[1] Kremer P, Forsting M, Hamer J, Sartor K. MR imaging of residual tumor tissue after transsphenoidal surgery of hormone-inactive pituitary macroadenomas: a prospective study. Acta Neurochir Suppl. 1996. 65: 27-30.
[2] Sumida M, Uozumi T, Mukada K, et al. MRI of pituitary adenomas: the position of the normal pituitary gland. Neuroradiology. 1994. 36(4): 295-7.
[3] Kremer P, Forsting M, Ranaei G, et al. Magnetic resonance imaging after transsphenoidal surgery of clinically non-functional pituitary macroadenomas and its impact on detecting residual adenoma. Acta Neurochir (Wien). 2002. 144(5): 433-43.
[4] Di Maio S, Biswas A, Vézina JL, Hardy J, Mohr G. Pre- and postoperative magnetic resonance imaging appearance of the normal residual pituitary gland following macroadenoma resection: Clinical implications. Surg Neurol Int. 2012. 3: 67.
[5] Muhr C. Positron emission tomography in acromegaly and other pituitary adenoma patients. Neuroendocrinology. 2006. 83(3-4): 205-10.
[6] Tang BN, Levivier M, Heureux M, et al. 11C-methionine PET for the diagnosis and management of recurrent pituitary adenomas. Eur J Nucl Med Mol Imaging. 2006. 33(2): 169-78.
[7] Bergström M, Muhr C, Lundberg PO, Långström B. PET as a tool in the clinical evaluation of pituitary adenomas. J Nucl Med. 1991. 32(4): 610-5.
[8] Feng Z, He D, Mao Z, et al. Utility of 11C-Methionine and 18F-FDG PET/CT in Patients With Functioning Pituitary Adenomas. Clin Nucl Med. 2016. 41(3): e130-4.
[9] Koulouri O, Steuwe A, Gillett D, et al. A role for 11C-methionine PET imaging in ACTH-dependent Cushing's syndrome. Eur J Endocrinol. 2015. 173(4): M107-20.
[10] Xiangsong Z, Xinjian W, Yong Z, Weian C. 13N-NH3: a selective contrast-enhancing tracer for brain tumor. Nucl Med Commun. 2008. 29(12): 1052-8.
[11] Wang Z, Mao Z, Zhang X, et al. Utility of 13N-Ammonia PET/CT to Detect Pituitary Tissue in Patients with Pituitary Adenomas. Acad Radiol. 2019. 26(9): 1222-1228.
[12] Ikeda H, Abe T, Watanabe K. Usefulness of composite methionine-positron emission tomography/3.0-tesla magnetic resonance imaging to detect the localization and extent of early-stage Cushing adenoma. J Neurosurg. 2010. 112(4): 750-5.
[13] Rodriguez-Barcelo S, Gutierrez-Cardo A, Dominguez-Paez M, Medina-Imbroda J, Romero-Moreno L, Arraez-Sanchez M. Clinical usefulness of coregistered 11C-methionine positron emission tomography/3-T magnetic resonance imaging at the follow-up of acromegaly. World Neurosurg. 2014. 82(3-4): 468-73.
[14] Iglesias P, Cardona J, Díez JJ. The pituitary in nuclear medicine imaging. Eur J Intern Med. 2019. 68: 6-12.
[15] Shi X, Zhang X, Yi C, Liu Y, He Q. [¹³N] Ammonia positron emission tomographic/computed tomographic imaging targeting glutamine synthetase expression in prostate cancer. Mol Imaging. 2014. 13.
[16] He Q, Shi X, Zhang L, Yi C, Zhang X, Zhang X. De Novo Glutamine Synthesis: Importance for the Proliferation of Glioma Cells and Potentials for Its Detection With 13N-Ammonia. Mol Imaging. 2016. 15.
[17] Ding L, Zhang F, He Q, et al. Differentiation of suprasellar meningiomas from non-functioning pituitary macroadenomas by 18F-FDG and 13N-Ammonia PET/CT. BMC Cancer. 2020. 20(1): 564.
[18] Shirasawa N, Yamanouchi H. Glucocorticoids induce glutamine synthetase in folliculostellate cells of rat pituitary glands in vivo and in vitro. J Anat. 1999. 194 ( Pt 4): 567-77.
[19] Koulouri O, Kandasamy N, Hoole AC, et al. Successful treatment of residual pituitary adenoma in persistent acromegaly following localisation by 11C-methionine PET co-registered with MRI. Eur J Endocrinol. 2016. 175(5): 485-498.
[20] De Souza B, Brunetti A, Fulham MJ, et al. Pituitary microadenomas: a PET study. Radiology. 1990. 177(1): 39-44.
[21] Chittiboina P, Montgomery BK, Millo C, Herscovitch P, Lonser RR. High-resolution(18)F-fluorodeoxyglucose positron emission tomography and magnetic resonance imaging for pituitary adenoma detection in Cushing disease. J Neurosurg. 2015. 122(4): 791-7.
[22] Tomura N, Saginoya T, Mizuno Y, Goto H. Accumulation of 11C-methionine in the normal pituitary gland on 11C-methionine PET. Acta Radiol. 2017. 58(3): 362-366.
[23] Zhao X, Xiao J, Xing B, Wang R, Zhu Z, Li F. Comparison of (68)Ga DOTATATE to 18F-FDG uptake is useful in the differentiation of residual or recurrent pituitary adenoma from the remaining pituitary tissue after transsphenoidal adenomectomy. Clin Nucl Med. 2014. 39(7): 605-8.
[24] Kuyumcu S, Özkan ZG, Sanli Y, et al. Physiological and tumoral uptake of (68)Ga-DOTATATE: standardized uptake values and challenges in interpretation. Ann Nucl Med. 2013. 27(6): 538-45.