1 Bogucki, P. Animal traction and household economies in Neolithic Europe. Antiquity 67, 492-503 (1993).
2 Marciniak, A. Placing animals in the Neolithic: Social zooarchaeology of prehistoric farming communities., 279 (University College London Press, 2005).
3 Bogucki, P. Forest farmers and stockholders. Early agriculture and its consequences in North-Central Europe., (Cambridge press, 1988).
4 Jakucs J, Bánffy E, Oross K, Voicsek V, Ramsey C B, Dunbar E, Kromer B, Bayliss A, Hofmann D, Marshall P, Whittle A. Between the Vinča and Linearbandkeramik Worlds: The Diversity of Practices and Identities in the 54th–53rd Centuries cal BC in Southwest Hungary and Beyond. Journal of World Prehistory 29: 267–336 (2016).
5 Pavlů, I. The Neolithisation of Central Europe. Archeologické rozhledy LVII, 293-302 (2005).
6 Casanova, E. et al. Spatial and temporal disparities in human subsistence in the Neolithic Rhineland gateway. Journal of Archaeological Science 122, 105215, doi:https://doi.org/10.1016/j.jas.2020.105215 (2020).
7 Gronenborn, D., Antunes, N. & Rivollat, M. in Neolithisation and the Origins of Complexity. DAI Research Cluster 1: From sedentarization to the complex society: settlement, economy, environment, cult. Proceedings of the workshops in Tehran, Lisbon and Lima. Berlin Vol. 17 (eds Markus Reindel et al.) (Menschen - Kulturen - Traditionen / People - Cultures -Traditions, 2021).
8 Whittle, A. W. R. & Bickle, P. The first farmers of central Europe: diversity in LBK lifeways., (Oxbow Books, 2013).
9 Pechtl, J. & Land, A. Tree rings as a proxy for seasonal precipitation variability and Early Neolithic settlement dynamics in Bavaria, Germany. PLoS One 14, e0210438, doi:10.1371/journal.pone.0210438 (2019).
10 Lipson, M. et al. Parallel palaeogenomic transects reveal complex genetic history of early European farmers. Nature 551, 368-372, doi:10.1038/nature24476 (2017).
11 Haak, W. et al. Ancient DNA from European early neolithic farmers reveals their near eastern affinities. PLoS Biol 8, e1000536, doi:10.1371/journal.pbio.1000536 (2010).
12 Rivollat, M. et al. Ancient genome-wide DNA from France highlights the complexity of interactions between Mesolithic hunter-gatherers and Neolithic farmers. Sci Adv 6, eaaz5344, doi:10.1126/sciadv.aaz5344 (2020).
13 Arbogast, R. M. & Jeunesse, C. in The origins and spread of domestic anaimals in southwest Asia and Europe. (eds S. Colledge et al.) 271-282 (Left coast press, 2013).
14 Johnson, E. V., Timpson, A., Thomas, M. G. & Outram, A. K. Reduced intensity of bone fat exploitation correlates with increased potential access to dairy fats in early Neolithic Europe. Journal of Archaeological Science 94, 60-69, doi:10.1016/j.jas.2018.04.001 (2018).
15 Gillis, R. E. et al. The evolution of dual meat and milk cattle husbandry in Linearbandkeramik societies. Proceedings of the Royal Society B: Biological Sciences 284, 20170905 (2017).
16 Hachem, L. Le site néolithique de Cuiry-lès-Chaudardes-I. De L'analyse de la faune á la structuration sociale., Vol. 120 (VML, 2011).
17 Austad, I. in The cultural landscape- Past, Present and Future (eds H. H. Birks, H. J.B. Birks, P. Emil Kaland, & D. Moe) 11-30 (Cambridge University Press, 1988).
18 Gardner, A. The ecology of Neolithic environmental impacts - re-evaluation of existing theory using case studies from Hungary & Slovenia. Documenta Praehistorica XXVI, 163-184 (1999).
19 Marciniak, A. et al. Animal husbandry in the Early and Middle Neolithic settlement at Kopydłowo in the Polish lowlands. A multi-isotope perspective. Archaeological and Anthropological Sciences 9, 1461-1479, doi:10.1007/s12520-017-0485-6 (2017).
20 Vostrovská, I., Bíšková, J., Lukšíková, H., Kočár, P. & Kočárová, R. The Environment and Subsistence of the Early Neolithic Settlement Area at Těšetice-Kyjovice, Czech Republic. Environmental Archaeology 24, 248-262, doi:10.1080/14614103.2018.1424981 (2018).
21 Sudhaus, D. & Friedmann, A. Holocene Vegetation and Land Use History in the Northern Vosges (France). Quaternary Science Journal 64, 55-66, doi:10.3285/eg.64.2.01 (2015).
22 Halstead, P., Tierney, J., Butler, S. & Mulder, Y. Leafy Hay: an Ethnoarchaeological Study in NW Greece. Environmental Archaeology 1, 71-80, doi:10.1179/env.1996.1.1.71 (1996).
23 Kreuz, A. Closed forest or open woodland as natural vegetation in the surroundings of Linearbandkeramik settlements? Vegetation History and Archaeobotany 17, 51-64, doi:10.1007/s00334-007-0110-1 (2007).
24 Hejcmanová, P., Stejskalová, M. & Hejcman, M. Forage quality of leaf-fodder from the main broad-leaved woody species and its possible consequences for the Holocene development of forest vegetation in Central Europe. Vegetation History and Archaeobotany 23, 607-613, doi:10.1007/s00334-013-0414-2 (2013).
25 Rasmussen, P. Analysis of goat/sheep faeces from Egolzwil 3, Switzerland: evidence for branch and twig foddering of livestock in the Neolithic. Journal of Archaeological Science 20 (1993).
26 Balasse, M., Boury, L., Ughetto-Monfrin, J. & Tresset, A. Stable isotope insights (δ18O,δ13C) into cattle and sheep husbandry at Bercy (Paris, France, 4th millennium BC): birth seasonality and winter leaf foddering. Environmental Archaeology 17, 29-44, doi:10.1179/1461410312z.0000000003 (2013).
27 Fraser, R. A., Bogaard, A., Schäfer, M., Arbogast, R. & Heaton, T. H. E. Integrating botanical, faunal and human stable carbon and nitrogen isotope values to reconstruct land use and palaeodiet at LBK Vaihingen an der Enz, Baden-Württemberg. World Archaeology 45, 492-517, doi:10.1080/00438243.2013.820649 (2013).
28 Berthon, R., Kovačiková, L., Tresset, A. & Balasse, M. Integration of Linearbandkeramik cattle husbandry in the forested landscape of the mid-Holocene climate optimum: Seasonal-scale investigations in Bohemia. Journal of Anthropological Archaeology 51, 16-27, doi:https://doi.org/10.1016/j.jaa.2018.05.002 (2018).
29 Drucker, D. G., Bridault, A., Hobson, K. A., Szuma, E. & Bocherens, H. Can carbon-13 in large herbivores reflect the canopy effect in temperate and boreal ecosystems? Evidence from modern and ancient ungulates. Palaeogeography, Palaeoclimatology, Palaeoecology 266, 69-82, doi:10.1016/j.palaeo.2008.03.020 (2008).
30 Gillis, R. E. & Zanon, M. in Biodiversités, environnements et sociétés depuis la Préhistoire : nouveaux marqueurs et approches intégrées / Biodiversities, Environments and Societies since Prehistory: New Markers and Integrated Approaches. Proceedings of the 41th Rencontres internationales d'archéologie et d'histoire (eds E. Nicoud, M. Balasse, E. Desclaux, & I. Théry-Parisot) (APDCA – CEPAM, Nice Côte d'Azur, 2021).
31 Van der Merwe, N. J. & Medina, E. The Canopy Effect, Carbon Isotope Ratios and Foodwebs in Amazonia. Journal of Archaeological Science 18, 249-259 (1991).
32 Palmquist, D. L. & Mattos, W. Turnover of lipoproteins and transfer to milk fat of dietary (1-Carbon-14) linoleic acid in lactating cows. Journal of Dairy science 61, 561-565 (1978).
33 Salque, M. et al. Earliest evidence for cheese making in the sixth millennium BC in northern Europe. Nature 493, 522-525 (2013).
34 Dunne, J. et al. First dairying in green Saharan Africa in the fifth millennium BC. Nature 486, 390-394 (2012).
35 Roffet-Salque, M. & Evershed, R. P. in Kopydłowo, stanowisko 6. Osady neolityczne z pogranicza Kujaw i Wielkopolski. (eds A. Marciniak, I. Sobkowiak-Tabaka, Marta Bartkowiak, & Mikołaj Lisowski) 133-142 (Wydawnictwo Profil-Archeo, 2016).
36 Leuschner, C. & Meier, I. C. The ecology of Central European tree species: Trait spectra, functional trade-offs, and ecological classification of adult trees. Perspectives in Plant Ecology, Evolution and Systematics 33, 89-103 (2018).
37 Tieszen, L. T. Natural variations in the carbon isotope values of plants: Implications for Archaeology, Ecology and Paleoecology. Journal of Archaeological Science 18, 227-248 (1991).
38 Kendall, I. P. et al. Compound-specific δ15N values express differences in amino acid metabolism in plants of varying lignin content. Phytochemistry 161, 130-138, doi:10.1016/j.phytochem.2019.01.012 (2019).
39 Brychova, V. et al. Animal exploitation and pottery use during the early LBK phases of the Neolithic site of Bylany (Czech Republic) tracked through lipid residue analysis. Quaternary International 574, 91-101, doi:10.1016/j.quaint.2020.10.045 (2021).
40 Roffet-Salque, M. et al. in Ludwinowo 7 - Neolithic settlement in Kuyavia. (ed J. Pyzel) 301-316 (Profil-Archeo, 2019).
41 Matlova, V. et al. Defining pottery use and animal management at the Neolithic site of Bylany (Czech Republic). Journal of Archaeological Science: Reports 14, 262-274 (2017).
42 Salque, M. et al. New insights into the early Neolithic economy and management of animals in Southern and Central Europe revealed using lipid residue analyses of pottery vessels. Anthropozoologica 47, 45-61 (2012).
43 Gillis, R. E. et al. Stable isotopic insights into crop cultivation, animal husbandry, and land use at the Linearbandkeramik site of Vráble-Veľké Lehemby (Slovakia). Archaeological and Anthropological Sciences 12, 256, doi:10.1007/s12520-020-01210-2 (2020).
44 Oelze, V. M. et al. Early Neolithic diet and animal husbandry: stable isotope evidence from three Linearbandkeramik (LBK) sites in Central Germany. Journal of Archaeological Science 38, 270-279, doi:10.1016/j.jas.2010.08.027 (2011).
45 Dürrwächter, C., Craig, O. E., Collins, M. J., Burger, J. & Alt, K. W. Beyond the grave: variability in Neolithic diets in Southern Germany? Journal of Archaeological Science 33, 39-48, doi:10.1016/j.jas.2005.06.009 (2006).
46 Kendall, I. P., Gillis, R. E., Balasse, M. & Evershed, R. P. in Ludwinowo, stanowisko 7. Osada neolityczna na Kujawach / Ludwinowo, site 7. Neolithic settlement in Kuyavia Ocalone Dziedzictwo Archeologiczne (ed J. Pyzel) 277-288 (PROFIL-ARCHEO, 2019).
47 Kovačiková, L., Bréhard, S., Šumberová, R., Balasse, M. & Tresset, A. The new insights into the subsistence and early farming from Neolithic settlements in Central Europe: the archaeozoological evidence from the Czech Republic. Archaeofauna 21, 71-79 (2012).
48 Zanon, M., Davis, B. A. S., Marquer, L., Brewer, S. & Kaplan, J. O. European Forest Cover During the Past 12,000 Years: A Palynological Reconstruction Based on Modern Analogs and Remote Sensing. Front Plant Sci 9, 253, doi:10.3389/fpls.2018.00253 (2018).
49 Sánchez Goñi, M. F. et al. The expansion of Central and Northern European Neolithic populations was associated with a multi-century warm winter and wetter climate. The Holocene 26, 1188-1199, doi:10.1177/0959683616638435 (2016).
50 Balasse, M. et al. Seasonal calving in European Prehistoric cattle and its impacts on milk availability and cheese-making. Sci Rep 11, 8185, doi:10.1038/s41598-021-87674-1 (2021).
51 Gat, J. R. Oxygen and hydrogen isotopes in the hydrologic cycle. Annual Revue Earth Planet Science 24, 225-262 (1996).
52 Balasse, M. Potential biases in sampling design and interpretation of intra-tooth isotope analysis. International Journal of Osteoarchaeology 13, 3-10, doi:10.1002/oa.656 (2003).
53 Cerling, T. E. et al. CH4/CO2 Ratios and carbon isotope enrichment between diet and breath in herbivorous mammals. Frontiers in Ecology and Evolution 9, doi:10.3389/fevo.2021.638568 (2021).
54 Farquhar, G. D., Ehleringer, J. & Hubick, K. T. Carbon Isotope Discrimination And Photosynthesis. Annual Review of Plant Biology 40, 503-537 (1989).
55 Hedges, R. et al. in The first farmers of central Europe: diversity in LBK lifeways. (eds A. W. R Whittle & P Bickle) Ch. 9, 343-384 (Oxbow, 2013).
56 Copley, M. S. et al. Direct chemical evidence for widespread dairying in prehistoric Britain. PNAS 100, 1524-1529 (2003).
57 Manning, K. et al. in The origins and spread of domestic animals in Southwest Asia and Europe (eds S. Colledge et al.) Ch. 12, 237-252 (Left coast press, 2013).
58 Pokorný, P. et al. Mid-Holocene bottleneck for central European dry grasslands: Did steppe survive the forest optimum in northern Bohemia, Czech Republic? The Holocene 25, 716-726, doi:10.1177/0959683614566218 (2015).
59 Hall, S. J. & Hall, J. G. Inbreeding and population dynamics of the Chillingham cattle (Bos taurus). Journal of Zoology, London 216, 479-493 (1988).
60 Labussière, J. in Biology of Lactation (eds J. Martinet, L.-M. Houdebine, & H.H. Head) 307-343 (INRA, 1999).
61 Halstead, P. & O’Shea, J. in Bad Year Economics. Cultural Responses to Risk and Uncertainty (eds P. Halstead & J. O´Shea) 1-7 (Cambridge University Press, 1989).
62 Ingold, T. Hunter, Pastoralists and Ranchers Reindeer Economics and thier transformations., (Cambridge University Press, 1988).
63 Tieszen, L. T. & Fagre, T. in Prehistoric human bone: Archaeology at the molecular level (eds J. B. Lambert & G. Grupe) (Springer-Verlag, 1993).
64 Schoeninger, M. J. & DeNiro, M. J. Nitrogen and Carbon Isotopic composition of bone collagen from marine and terrestrial animals. Geochimica et Cosmochimica Acta 48, 625-639 (1984).
65 Correa-Ascencio, M. & Evershed, R. P. High throughput screening of organic residues in archaeological potsherds using direct methanolic acid extraction. Analytical Methods 6, 1330-1340 (2014).
66 Balasse, M. Reconstructing dietary and environmental history from enamel isotopic analysis: time resolution of intra-tooth sequential sampling. International Journal of Osteoarchaeology 12, 155-165, doi:10.1002/oa.601 (2002).
67 Corr, L. T., Berstan, R. & Evershed, R. P. Optimisation of derivatisation procedures for the determination of δ13C values of amino acids by gas chromatography/combustion/isotope ratio mass spectrometry. Rapid Commun Mass Spectrom 21, 3759-3771, doi:10.1002/rcm.3252 (2007).
68 Styring, A. K. et al. Practical considerations in the determination of compound-specific amino acid delta15N values in animal and plant tissues by gas chromatography-combustion-isotope ratio mass spectrometry, following derivatisation to their N-acetylisopropyl esters. Rapid Commun Mass Spectrom 26, 2328-2334, doi:10.1002/rcm.6322 (2012).
69 Gräler, B., Pebesma, E. & Heuvelink, G. Spatio-Temporal Interpolation using gstat. The R Journal 8, 204-218 (2016).
70 R: A language and environment for statistical computing. R Foundation for Statistical Computing, (URL https://www.R-project.org/. Vienna, Austria, 2017).