1 - de Bruin, E.D., Frey-Rindova, P., Herzog, R.E., Dietz, V., Dambacher, M.A. and Stüssi, E.. Changes of tibia bone properties after spinal cord injury: effects of early intervention. Archives of physical medicine and rehabilitation, 80(2), pp.214-220 (1999).
2 - Ahuja, C.S., Wilson, J.R., Nori, S., Kotter, M.R., Druschel, C., Curt, A. and Fehlings, M.G. Traumatic spinal cord injury. Nature reviews Disease primers, 3(1), pp.1-21 (2017).
3 - Alizadeh, A., Dyck, S.M. and Karimi-Abdolrezaee, S. Traumatic spinal cord injury: an overview of pathophysiology, models and acute injury mechanisms. Frontiers in neurology, 10, p.282 (2019).
4 - Dijkers, M. Quality of life after spinal cord injury: a meta analysis of the effects of disablement components. Spinal cord, 35(12), pp.829-840 (1997).
5 - Donati, A.R., Shokur, S., Morya, E., Campos, D.S., Moioli, R.C., Gitti, C.M., Augusto, P.B., Tripodi, S., Pires, C.G., Pereira, G.A., Brasil, F.L. et al.,. Long-term training with a brain-machine interface-based gait protocol induces partial neurological recovery in paraplegic patients. Scientific reports, 6(1), pp.1-16 (2016).
6 – Shokur, S., Gallo, S., Moioli, R.C., Donati, A.R.C., Morya, E., Bleuler, H. and Nicolelis, M.A.. Assimilation of virtual legs and perception of floor texture by complete paraplegic patients receiving artificial tactile feedback. Scientific reports, 6(1), pp.1-14 (2016).
7 - Shokur, S., Donati, A.R., Campos, D.S., Gitti, C., Bao, G., Fischer, D., Almeida, S., Braga, V.A., Augusto, P., Petty, C. and Alho, E.J.. Training with brain-machine interfaces, visuo-tactile feedback and assisted locomotion improves sensorimotor, visceral, and psychological signs in chronic paraplegic patients. PloS one, 13(11), p.e0206464 (2018).
8 - Selfslagh, A., Shokur, S., Campos, D.S., Donati, A.R., Almeida, S., Yamauti, S.Y., Coelho, D.B., Bouri, M. and Nicolelis, M.A. Non-invasive, brain-controlled functional electrical stimulation for locomotion rehabilitation in individuals with paraplegia. Scientific reports, 9(1), pp.1-17 (2019).
9 - Benabid, A.L., Costecalde, T., Eliseyev, A., Charvet, G., Verney, A., Karakas, S., Foerster, M., Lambert, A., Morinière, B., Abroug, N. and Schaeffer, M.C.. An exoskeleton controlled by an epidural wireless brain–machine interface in a tetraplegic patient: a proof-of-concept demonstration. The Lancet Neurology, 18(12), pp.1112-1122 (2019).
10 - He, Y., Eguren, D., Azorín, J.M., Grossman, R.G., Luu, T.P. and Contreras-Vidal, J.L. Brain–machine interfaces for controlling lower-limb powered robotic systems. Journal of neural engineering, 15(2), p.021004 (2018).
11 - Lenggenhager, B., Scivoletto, G., Molinari, M. and Pazzaglia, M. Restoring tactile awareness through the rubber hand illusion in cervical spinal cord injury. Neurorehabilitation and Neural Repair, 27(8), pp.704-708 (2013).
12 - Pozeg, P., Palluel, E., Ronchi, R., Solcà, M., Al-Khodairy, A.W., Jordan, X., Kassouha, A. and Blanke, O. Virtual reality improves embodiment and neuropathic pain caused by spinal cord injury. Neurology, 89(18), pp.1894-1903 (2017).
13 - Kilteni, K., Groten, R. and Slater, M. The sense of embodiment in virtual reality. Presence: Teleoperators and Virtual Environments, 21(4), pp.373-387 (2012).
14 - Pazzaglia, M., Galli, G., Lewis, J.W., Scivoletto, G., Giannini, A.M. and Molinari, M., Embodying functionally relevant action sounds in patients with spinal cord injury. Scientific reports, 8(1), pp.1-11 (2018).
15 - Kilteni, K. and Ehrsson, H.H.. Body ownership determines the attenuation of self-generated tactile sensations. Proceedings of the National Academy of Sciences, 114(31), pp.8426-8431 (2017).
16 - Arzy, S., Thut, G., Mohr, C., Michel, C.M. and Blanke, O. Neural basis of embodiment: distinct contributions of temporoparietal junction and extrastriate body area. Journal of Neuroscience, 26(31), pp.8074-8081 (2006).
17 - Bekrater-Bodmann, R., Foell, J., Diers, M., Kamping, S., Rance, M., Kirsch, P., Trojan, J., Fuchs, X., Bach, F., Çakmak, H.K. and Maaß, H. The importance of synchrony and temporal order of visual and tactile input for illusory limb ownership experiences–an fMRI study applying virtual reality. PloS one, 9(1), p.e87013 (2014).
18 - Braun, N., Debener, S., Spychala, N., Bongartz, E., Sörös, P., Müller, H.H. and Philipsen, A. The senses of agency and ownership: a review. Frontiers in psychology, 9, p.535 (2018).
19 - Schettler, A., Raja, V. and Anderson, M.L. The embodiment of objects: Review, analysis, and future directions. Frontiers in neuroscience, 13, p.1332 (2019).
20 - Juliano, J.M., Spicer, R.P., Vourvopoulos, A., Lefebvre, S., Jann, K., Ard, T., Santarnecchi, E., Krum, D.M. and Liew, S.L.. Embodiment is related to better performance on a brain–computer interface in immersive virtual reality: A pilot study. Sensors, 20(4), p.1204 (2020).
21 - Vourvopoulos, A., Jorge, C., Abreu, R., Figueiredo, P., Fernandes, J.C. and Bermudez i Badia, S. Efficacy and brain imaging correlates of an immersive motor imagery BCI-driven VR system for upper limb motor rehabilitation: A clinical case report. Frontiers in human neuroscience, 13, p.244 (2019).
22 - Eng, C.M., Calkosz, D.M., Yang, S.Y., Williams, N.C., Thiessen, E.D. and Fisher, A.V. June. Doctoral colloquium—enhancing brain plasticity and cognition utilizing immersive technology and virtual reality contexts for gameplay. In 2020 6th International Conference of the Immersive Learning Research Network (iLRN) (pp. 395-398). IEEE (2020).
23 - Ma, S., Varley, M., Shark, L.K. and Richards, J. Overcoming the information overload problem in a multiform feedback-based virtual reality system for hand motion rehabilitation: healthy subject case study. Virtual Reality, 16(4), pp.325-334 (2012).
24 - Talukdar, U., Hazarika, S.M. and Gan, J.Q. Motor imagery and mental fatigue: inter-relationship and EEG based estimation. Journal of computational neuroscience, 46(1), pp.55-76 (2019).
25 - Brandl, S. and Blankertz, B. Motor Imagery Under Distraction—An Open Access BCI Dataset. Frontiers in Neuroscience, 14 (2020).
26 - Mori, M., MacDorman, K.F. and Kageki, N. The uncanny valley [from the field]. IEEE Robotics & Automation Magazine, 19(2), pp.98-100 (2012).
27 - Konstantatos, A.H., Angliss, M., Costello, V., Cleland, H. and Stafrace, S. Predicting the effectiveness of virtual reality relaxation on pain and anxiety when added to PCA morphine in patients having burns dressings changes. Burns, 35(4), pp.491-499 (2009).
28 - Roberts, T.T., Leonard, G.R. and Cepela, D.J. Classifications in brief: American spinal injury association (ASIA) impairment scale (2017).
29 - Peck, T.C. and Gonzalez-Franco, M. Avatar embodiment. a standardized questionnaire. Frontiers in Virtual Reality, 1, p.44 (2021).
30 - Kennedy, R.S., Lane, N.E., Berbaum, K.S. and Lilienthal, M.G. Simulator sickness questionnaire: An enhanced method for quantifying simulator sickness. The international journal of aviation psychology, 3(3), pp.203-220 (1993).
31- Li, A., Montaño, Z., Chen, V.J. and Gold, J.I. Virtual reality and pain management: current trends and future directions. Pain management, 1(2), pp.147-157 (2011).
32 - Martini, M., Pérez Marcos, D. and Sanchez-Vives, M.V. What color is my arm? Changes in skin color of an embodied virtual arm modulates pain threshold. Frontiers in human neuroscience, 7, p.438 (2013).
33 - Matamala-Gomez, M., Donegan, T., Bottiroli, S., Sandrini, G., Sanchez-Vives, M.V. and Tassorelli, C. Immersive virtual reality and virtual embodiment for pain relief. Frontiers in human neuroscience, 13, p.279 (2019).
34 - D’Alonzo, M., Mioli, A., Formica, D., Vollero, L. and Di Pino, G. Different level of virtualization of sight and touch produces the uncanny valley of avatar’s hand embodiment. Scientific reports, 9(1), pp.1-11 (2019).
35 - Jeunet, C., Vi, C., Spelmezan, D., N’Kaoua, B., Lotte, F. and Subramanian, S., September. Continuous tactile feedback for motor-imagery based brain-computer interaction in a multitasking context. In IFIP Conference on Human-Computer Interaction (pp. 488-505). Springer, Cham (2015b).
36 – Grangeon, M., Revol, P., Guillot, A., Rode, G. and Collet, C. Could motor imagery be effective in upper limb rehabilitation of individuals with spinal cord injury? A case study. Spinal cord, 50(10), pp.766-771 (2012).
37 - Regan, E.C. and Price, K.R. The frequency of occurrence and severity of side-effects of immersion virtual reality. Aviation, space, and environmental medicine (1994).
38 - Thomschewski, A., Ströhlein, A., Langthaler, P.B., Schmid, E., Potthoff, J., Höller, P., Leis, S., Trinka, E. and Höller, Y. Imagine there is no plegia. mental motor imagery difficulties in patients with traumatic spinal cord injury. Frontiers in neuroscience, 11, p.689 (2017).
39- Jeunet, C., N’Kaoua, B., Subramanian, S., Hachet, M. and Lotte, F.,. Predicting mental imagery-based BCI performance from personality, cognitive profile and neurophysiological patterns. PloS one, 10(12), p.e0143962 (2015a).
40 - Li, J., Jin, Y., Lu, S., Wu, W. and Wang, P. Building environment information and human perceptual feedback collected through a combined virtual reality (VR) and electroencephalogram (EEG) method. Energy and Buildings, 224, p.110259 (2020).
41 - Vieira, C., da Silva Pais-Vieira, C.F., Novais, J. and Perrotta, A. Serious game design and clinical improvement in physical rehabilitation: systematic review. JMIR Serious Games, 9(3), p.e20066 (2021).
42 - Kerous, B., Škola, F. and Liarokapis, F. EEG-based BCI and video games: a progress report. Virtual Reality, 22(2), pp.119-135 (2018).
43 - Lotte, F. and Jeunet, C. Defining and quantifying users’ mental imagery-based BCI skills: a first step. Journal of neural engineering, 15(4), p.046030 (2018).
44 - Škola, F. and Liarokapis, F. Embodied VR environment facilitates motor imagery brain–computer interface training. Computers & Graphics, 75, pp.59-71 (2018).
45 - Škola, F., Tinková, S. and Liarokapis, F. Progressive training for motor imagery brain-computer interfaces using gamification and virtual reality embodiment. Frontiers in human neuroscience, 13, p.329 (2019).
46 - Huang, W., Roscoe, R.D., Johnson‐Glenberg, M.C. and Craig, S.D. Motivation, engagement, and performance across multiple virtual reality sessions and levels of immersion. Journal of Computer Assisted Learning, 37(3), pp.745-758 (2021).
47 - Leeuwis, N., Paas, A. and Alimardani, M. Vividness of Visual Imagery and Personality Impact Motor-Imagery Brain Computer Interfaces. Frontiers in Human Neuroscience, 15 (2021).
48 - Villiger, M., Bohli, D., Kiper, D., Pyk, P., Spillmann, J., Meilick, B., Curt, A., Hepp-Reymond, M.C., Hotz-Boendermaker, S. and Eng, K. Virtual reality–augmented neurorehabilitation improves motor function and reduces neuropathic pain in patients with incomplete spinal cord injury. Neurorehabilitation and neural repair, 27(8), pp.675-683 (2013).
49 - Chi, B., Chau, B., Yeo, E. and Ta, P. Virtual reality for spinal cord injury-associated neuropathic pain: systematic review. Annals of physical and rehabilitation medicine, 62(1), pp.49-57 (2019).
50 - Austin, P.D. and Siddall, P.J. Virtual reality for the treatment of neuropathic pain in people with spinal cord injuries: A scoping review. The journal of spinal cord medicine, 44(1), pp.8-18 (2021).
51 - Pourmand, A., Davis, S., Marchak, A., Whiteside, T. and Sikka, N. Virtual reality as a clinical tool for pain management. Current pain and headache reports, 22(8), pp.1-6 (2018).
52 - Priebe, M.M., Sherwood, A.M., Thornby, J.I., Kharas, N.F. and Markowski, J. Clinical assessment of spasticity in spinal cord injury: a multidimensional problem. Archives of physical medicine and rehabilitation, 77(7), pp.713-716 (1996).
53 - Roosink, M., Robitaille, N., Jackson, P.L., Bouyer, L.J. and Mercier, C. Interactive virtual feedback improves gait motor imagery after spinal cord injury: an exploratory study. Restorative neurology and neuroscience, 34(2), pp.227-235 (2016).
54 - Gallagher, E.J., Liebman, M. and Bijur, P.E. Prospective validation of clinically important changes in pain severity measured on a visual analog scale. Annals of emergency medicine, 38(6), pp.633-638 (2001).
55 - Collins, S.L., Moore, R.A. and McQuay, H.J. The visual analogue pain intensity scale: what is moderate pain in millimetres? Pain, 72(1-2), pp.95-97 (1997).
56 - Bijur, P.E., Latimer, C.T. and Gallagher, E.J. Validation of a verbally administered numerical rating scale of acute pain for use in the emergency department. Academic emergency medicine, 10(4), pp.390-392 (2003).
57 - Buss, S. R. Introduction to inverse kinematics with jacobian transpose, pseudoinverse and damped least squares methods. IEEE Journal of Robotics and Automation, 17(1-19), 16 (2004).
58 - Pais-Vieira, C., Allahdad, M., Neves-Amado, J., Perrotta, A., Morya, E., Moioli, R., Shapkova, E. and Pais-Vieira, M. Method for positioning and rehabilitation training with the ExoAtlet® powered exoskeleton. MethodsX, 7, p.100849 (2020).
59 - Renard, Y., Lotte, F., Gibert, G., Congedo, M., Maby, E., Delannoy, V., Bertrand, O. and Lécuyer, A.. Openvibe: An open-source software platform to design, test, and use brain–computer interfaces in real and virtual environments. Presence, 19(1), pp.35-53 (2010).
60 - Myles, P.S., Troedel, S., Boquest, M. and Reeves, M. The pain visual analog scale: is it linear or nonlinear?. Anesthesia & Analgesia, 87(6), p.1517 (1999).