1. Liu, X. The more and less of electronic-skin sensors. Science 370, 910–911 (2020). 10.1126/science.abe7366, Pubmed:33214265.
2. Chortos, A., Liu, J. & Bao, Z. Pursuing prosthetic electronic skin. Nat. Mater. 15, 937–950 (2016). 10.1038/nmat4671, Pubmed:27376685.
3. Drimus, A., Kootstra, G., Bilberg, A. & Kragic, D. Design of a flexible tactile sensor for classification of rigid and deformable objects. Robot. Auton. Syst. 62, 3–15 (2014). 10.1016/j.robot.2012.07.021.
4. Wu, Y. et al. A skin-inspired tactile sensor for smart prosthetics. Sci. Robot. 3, 1–9 (2018). 10.1126/scirobotics.aat0429, Pubmed:33141753.
5. Zhao, H., O’Brien, K., Li, S. & Shepherd, R. F. Optoelectronically innervated soft prosthetic hand via stretchable optical waveguides. Sci. Robot. 1, 1–10 (2016). 10.1126/scirobotics.aai7529, Pubmed:33157858.
6. Yamada, D., Maeno, T. & Yamada, Y. Artificial finger skin having ridges and distributed tactile sensors used for grasp force control. J. Robot. Mechatron. 14, 140–146 (2002). 10.20965/jrm.2002.p0140
7. D’Anna, E. et al. A closed-loop hand prosthesis with simultaneous intraneural tactile and position feedback. Sci. Robot. 4 (2019). 10.1126/scirobotics.aau8892, Pubmed:33137741.
8. Li, G., Liu, S., Wang, L. & Zhu, R. Skin-inspired quadruple tactile sensors integrated on a robot hand enable object recognition. Sci. Robot. 5, 1–12 (2020). 10.1126/scirobotics.abc8134, Pubmed:33328298.
9. Su, Z. et al., (2015). Force estimation and slip detection/classification for grip control using a biomimetic tactile sensor. IEEE-RAS international conference Humanoid Robot 297–303. 10.1109/HUMANOIDS.2015.7363558.
10. Kim, K. et al. Tactile avatar: Tactile sensing system mimicking human tactile cognition. Adv. Sci. (Weinh) 8, 2002362 (2021). 10.1002/advs.202002362, Pubmed:33854875.
11. Pyo, S., Lee, J., Bae, K., Sim, S. & Kim, J. Recent progress in flexible tactile sensors for human-interactive systems: From sensors to advanced applications. Adv. Mater. 33, e2005902 (2021). 10.1002/adma.202005902, 33887803.
12. Huang, Y. C. et al. Sensitive pressure sensors based on conductive microstructured air-gap gates and two-dimensional semiconductor transistors. Nat. Electron. 3, 59–69 (2020). 10.1038/s41928-019-0356-5.
13. Lee, B. Y., Kim, J., Kim, H., Kim, C. & Lee, S. D. Low-cost flexible pressure sensor based on dielectric elastomer film with micro-pores. Sens. Actuators A 240, 103–109 (2016). 10.1016/j.sna.2016.01.037.
14. Zang, Y., Zhang, F., Di, C. A. & Zhu, D. Advances of flexible pressure sensors toward artificial intelligence and health care applications. Mater. Horiz. 2, 140–156 (2015). 10.1039/C4MH00147H.
15. Dagdeviren, C. et al. Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring. Nat. Commun. 5, 4496 (2014). 10.1038/ncomms5496, Pubmed:25092496.
16. Kim, H. et al. Transparent, flexible, conformal capacitive pressure sensors with nanoparticles. Small 14, 1–10 (2018). 10.1002/smll.201703432, Pubmed:29372583.
17. Schwartz, G. et al. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat. Commun. 4, 1859 (2013). 10.1038/ncomms2832, Pubmed:23673644.
18. Mannsfeld, S. C. B. et al. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 9, 859–864 (2010). 10.1038/nmat2834, Pubmed:20835231.
19. Ahmed, A. et al. Multifunctional smart electronic skin fabricated from two-dimensional like polymer film. Nano Energy 75 (2020). 10.1016/j.nanoen.2020.105044.
20. Xu, Z. et al. Bio-inspired smart electronic-skin based on inorganic perovskite nanoplates for application in photomemories and mechanoreceptors. Nanoscale 13, 253–260 (2021). 10.1039/d0nr06550a, Pubmed:33331373.
21. Hua, Q. et al. Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nat. Commun. 9, 244 (2018). 10.1038/s41467-017-02685-9, Pubmed:29339793.
22. Choi, D. et al. A highly sensitive tactile sensor using a pyramid-plug structure for detecting pressure, shear force, and torsion. Adv. Mater. Technol. 4 (2019). 10.1002/admt.201800284, 1800284.
23. Pang, C. et al. A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nat. Mater. 11, 795–801 (2012). 10.1038/nmat3380, Pubmed:22842511.
24. Park, J. et al. Tactile-direction-sensitive and stretchable electronic skins based on human-skin-inspired interlocked microstructures. ACS Nano 8, 12020–12029 (2014). 10.1021/nn505953t, Pubmed:25389631.
25. Sun, Q. et al. Fingertip‐skin‐inspired highly sensitive and multifunctional sensor with hierarchically structured conductive graphite/polydimethylsiloxane foams. Adv. Funct. Mater. 29 (2019). 10.1002/adfm.201808829, 1808829.
26. Chun, S. et al. Self-powered pressure- and vibration-sensitive tactile sensors for learning technique-based neural finger skin. Nano Lett. 19, 3305–3312 (2019). 10.1021/acs.nanolett.9b00922, Pubmed:31021638.
27. Navaraj, W. & Dahiya, R. Fingerprint‐enhanced capacitive‐piezoelectric flexible sensing skin to discriminate static and dynamic tactile stimuli. Adv. Intell. Syst. 1 (2019). 10.1002/aisy.201900051, 1900051.
28. Chun, K. Y., Son, Y. J., Jeon, E. S., Lee, S. & Han, C. S. A self-powered sensor mimicking slow- and fast-adapting cutaneous mechanoreceptors. Adv. Mater. 30, e1706299 (2018). 10.1002/adma.201706299, 29424032.
29. Chun, S. et al. An artificial neural tactile sensing system. Nat. Electron. 4, 429–438 (2021). 10.1038/s41928-021-00585-x.
30. Park, J., Kim, M., Lee, Y., Lee, H. S. & Ko, H. Fingertip skin–inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli. Sci. Adv. 1, e1500661 (2015). 10.1126/sciadv.1500661, Pubmed:26601303.
31. You, I. et al. Artificial multimodal receptors based on ion relaxation dynamics. Science 370, 961–965 (2020). 10.1126/science.aba5132, Pubmed:33214277.
32. Boutry, C. M. et al. A hierarchically patterned, bioinspired e-skin able to detect the direction of applied pressure for robotics. Sci. Robot. 3, 1–10 (2018). 10.1126/scirobotics.aau6914, Pubmed:33141713.
33. Kim, T. et al. Heterogeneous sensing in a multifunctional soft sensor for human-robot interfaces. Sci. Robot. 5, 1–14 (2020). 10.1126/scirobotics.abc6878, Pubmed:33328297.
34. Chen, H. et al. Hybrid porous micro structured finger skin inspired self-powered electronic skin system for pressure sensing and sliding detection. Nano Energy 51, 496–503 (2018). 10.1016/j.nanoen.2018.07.001.
35. Seok Jo, H. S., An, S., Kwon, H. J., Yarin, A. L. & Yoon, S. S. Transparent body-attachable multifunctional pressure, thermal, and proximity sensor and heater. Sci. Rep. 10, 1–12 (2020). 10.1038/s41598-020-59450-0.
36. Kim, S. W. et al. A triple-mode flexible E-skin sensor interface for multi-purpose wearable applications. Sensors (Basel) 18, 1–11 (2017). 10.3390/s18010078, Pubmed:29286312.