1. Agut B, Gamir J, Jaques JA, Flors V. Systemic resistance to Tetranychus urticae induced by conspecifics is transmitted by grafting and mediated by mobile amino acids. J. Exp. Bot. 2016; 67:5711–5723.
2. Fragoso V, Rothe E, Baldwin IT, Kim S. Root jasmonic acid synthesis and perception regulate folivore‐induced shoot metabolites and increase Nicotiana attenuata resistance. New Phytol. 2014; 202:1335-45.
3. Nalam VJ, Keeretaweep J, Sarowar S, Shah J. Root-derived oxylipins promote green peach aphid performance on Arabidopsis foliage. Plant Cell. 2012; 24:1643–1653.
4. Erb M, Lenk C, Degenhardt J, Turlings TCJ. The underestimated role of roots in defense against leaf attackers. Trends Plant Sci. 2009; 14:653-9.
5. Pieterse CMJ, Zamioudis C, Berendsen RL, Weller DM, Van Wees SCM, Bakker PAHM. Induced systemic resistance by beneficial microbes. Ann. Rev. Phytopathol. 2014; 52:347–375.
6. Bani M, Perez-De-Luque A, Rubiales D, Rispail N. Physical and Chemical Barriers in Root Tissues Contribute to Quantitative Resistance to Fusarium oxysporum f. sp. pisi in Pea. Front. Plant Sci. 2018; 9: 199.
7. Moura JC, Bonine CA, de Oliveira FVJ, Dornelas MC, Mazzafera P. Abiotic and biotic stresses and changes in the lignin content and composition in plants. J. Integ. Plant Biol. 2010; 52:360-376.
8. Chisholm ST, Coaker G, Day B, Staskawicz BJ. Host–microbe interactions: shaping the evolution of the plant immune response. Cell. 2006; 124:803–814.
9. Scherm H, Coakley SM. Plant pathogens in a changing world. Austral. Plant Pathol. 2003; 32:157-165.
10. Koepke T, Dhingra A. Rootstock scion somatogenetic interactions in perennial composite plants. Plant Cell Rep. 2013; 32:1321–1337.
11. Jensen PJ, Halbrendt N, Fazio G, Makalowska I, Altman N, Praul C, Maximova SN, Ngugi HK, Crassweller RM, Travis JW, McNellis TW. Rootstock-regulated gene expression patterns associated with fire blight resistance in apple. BMC Genomics. 2012; 13:9.
12. Khan MA, Gemenet DC, Villordon A. Root System Architecture and Abiotic Stress Tolerance: Current Knowledge in Root and Tuber Crops. Front. Plant Sci. 2016; 7:1584.
13. Rogers ED, Benfey PN. Regulation of plant root system architecture: implications for crop improvement. Curr. Opin. Biotech. 2015; 32:93-98.
14. Wang H, Inukai Y, Yamauchi A. Root development and nutrient uptake. Crit. Rev. Plant Sci. 2006; 25:279-301.
15. de Dorlodot S, Forster B, Pagès L, Price A, Tuberosa R, Draye X. Root system architecture: opportunities and constraints for genetic improvement of crops. Trends Plant Sci. 2007; 12:474-481.
16. Pregitzer KS. Tree root architecture – form and function. New Phytol. 2008; 180:562-4.
17. Steffens B, Rasmussen A. The physiology of adventitious roots. Plant Physiol 2016; 170:603-617.
18. Liao WB, Huang GB, Yu JH, Zhang ML. Nitric oxide and hydrogen peroxide alleviate drought stress in marigold explants and promote its adventitious root development. Plant Physiol. Biochem. 2012; 58:6–15.
19. Krauss KW, Allen JA, Cahoon DR. Differential rates of vertical accretion and elevation change among aerial root types in Micronesian mangrove forests. Estua. Coas. Shelf Sci. 2003; 56:251–259.
20. Jensen PJ, Rytter J, Detwiler EA, Travis JW, McNellis TW. Rootstock effects on gene expression patterns in apple tree scions. Plant Mol. Biol. 2003; 493:493-511.
21. Warschefsky EJ, Klein LL, Frank MH, Chitwood DH, Londo JP, von Wettberg EJB, Miller AJ. Rootstocks: Diversity, Domestication, and Impacts on Shoot Phenotypes. Trends Plant Sci. 2016; 21:418-437.
22. Gautier AT, Chambaud C, Brocard L, Ollat N, Gambetta GA, Delrot S, Cookson SJ. Merging genotypes: graft union formation and scion–rootstock interactions. J. Exp. Bot. 2018; 70:747-755.
23. Kumar P, Rouphael Y, Cardarelli M, Colla G. Vegetable grafting as a tool to improve drought resistance and water use efficiency. Front. Plant Sci. 2017; 8:1130.
24. Zhu Y, Fazio G, Mazzola M. Elucidating the molecular responses of apple rootstock resistant to ARD pathogens: challenges and opportunities for development of genomics-assisted breeding tools. Hort. Res. 2014; 1:14043.
25. Jensen PJ, Makalowska I, Altman N, Fazio G, Praul C, Maximova SN, Crassweller RM, Travis JW, McNellis TW. Rootstock-regulated gene expression patterns in apple tree scions. Tree Genet. Genom. 2010; 6:57-72.
26. Norelli JL, Holleran HT, Johnson WC, Robinson TL, Aldwinckle HS. Resistance of Geneva and other apple rootstocks to Erwinia amylovora. Plant Disease. 2003; 87:26–32.
27. Albacete A, Martínez-Andújar C, Ghanem ME, Acosta M, Sánchez-Bravo J, Asins MJ, Cuartero J, Lutts S, Dodd IC, Pérez-Alfocea F. Rootstock-mediated changes in xylem ionic and hormonal status are correlated with delayed leaf senescence, and increased leaf area and crop productivity in salinized tomato. Plant Cell Environ. 2009; 32:928-38.
28. Albacete A, Martínez-Andújar C, Martínez-Pérez A, Thompson AJ, Dodd IC, Pérez-Alfocea F. Unravelling rootstock×scion interactions to improve food security. J. Exp. Bot. 2015; 66:2211-2226.
29. Tworkoski T, Fazio G. Hormone and growth interactions of scions and size-controlling rootstocks of young apple trees. Plant Growth Reg. 2016; 78:105-119.
30. Venema JH, Giuffrida F, Paponov I, Albacete A, Perez-Alfocea F, Dodd IC. Rootstock-scion signalling: key factors mediating scion performance. In: Colla G, Perez Alfocea F, SchwarzD, eds. Vegetable grafting: principles and practices. Wallingford, UK: CABI. 2017; 94–131.
31. Yang Y, Mao L, Jittayasotorn Y, Kang Y, Jiao C, Fei Z, Zhong G. Messenger RNA exchange between scions and rootstocks in grafted grapevines. BMC Plant Biol. 2015; 15:251.
32. Rudrappa T, Czymmek KJ, Pare PW, Bais HP. Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol. 2008; 148:1547-1556.
33. Peccoux A, Loveys B, Zhu J, Gambetta GA, Delrot S, Vivin P, Schultz HR, Ollat N, Dai Z. Dissecting the rootstock control of scion transpiration using model-assisted analyses in grapevine. Tree Physiol. 2018; 38:1026–1040.
34. Winslow CEA, Broadhurst J, Buchanan RE, Krumwiede C, Rogers LA, Smith GH. 1920. The families and genera of bacteria. Final report of the Committee of the Society of American Bacteriologists on characterization and classification of bacterial types. J. Bacteriol. 1920; 5:191-229.
35. Robinson T, Anderson L, Autio W, Barrit B, Cline J, Cowgill W, Crassweller R, Embree C, Ferree D, Garcia E, Greene G, Hampson C, Kosola K, Parker M, Perry R, Roper T, Warmund M. A multi-location comparison of Geneva 16, Geneva 41 and M.9 apple rootstocks across North America. Acta Hort. 2007; 732:59-65.
36. Russo NL, Robinson TL, Fazio G, Aldwinckle HS. Field evaluation of 64 apple rootstocks for orchard performance and fire blight resistance. HortScience. 2007; 42:1517-1525.
37. Norelli J, Aldwinckle H, Momol T, Johnson Bill, DeMarree A, Reddy MVB. Fire blight of apple rootstocks. New York Fruit Quarterly. 2000; 8:2-5.
38. Silva KJP, Singh J, Bednarek R, Fei Z, Khan A. Differential gene regulatory pathways and co-expression networks associated with fire blight infection in apple (Malus × domestica). Hort. Res. 2019; 6:35.
39. Broggini GA, Wöhner T, Fahrentrapp J, Kost TD, Flachowsky H, Peil A, Hanke MV, Richter K, Patocchi A, Gessler C. Engineering fire blight resistance into the apple cultivar 'Gala' using the FB_MR5 CC-NBS-LRR resistance gene of Malus × robusta 5. Plant Biotech. J. 2014; 12:728-733.
40. Fahrentrapp J, Broggini GAL, Kellerhals M, Peil A, Richter K, Zini E, Gessler C. A candidate gene for fire blight resistance in Malus × robusta 5 is coding for a CC–NBS–LRR. Tree Genet. Genom. 2013; 9:237-251.
41. Ristova D, Busch W. Natural variation of root traits: from development to nutrient uptake. Plant Physiol. 2014; 166:518-27.
42. Grossman JD, Rice KJ. Evolution of root plasticity responses to variation in soil nutrient distribution and concentration. Evol. Appl. 2012; 5:850-7.
43. Wu R, Grissom JE, McKeand SE, O'Malley DM. Phenotypic plasticity of fine root growth increases plant productivity in pine seedlings. BMC Ecol. 2004; 4:14.
44. Malamy JE. Intrinsic and environmental response pathways that regulate root system architecture. Plant Cell Environ. 2005; 28:67-77.
45. Kadam NN, Tamilselvan A, Lawas LMF, Quinones C, Bahuguna RN, Thomson MJ, Dingkuhn M, Muthurajan R, Struik PC, Yin X, Jagadish SVK. Genetic Control of Plasticity in Root Morphology and Anatomy of Rice in Response to Water Deficit. Plant Physiol. 2017; 174:2302-2315.
46. Laitinen RAE, Nikoloski Z. Genetic basis of plasticity in plants. J. Exp. Bot. 2018; 70:739-745.
47. Paul MJ, Pellny TK. Carbon metabolite feedback regulation of leaf photosynthesis and development. J. Exp. Bot. 2003; 54:539–547.
48. Young IM, Montagu K, Conroy J, Bengough AG. Mechanical impedance of root growth directly reduces leaf elongation rates of cereals. New Phytol. 1997; 135:613–619.
49. Robbins NS, Pharr DM. Effect of Restricted Root Growth on Carbohydrate Metabolism and Whole Plant Growth of Cucumis sativus L. Plant Physiol. 1988; 87:409–413.
50. Schwachtje J, Fischer A, Erban A, Kopka J. Primed primary metabolism in systemic leaves: a functional systems analysis. Sci. Rep. 2018; 8:216.
51. Lee DK, Ahn S, Cho HY, Yun HY, Park JH, Kwon SW. Metabolic response induced by parasitic plant-fungus interactions hinder amino sugar and nucleotide sugar metabolism in the host. Sci. Rep. 2016; 6:37434.
52. Ward JL, Forcat S, Beckmann M, Bennett M, Miller SJ, Baker JM, Hawkins ND, Vermeer CP, Lu C, Lin W, Truman WM, Beale MH, Draper J, Mansfield JW, Grant M. The metabolic transition during disease following infection of Arabidopsis thaliana by Pseudomonas syringae pv. tomato. Plant J. 2010; 63:443–457.
53. Fagard M, Launay A, Clement G, Courtial J, Dellagi A, Farjad M, Krapp A, Soulie M, Masclaux-Daubresse C. Nitrogen metabolism meets phytopathology. J. Exp. Bot. 2014; 65:5643-5656.
54. Bidzinski P, Ballini E, Ducasse A, Michel C, Zuluaga P, Genga A, Chiozzotto R, Morel J-B. Transcriptional Basis of Drought-Induced Susceptibility to the Rice Blast Fungus Magnaporthe oryzae. Front. Plant Sci. 2016; 7:1558.
55. Klutsch JG, Shamoun SF, Erbilgin N. Drought stress leads to systemic induced susceptibility to a nectrotrophic fungus associated with mountain pine beetle in Pinus banksiana seedlings. PLoS ONE. 2017; 12: e0189203.
56. Moreau M, Degrave A, Vedel R, Bitton F, Patrit O, Renou JP, Barny MA, Fagard M. EDS1 contributes to nonhost resistance of Arabidopsis thaliana against Erwinia amylovora. Mol. Plant-Microbe Inter. 2012; 25:421–430.
57. Norelli JL, Farrell Jr RE, Bassett CL, Baldo AM, Lalli DA, Aldwinckle HS, Wisniewski ME. Rapid transcriptional response of apple to fire blight disease revealed by cDNA suppression subtractive hybridization analysis. Tree Genet. Genom. 2009; 5:27–40.
58. Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina Sequence Data. Bioinformatics. 2014; 30:2114-2120.
59. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013; 29:15-21.
60. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Prot. 2012; 7:562-78.
61. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup. The sequence alignment/map (SAM) format and SAMtools. Bioinformatics. 2009; 25:2078-2079.
62. Anders S, Pyl PT, Huber W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015; 30:2114-2120.
63. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Gen. Biol. 2014; 15:550.
64. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Royal Stat. Soc. Series B (Methodol.). 1995; 57:289-300.
65. Tian T, Liu Y, Yan H, You Q, Yi X, Du Z, Xu W, Su Z. agriGO v2.0: a GO analysis toolkit for the agricultural community, 2017 update. Nucl. Acids Res. 2017; 45:W122-W129.
66. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008; 29:9-559.
67. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Gen. Res. 2003; 13:2498-504.
68. Chin C, Chen S, Wu H, Ho C, Ko M, Lin C. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Sys. Biol. 2014; 8:S11.