramic Films? Explanations Based on an Experiment-Enhanced Literature Survey. Adv. Mater 32, 1908104, (2020).
14 Liu, N., Su, Y. & Weng, G. J. A phase-field study on the hysteresis behaviors and domain patterns of nanocrystalline ferroelectric polycrystals. J. Appl. Phys. 113, 204106, (2013).
15 Xie, J. et al. Achieving ultrahigh energy storage performance in bismuth magnesium titanate film capacitors via amorphous-structure engineering. J. Mater. Chem. C 7, 13632-13639, (2019).
16 Grabowski, C. A. et al. Dielectric Breakdown in Silica–Amorphous Polymer Nanocomposite Films: The Role of the Polymer Matrix. ACS Appl. Mater. Interfaces 5, 5486-5492, (2013).
17 Akedo, J., Park, J.-H. & Kawakami, Y. Piezoelectric thick film fabricated with aerosol deposition and its application to piezoelectric devices. Jpn. J. Appl. Phys. 57, 07LA02, (2018).
18 Ryu, J. et al. Fabrication and ferroelectric properties of highly dense lead-free piezoelectric (K0.5Na0.5)NbO3 thick films by aerosol deposition. Appl. Phys. Lett. 90, 152901, (2007).
19 Hwang, G.-T. et al. Self-Powered Wireless Sensor Node Enabled by an Aerosol-Deposited PZT Flexible Energy Harvester. Adv. Energy. Mater. 6, 1600237, (2016).
20 Palneedi, H. et al. Unleashing the Full Potential of Magnetoelectric Coupling in Film Heterostructures. Adv. Mater 29, 1605688, (2017).
21 Chu, B. et al. A Dielectric Polymer with High Electric Energy Density and Fast Discharge Speed. Science 313, 334-336, (2006).
22 Pan, H. et al. Giant energy density and high efficiency achieved in bismuth ferrite-based film capacitors via domain engineering. Nat. Comm. 9, 1813, (2018).
23 Pan, H. et al. Ultrahigh energy storage in superparaelectric relaxor ferroelectrics. Science 374, 100-104, (2021).
24 Cheng, H. et al. Demonstration of ultra-high recyclable energy densities in domain-engineered ferroelectric films. Nat. Comm. 8, 1999, (2017).
25 Sun, N., Li, Y., Zhang, Q. & Hao, X. Giant energy-storage density and high efficiency achieved in (Bi0.5Na0.5)TiO3–Bi(Ni0.5Zr0.5)O3 thick films with polar nanoregions. J. Mater. Chem. C 6, 10693-10703, (2018).
26 Wang, J. et al. Effects of Fe3+ doping on electrical properties and energy-storage performances of the (Na0.85K0.15)0.5Bi0.5TiO3 thick films prepared by sol-gel method. J. Alloy. Compd 727, 596-602, (2017).
27 Wang, J. et al. Effects of Mn doping on dielectric properties and energy-storage performance of Na0.5Bi0.5TiO3 thick films. Ceram. Int. 43, 7804-7809, (2017).
28 Liu, Y., Hao, X. & An, S. Significant enhancement of energy-storage performance of (Pb0.91La0.09)(Zr0.65Ti0.35)O3 relaxor ferroelectric thin films by Mn doping. J. Appl. Phys. 114, 174102, (2013).
29 Gao, H., Hao, X., Zhang, Q., An, S. & Kong, L. B. Electrocaloric effect and energy-storage performance in grain-size-engineered PBLZT antiferroelectric thick films. J. Mater. Sci. Mater. Electron. 27, 10309-10319, (2016).
30 Gao, H. et al. Enhanced electrocaloric effect and energy-storage performance in PBLZT films with various Ba2+ content. Ceram. Int. 42, 16439-16447, (2016).
31 Hao, X., Wang, Y., Zhang, L., Zhang, L. & An, S. Composition-dependent dielectric and energy-storage properties of (Pb,La)(Zr,Sn,Ti)O3 antiferroelectric thick films. Appl. Phys. Lett. 102, 163903, (2013).
32 Ma, B. et al. PLZT film capacitors for power electronics and energy storage applications. J. Mater. Sci. Mater. Electron. 26, 9279-9287, (2015).
33 Wang, Y., Hao, X., Yang, J., Xu, J. & Zhao, D. Fabrication and energy-storage performance of (Pb,La)(Zr,Ti)O3 antiferroelectric thick films derived from polyvinylpyrrolidone-modified chemical solution. J. Appl. Phys. 112, 034105, (2012).
34 Peddigari, M. et al. Boosting the Recoverable Energy Density of Lead-Free Ferroelectric Ceramic Thick Films through Artificially Induced Quasi-Relaxor Behavior. ACS Appl. Mater. Interfaces 10, 20720-20727, (2018).
35 Fan, D. & Chen, L. Q. Computer simulation of grain growth using a continuum field model. Acta Mater. 45, 611-622, (1997).
36 Wang, J. J., Ma, X. Q., Li, Q., Britson, J. & Chen, L.-Q. Phase transitions and domain structures of ferroelectric nanoparticles: Phase field model incorporating strong elastic and dielectric inhomogeneity. Acta Mater. 61, 7591-7603, (2013).
37 Hu, H.-L. & Chen, L.-Q. Three-Dimensional Computer Simulation of Ferroelectric Domain Formation. J. Am. Ceram. Soc. 81, 492-500, (1998).
38 Haun, M. J., Zhuang, Z. Q., Furman, E., Jang, S. J. & Cross, L. E. Thermodynamic theory of the lead zirconate-titanate solid solution system, part III: Curie constant and sixth-order polarization interaction dielectric stiffness coefficients. Ferroelectr. 99, 45-54, (1989).