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Abstract
Aphids are significant pests of the cash crops and food farm crops. Botanical insecticides are safe for
aphid control, especially in organic agriculture. In this study, Eleocharis dulcis peel extract (EDPE), a new
botanical insecticide, was investigated for its active compositions against several agricultural aphids.
The results showed that the EDPE had high insecticidal activity against Sitobion avenae, Aphis gossypii,
Megoura crassicauda, and Acyrthosiphon pisum, with the half lethal concentration (LC50) values of
95.92, 81.04, 140.31, and 255.73 mg/L after 48 h treatment. In the pot culture assay, the aphicidal effects
of 25% EDPE soluble liquid (SL) at a concentration of 0.016% were 68.98%, 79.33%, and 88.82% after the
1st, 3rd, and 7th days of treatment, respectively. Nine compounds were identified by bioactivity-directed
fractionation, which was dimethoxy-6, 6-dimethylpyranoisoflavone (1), 3-methoxy-4-hydroxylonchocarpin
(2), 4-hydroxylonchocarpin (3), 4-methoxylonchocarpin (4), barbigerone (5), lonchocarpusone (6), 6a, 12a-
dehydrodeguelin (7), 13-homo-13-oxa-6a,12a-dehydrodeguelin (8) and deguelin (9). Among them, 4-
hydroxylonchocarpin (3) showed the highest aphidicidal activity against M. crassicauda, S. avenae, and
A. pisum, with the LC50 values of 97.24, 140.63, and 112.31 mg/L, respectively. Therefore, EDPE and its
major component 4-hydroxylonchocarpin are probably used as new botanical insecticides to control
aphids.

1. Introduction
Aphids (Hemiptera: Aphididae) are one of the ‘leaders’ of the most difficult pests to control, which can
damage both cash crops and food farm crops in agriculture worldwide (Park et al. 2021). Sitobion avenae
is an important agricultural pest of cereals, directly sucking sap from the phloem and spreading plant
viruses such as barley yellow dwarf virus, causing serious economic losses (Zhang et al. 2017; Zhang et
al. 2021). Aphis gossypii Glover is the most common type of aphid that directly damages the growth of
cotton by sucking up its sap, resulting in reduced yield and quality of cotton (Jiang et al. 2020; Pachu et
al. 2021). Megoura crassicauda and Acyrthosiphon pisum mainly affect legumes, which are the most
destructive pests due to their short developmental calendar and rapid population reproduction (Skaljac et
al. 2018; Yin et al. 2019). Aphids control is mainly based on chemical pesticides, however, the frequent
use of chemical pesticides not only lead to environmental pollution but also makes the aphids to a
variety of pesticides with a high level of resistance (Jiang et al. 2018; Ma et al. 2018). Given this situation,
the development of new green and safe pesticides has received a recent surge in interest (Campos et al.
2019).

Botanical insecticides have become an active research field due to their environmental friendliness, low-
level resistance, and potential safety (Miresmailli and Isman 2014; Pavela et al. 2013). Currently, plant
extracts and their active compounds have a wide range of applications in pest control (Isman 2008;
Kaleeswaran et al. 2018) Sophora alopecuroides alkaloids, including cytisine, matrine, sophocarpine,
oxymatrine, etc., are the representative commercial botanical insecticides against Myzus persicae,
Macrosiphum rosirvorum and Brevicoryne brassicae (Ma et al. 2020; Ma et al. 2018). Robinia
pseudoacacia L. seed extract has proven to be an effective aphicide in laboratory and field trials (Jiang et
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al. 2018). Zanthoxylum armatum leaf extract has tremendous commercial utilization in the management
of Spodoptera litura (Kaleeswaran et al. 2018). Phyllostachys pubescens leaf extract and its major
component isoorientin provide new resources for the development of botanical aphicides (Gao et al.
2019).

Eleocharis dulcis (Burm.f.) Trin., belonging to the Cyperaceae, is concentrated in tropical and subtropical
regions (Aizawa et al. 2010; Li et al. 2016). E. dulcis is often used as Chinese medicine to treat
pharyngitis, laryngitis, cough, hepatitis, and hypertension and it is also one of the popular aquatic
vegetables in China due to its unique flavor (Nie et al. 2019). The peel of E. dulcis is often discarded,
which is rich in flavonoids and polyphenols, and exhibits strong antioxidant and acrylamide formation
activity (Nie et al. 2021; Zhan et al. 2014). It has been reported that E. dulcis had antifeedant activity
against Anthonomous grandis and it can be used as a baiting plant to trap the eggs of Scirpophaga
innotata in rice fields (Miles et al. 1994; Rajesh et al. 2021). In our past study, we discovered that E. dulcis
peel extracts (EDPE) had good insecticidal activity against various pests, especially aphids such as M.
crassicauda and Aphis citricolavande (Ma et al. 2021; Yu et al. 2021). Nevertheless, systematic
insecticidal activity and the active ingredients of EDPE are still unknown.

Thus, both petri dish assay and pot culture experiment wsa used to evaluate the insecticidal activity of
EDPE against M. crassicauda, S. avenae, A. gossypii, and A. pisum; and the bioactivity-directed
fractionation was also used to identify insecticidal ingredients in this research.

2. Materials And Methods

2.1. Plant materials and Chemicals
The Eleocharis dulcis peel was purchased from An Guo Leng Bei Herbs Corporation (Hebei, China) in May
2019. The plant material was authenticated by Prof. Lihui Zhang (Hebei Agricultural University).

The standard compound of matrine (purity, 96%) was obtained from Shaanxi Tengmai Biotechnology Co.
LTD (China). The 0.5% matrine AS was purchased from Hebei Zhongbao Green Agricultural Crop
Technology Co (China).

2.2 Insects cultures
Megoura crassicauda, Sitobion avenae, Aphis gossypii, and Acyrthosiphon pisum were provided by Plant
Protection Institute, Hebei Academy of Agricultural and Forestry Sciences, China.

S. avenae was raised on wheat (Triticum aestivum L) plantlets in a greenhouse at 21 ± 2°C under a 16:8 h
(L: D) photocycle and 50 ± 5% RH (Wei et al. 2019).

A. gossypii was reared on the cotton (Gossypium spp) seedlings, with the controlled conditions of 23 ± 
2°C, 16:8 h (L: D), and 55 ± 5% RH (Wang et al. 2018).
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M. crassicauda was fed on Vicia faba L seedlings, which were placed at 25 ± 2°C, 55 ± 5% RH, and 16:8 h
(L: D) in the greenhouse. M. crassicauda was used in both indoor and pot culture assays (Yin et al. 2019).

A. pisum was fed on broad bean seedlings, with the greenhouse conditions of 23 ± 2°C, 16:8 h (L: D), 68 ± 
5% RH (Pavela et al. 2013).

2.3. Organic solvent extraction
The air-dried E. dulcis peel (10 kg) was powdered by a pulverizer, and then extracted with 95% industrial
alcohol three times (3 days per time). The ethanol extract was filtered and concentrated to obtain 682.53
g EDPE. The ethanol extract was further extracted with petroleum ether, ethyl acetate and n-butanol, and
the weight of 206.64 g, 60.99 g and 7.99 g were obtained, respectively.

2.4. Petri plate experiments

2.4.1 Topical application method
The aphicidal activities of different extracts, fractions, and partial compounds against M. crassicauda
and A. pisum were determined by the topical application method (Ma et al. 2018). Firstly, The samples
were solubilized with acetone and then diluted with 0.1% tween-80 aqueous solution to obtain the
concentrations of 62.5, 125, 250, 500 and 1000 mg/L, respectively. Secondly, the 0.03 µL micro dropper
was used to drop the sample solution on the pronotum of the M. crassicauda and A. pisum. Matrine was
chosen as a positive control, and the blank control was treated with acetone. Twenty M. crassicauda and
A. pisum were used in every treatment, and three replicates were set for each treatment. After 24 h and 48
h, the number of aphid deaths was checked. Corrected mortality was calculated with the formula:
Corrected mortality (%) = (T1-T0)/(100-T0)×100. Where T1 was the mortality of the treated groups, and T0

refers to the mortality of the control groups.

2.4.2 Leaf-dip method
The toxicity of different extracts and partial compounds to S. avenae and A. gossypii were determined
using a leaf-dip method (Wang et al. 2021). The samples were solubilized with acetone and diluted with
0.1% tween-80 aqueous solution, resulting in the final concentrations of 62.5, 125, 250, 500 and 1000
mg/L, respectively. The wheat leaf containing about sixty S. avenae and the cotton leaf containing about
sixty A. gossypii were dipped into the samples for 10 seconds. The negative control leaves were
immersed in 0.1% tween-80 aqueous solution. The treatment leaves were placed on filter paper to dry
naturally, and then the petioles were wrapped with absorbent cotton balls. The number of S. avenae and
A. gossypii were recorded and transferred to Petri dishes. The Petri dishes were sealed with plastic wrap,
and ventilated with about thirty pinholes. Three replicates were set for each treatment. The formula in
2.4.1 was used to compute mortality after 24 h and 48 h treatment.

2.5. Pot culture assay
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EDPE soluble liquid (SL) was prepared with 25% EDPE, 3% Tween-80, 18% N-methyl pyrrolidone, and 54%
ethanol for pot culture assay against M. crassicauda. The 25% EDPE SL was diluted to the
concentrations of 0.004%, 0.008% and 0.016% (w/v), respectively. The broad bean seedlings with some
M. crassicauda adults were sprinkled with different concentrations of 25% EDPE SL. Commercialized
agent 0.5% matrine aqueous solution (AS) (0.006%, w/v) was utilized as a positive control. After spraying,
the total number of M. crassicauda on each broad bean seedling was assessed on the 1st, 3rd, and 7th
days. The following equation was used to calculate the control effect: control effect (%) = C1/C0 × 100,
where C1 = the decrease rate of the M. crassicauda of a different treatments-the decrease rate of the M.
crassicauda in the blank control, and C0 = 100།the decrease rate of M. crassicauda of the blank control.

2.6. Bioactivity-directed isolation
The bioassay-guided fractionation was used to isolate active compounds. According to the results of
biological activity determination, the active ingredients mainly exist in ethyl acetate extract and petroleum
ether extract. According to TLC (Thin-Layer Chromatography) analysis, seven fractions (P1 to P7) were
obtained by silica gel column elution of the petroleum ether extract with a mixture of a petroleum ether-
ethyl acetate (100:0–0:100).

The highest activity fraction was P4, which was further separated using a gradient mixture of petroleum
ether-ethyl acetate (100:1–5:1). And four compounds 1 (127.35 mg), 2 (37.62 mg), 3 (98.31 mg), 4
(4051.32 mg) were obtained. Seven fractions (E1 through E7) were obtained from ethyl acetate extract,
and the two active fractions E4 and E5 were continued to be isolated, respectively. E4 was separated with
petroleum ether-ethyl acetate (100:1–5:1) to give compound 5 (25.31 mg), compound 6 (105.31 mg) and
compound 7 (43.94 mg). E5 was also used with petroleum ether-ethyl acetate (50:1 − 0:1) to obtain
compounds 7 (25.27 mg), 8 (32.69 mg) and 9 (8.16 mg). The NMR spectra were measured on a Bruker
Avance spectrometer (Bruker, Switzerland) in deuterochloroform (CDCl3). High-resolution mass spectra
(HRMS) were obtained on a Q Exactive Focus LC/MS instrument (Thermo Fisher Scientific, USA).

2.7. Data analysis
Microsoft Excel was used to obtain the corrected mortality of aphids after different sample treatments,
and LC50 and 95% confidence intervals were computed using SPSS 22.0. Differences between treatments
were assessed using a one-way ANOVA followed by Tukey HSD test (P < 0.05).

3. Results

3.1. Aphicidal activity of EDPE
In the petri plate experiments, the E. dulcis peel ethanol extract showed high aphicidal activity against M.
crassicauda, S. avenae, A. gossypii, and A. pisum with LC50 values of 277.86, 245.73, 214.66, and 651.37
mg/L after 24 h treatment, respectively. The LC50 values after 48 h of treatment were 140.31, 95.92,
81.04, and 255.00 mg/L, respectively (Table 1).
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Table 1

Aphicidal activity of E. dulcis peel ethanol extract against M. Crassicauda, S. avenae, A. gossypii and A.
pisum

Insects Method Treatment

time (h)

Toxicity regression
equation (y =)

LC50 (95% CL)
(mg/L)

χ2

S. avenae Leaf-dip 24 -1.39+0.58x 245.73 (149.18-
401.24)

0.26

48 -2.35+1.19x 95.92 (66.43-
125.00)

1.16

A. gossypii Leaf-dip 24 -2.20+0.94x 214.66 (158.33-
284.07)

1.12

48 -2.78+1.46x 81.04 (58.52-
102.93)

0.80

M.
Crassicauda

Topical
application

24 -3.91+1.60x 277.86 (233.87-
332.22)

4.47

48 -3.22+1.50x 140.31 (112.02-
169.68)

1.87

A. pisum Topical
application

24 -3.54+1.26x 651.37 (506.12-
918.326)

1.01

48 -3.22+1.34x 255.00 (208.05-
3131.38)

4.01

LC50 value was determined by log-probit analysis. χ2
0.05 (3) =7.81, χ2 values less than 7.81 were

considered as significant. The same for Table 3 and 5.

In the pot culture assay, 25% EDPE SL exhibited a significant control effect against M. crassicauda, which
was shown in Table 2. The effects of 25% EDPE SL at a concentration of 0.016% were 68.98%, 79.33%
and 88.82% after 1 d, 3 d, and 7 d of sprinkled, respectively. At the concentration of 0.008% of 25% EDPE
SL, the control efficacy was still above 50%. The efficacies of 25% EDPE SL at a concentration of 0.016%
and 0.008% were all significantly higher than those of 0.5% matrine AS (0.006%). The broad bean
seedlings were not affected.

Table 2

The control effect of E. dulcis peel extract (25% SL) against M. Crassicauda in greenhouse
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Treatment Concentration (w/v %) Control effect (%)

1 d 3 d 7 d

EDPE (25% SL) 0.016 68.98± 4.60a 79.33 ± 6.76a 88.82 ± 3.18a

0.008 57.55±3.56b 65.78±5.71b 79.04 ± 3.88b

0.004 32.37 ± 4.72d 38.20 ± 4.47d 42.96 ± 4.99d

Matrine (0.5% AS) 0.006 41.62±6.80c 51.89±10.53c 59.62±10.99c

EDPE, Eleocharis dulcis peel extract. Data in the table are the average of three replications and are
represented as mean ± standard deviation. Values followed by different small letters in the same column
are significantly different at P = 0.05. The same for Table 4.

 

3.2. Aphicidal activity of crude organic extracts and
fractions
The aphicidal activity of different organic extracts against M. crassicauda was showed in Fig. 1. The
petroleum ether extract had the highest contact activity with the corrected mortality rates of 85.96% after
24 h treatment against M. crassicauda. After 48 h treatment, the ethyl acetate and petroleum ether
extracts showed high aphicidal activity, with the result of 82.46% and 92.98%, respectively.

The contact toxicity of petroleum ether and ethyl acetate extracts was further tested, and the results
showed that the LC50 values of the ethyl acetate and petroleum ether extracts against M. crassicauda
were 346.37 and 265.20 mg/L after 24 h treatment, and 151.02 and 173.70 mg/L after treatment 48 h,
respectively. Interestingly, their contact toxicity was all higher than that of commercialized botanical
insecticide matrine (Table 3).

 

Table 3

Contact toxicity of petroleum ether extract and ethyl acetate extract from E. dulcis peel against M.
crassicauda
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Crude
extracts

Treatment Time
(h)

Toxicity regression equation
(y =)

LC50 (95% CL) (mg/L) χ2

Petroleum
ether

24 -3.86+1.60x 265.20 (222.99-
316.73)

5.28

48 -3.72+1.71x 151.02 (124.92-
178.56)

3.26

Ethyl acetate 24 -3.28+1.29x 346.37 (281.38-
437.83)

2.55

48 -3.04+1.36x 173.70 (138.48-
212.08)

1.40

Matrine 24 -3.65+1.17x 1314.40 (904.87-
2388.11)

0.25

48 -3.42+1.22x 656.06 (505.47-
939.76)

0.24

Among the seven fractions of the petroleum ether extract, fraction 4 (P4) showed the highest insecticidal
activity with a 24-h corrected mortality rate of 85.71% and a 48-h corrected mortality rate of 92.73%,
respectively. The highest insecticidal activity of fraction 4 (E4) and fraction 5 (E5) of the ethyl acetate
extract was 81.81% and 78.18% after treatment 48 h, respectively (Fig. 2.).

 

3.3. Identification of active compounds from E. dulcis peel
A total of nine compounds were isolated from E. dulcis peel and the structures were also identified
(Fig. 3). Four compounds were isolated from the crude extract of petroleum ether, and five compounds
were isolated from ethyl acetate extract. They were soluble in chloroform.

4’,5’-Dimethoxy-6,6-dimethylpyranoisoflavone (1): C22H20O5, obtained as white crystal. EI-MS m/z (%):

364.40[M]+. 1H NMR (Chloroform-d, 600 MHz) δ 8.07 (2H, d, J = 8.8 Hz, H-2), 7.97 (2H, s, H-5), 7.21 (2H, d,
J = 2.0 Hz, H-6’), 7.05 (2H, dd, J = 8.2, 2.0 Hz, H-2’), 6.93 (2H, d, J = 8.2 Hz, H-3’), 6.87 (2H, d, J = 8.6 Hz, H-
4’’), 6.81 (2H, d, J = 10.0 Hz, H-6), 5.73 (2H, d, J = 10.0 Hz, H-3’’), 3.92 (3H, s, OCH3), 3.72 (3H, s, OCH3), 1.50

(3H, s, CH3), 1.25 (3H, s, CH3). 13C NMR (Chloroform-d, 151 MHz) δ 175.95 (CO), 157.34 (C-8a), 152.35 (C-
2), 149.14 (C-5’), 148.81 (C-4’), 130.33 (C-1’), 126.70 (C-3’’), 124.76 (C-5), 124.70 (C-3), 121.06 (C-2’),
118.35 (C-4’’), 115.28 (C-4a), 114.93 (C-9), 112.60 (C-6’), 111.21 (C-3’), 109.20 (C-8), 77.75 (C-2’), 58.47 (C-
7), 55.99 (OCH3), 55.97 (OCH3), 39.34 (C-4’’) 29.70 (CH3), 29.37 (CH3). The above data are consistent with
literature report (Ye et al. 2008).

3-Methoxy-4-hydroxylonchocarpin (2): C21H20O5, obtained as pale-yellow needle crystal. EI-MS m/z (%):

352.13[M]+. 1H NMR (Chloroform-d, 600 MHz) δ 7.80 (1H, d, J = 15.4 Hz, H-α), 7.71 (1H, d, J = 8.9 Hz, H-2’),
7.42 (1H, d, J = 15.3 Hz, H-β), 7.28 (1H, d, J = 2.0 Hz, H-2 ), 7.14 (1H, dd, J = 8.4, 2.1 Hz, H-6), 6.88 (1H, d, J 
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= 8.3 Hz, H-5), 6.76 (1H, d, J = 10.0 Hz, H-4’’), 6.38 (1H, d, J = 8.8 Hz, H-3’), 5.59 (1H, d, J = 10.0 Hz, H-5’),
3.95 (OCH3), 1.27 (CH3×2).13C NMR (Chloroform-d, 151 MHz) δ 191.98 (C-β’), 160.95 (C-4’), 159.73 (C-6’),
148.90 (C-3), 146.01 (C-4), 144.15 (C-α), 130.59 (C-2’), 128.62 (C-1), 128.05 (C-5’), 122.79 (C-6), 118.58 (C-
β), 115.95 (C-4’’), 114.14 (C-5), 113.09 (C-1’), 110.63 (C-2), 109.43 (C-3’), 108.23 (C-5’), 77.76 (C-6’’), 56.05
(OCH3), 29.67 (CH3), 28.36 (CH3). The above data are consistent with literature report (Fang and Casida
1999).

4-Hydroxylonchocarpin (3): C20H18O4, obtained as yellow needles. EI-MS m/z (%): 322.12 [M]+. 1H NMR
(Chloroform-d, 600 MHz) δ 7.78 (1H, d, J = 7.5 Hz, H-β), 7.71 (1H, d, J = 15.4 Hz, H-6), 7.65 (1H, d, J = 15.4
Hz, H-2’, 6’), 7.44 (1H, d, J = 15.2 Hz, H-α), 6.88 (2H, d, J = 8.6 Hz, H-3’, 5’), 6.63 (1H, d, J = 10.1 Hz, H-4’’),
6.08 (1H, d, J = 7.5 Hz, H-5), 5.62 (1H, d, J = 10.1, 1.0 Hz, H-5’’), 1.46 (6H, s, CH3×2). 13C NMR (Chloroform-
d, 151 MHz) δ 192.18 (CO), 160.92 (C-4), 159.67 (C-2), 159.31 (C-4’), 144.50 (C-β), 130.61 (C-2’,6’), 128.12
(C-6), 128.57 (C-5’’), 128.33 (C-1’), 117.38 (C-α), 116.11 (C-4’’), 115.97 (C-1), 114.18 (C-3), 109.48 (C-1),
108.22 (C-5), 77.81 (C-6’’), 28.37 (CH3 × 2). The above data are consistent with literature report (Lee et al.
2005).

4-Methoxylonchocarpin (4): C22H22O5, obtained as yellow needles. EI-MS m/z (%): 336.18 [M]+. 1H NMR
(Chloroform-d, 600 MHz) δ 13.78 (1H, br s,-OH), 7.85 (1H, d, J = 15.3 Hz, H-α), 7.72 (1H, d, J = 8.9 Hz, H-2),
7.61 (2H, d, J = 8.8 Hz, H-2), 7.45 (1H, d, J = 15.3 Hz, H-β), 6.94 (2H, d, J = 8.8 Hz, H-3), 6.76 (1H, d, J = 10.7
Hz, H-4), 6.38 (1H, d, J = 9.5 Hz, H-3’), 5.59 (1H, d, J = 10.1 Hz, H-3’’), 3.86 (3H, s, -OCH3), 1.47 (6H, s, CH3×

2). 13C NMR (Chloroform-d, 151 MHz) δ 192.03 (CO), 161.81 (C-4’), 160.96 (C-2’), 159.70 (C-4), 144.13 (C-
19), 130.58 (C-14), 130.34 (C-12,14), 128.09 (C-13), 127.64 (C-3), 117.92 (C-β), 115.97 (C-11), 114.49 (C-3,
5), 114.15 (C-1), 109.46 (C-3), 108.21 (C-5), 77.79 (C-3), 55.45 (OCH3), 28.39 (CH3 × 2). The above data
are consistent with literature report (Su et al. 2012).

Barbigerone (5): C23H22O6, obtained as white powder. EI-MS m/z (%): 394.42 [M]+. 1H NMR (Chloroform-d,
600 MHz) δ 8.05 (1H, d, J = 8.7 Hz, H-2), 7.97 (1H, s, H-5), 7.26 (3H, s, H-6’), 6.95 (1H, s, H-4’’), 6.84 (2H, dd,
J = 20.6Hz, H-6), 6.63 (1H, s,H-3’), 5.72 (1H, d, J = 10.0 Hz, H-3’’), 3.72 (3H, s, OCH3) 1.27 (6H, s, CH3×2).13C
NMR (Chloroform-d, 151 MHz) δ 175.87 (C-4), 157.19 (C-8a), 153.98 (C-2), 152.39 (C-2’), 151.92 (C-4’),
143.09 (C-5’), 130.23 (C-3’’), 126.73 (C-5), 121.55 (C-3), 121.25 (C-4’’), 118.46 (C-4a), 115.41 (C-6’), 115.08
(C-6), 112.29 (C-1’), 109.27 (C-8), 98.39 (C-3’), 77.65 (C-2’’), 56.94 (OCH3), 56.59 (OCH3), 56.20 (OCH3),
29.70 (CH3), 28.12 (CH3). The above data are consistent with literature report (Dagne and Bekele 1990).

Lonchocarpusone (6): C23H22O6, obtained as white powder. EI-MS m/z (%): 394.42 [M]+. 1H NMR
(Chloroform-d, 600 MHz) δ 8.04 (1H, s, H-2), 7.97 (1H, d, J = 8.2 Hz, H-5), 7.55 (1H, s, H-2’), 6.74(1H, d, J = 
8.8Hz, H-6), 6.71(1H, d, J = 8.8Hz, H-4’’), 6.64 (1H, s, H-5’), 5.59 (1H, d, J = 10.1Hz, H-3’’), 3.72 (3H, s, OCH3),
1.47 (6H, s, CH3×2).13C NMR (Chloroform-d, 151 MHz) δ 175.85 (C-4), 157.20 (C-7), 153.97 (C-9), 152.40
(C-2), 151.94 (C-6’), 149.83 (C-4’), 143.14 (C-3’), 130.23 (C-3’’), 126.75 (C-5), 121.56 (C-3), 118.49 (C-1’’),
115.47 (C-2’), 115.08 (C-6), 112.35 (C-1’), 109.28 (C-8), 98.47 (C-5’), 76.81 (C-2’’), 56.95 (OCH3), 56.61
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(OCH3), 56.21 (OCH3), 28.13 (CH3 × 2). The above data are consistent with literature report (Kaouadji et
al. 1986).

6a,12a-Dehydrodeguelin (7): C23H20O6, obtained as white powder. EI-MS m/z (%): 322.12 [M]+.1H NMR
(Chloroform-d, 600 MHz) δ 8.46 (1H, s, H-1), 8.05 (1H, d, J = 8.8 Hz, H-11), 6.88 (1H, d, J = 8.7 Hz, H-10),
6.78 (1H, d, J = 10.0 Hz, H-4’), 6.57 (1H, s, H-4), 5.74 (1H, d, J = 10.1 Hz, H-5’), 5.03 (2H, s, H-6), 3.96 (3H, s,
OCH3), 3.88 (3H, s, OCH3), 1.50 (6H, s, CH3). 13C NMR (Chloroform-d, 151 MHz) δ 182.35 (C-12), 157.29
(C-9), 156.17 (C-6a), 149.14 (C-4a), 144.26 (C-2), 130.60 (C-5’), 126.58 (C-11), 115.44 (C-12a), 114.74 (C-
4’), 114.48(C-10), 112.36 (C-12a),111.86 (C-1a), 109.14 (C-8), 100.56 (C-4), 76.84 (C-6’),64.92 (C-6), 56.39
OCH3), 56.00 (OCH3), 29.71 (CH3), 28.18 (CH3). The above data are consistent with literature report (Ye et
al. 2008).

13-Homo-13-Oxa-6a,12a-dehydrodeguelin (8): C23H20O7, obtained as white powder. EI-MS m/z (%):

408.41 [M]+. 1H NMR (Chloroform-d, 600 MHz) δ 8.05 (2H, d, J = 8.7 Hz, H-11), 7.97 (2H, s, H-4’), 6.95 (1H,
s, H-10), 6.84 (4H, dd, J = 20.3, 9.3 Hz, H-1), 6.63 (1H, s, H-4), 5.72 (1H, d, J = 9.9 Hz, H-5’), 3.87 (3H, s,
OCH3), 1.27 (6H, s, CH3). 13C NMR (Chloroform-d, 151 MHz) δ 171.86 (C-12), 157.54 (C-9), 150.97 (C-7a),
150.52 (C-1a), 145.94 (C-3), 145.65 (C-2), 142.54 (C-4a), 142.07 (C-6a), 140.88 (C-12a),130.44 (C-5’),
126.59 (C-11), 115.26 (C-4’), 114.66 (C-10), 108.91(C-8), 117.46 (C-1), 104.81 (C-4), 77.86(C-6’), 69.63 (C-
6), 56.39 (OCH3), 56.34 (OCH3), 29.70 (CH3), 28.14 (CH3). The above data are consistent with literature
report (Fang and Casida 1997).

Deguelin (9): C23H24O6, obtained as white powder. EI-MS m/z (%): 396.16[M]+. 1H NMR (Chloroform-d,
600 MHz) δ 8.07 (1H, d, J = 8.8 Hz, H-11), 7.97 (1H, s, H-1), 7.21 (1H, s, H-4’), 7.05 (1H, d, J = 8.2 Hz, H-10),
6.93 (1H, d, J = 8.4 Hz, H-4), 6.87 (1H, d, J = 8.8 Hz, H-5’), 6.81 (1H, d, J = 10.0 Hz, H-6a), 5.72 (1H, d, J = 
10.1 Hz, H-6),4.17 (1H, d, J = 12.0 Hz, 12a), 3.81 (6H, d, J = 9.8 Hz, OCH3×2), 1.50 (6H, s, CH3×2). 13C NMR
(Chloroform-d, 151 MHz) δ 175.91 (C-12), 157.37 (C-9), 152.39 (C-7a), 151.90 (C-4a), 149.25 (C-3), 148.93
(C-2), 130.34 (C-5’), 126.75 (C-11), 118.42 (C-4’), 115.26(C-11a), 114.85(C-1), 112.79 (C-10), 111.38 (C-8),
105.70(C-1a), 100.87 (C-4), 77.53 (C-6a), 56.04 (OCH3), 56.02 (OCH3), 28.18(CH3 × 2). The above data are
consistent with literature report (Ye et al. 2008).

3.4. Aphicidal activity of compounds
As shown in Table 4, all nine compounds showed aphicidal activity. Among them, 4-hydroxylonchocarpin
had the highest activity against M. crassicauda, S. avenae, and A. pisum, with the corrected mortality of
88.27%, 84.06%, and 80.25% after 48 h treatment, and its effectiveness is higher than matrine.
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Table 4
 

Crude
extracts

Treatment Time
(h)

Toxicity regression equation
(y =)

LC50 (95% CL) (mg/L) χ2

Petroleum
ether

24 -3.86 + 1.60x 265.20 (222.99-
316.73)

5.28

48 -3.72 + 1.71x 151.02 (124.92-
178.56)

3.26

Ethyl acetate 24 -3.28 + 1.29x 346.37 (281.38-
437.83)

2.55

48 -3.04 + 1.36x 173.70 (138.48-
212.08)

1.40

Matrine 24 -3.65 + 1.17x 1314.40 (904.87-
2388.11)

0.25

48 -3.42 + 1.22x 656.06 (505.47-
939.76)

0.24

Aphicidal activity of compounds from E. dulcis peel extract against M. crassicauda, S. avenae and A.
pisum

The compound deguelin also showed effective aphicidal activity, similar to that of matrine. The corrected
mortalities of the other seven compounds against M. crassicauda were in the range of 26.32–50.87%,
lower than that of the control.

Contact toxicity of the 4-hydroxylonchocarpin, the highest insecticidal active compound, was further
tested and the results were shown in Table 5. 4-Hydroxylonchocarpin had high contact toxicity against M.
crassicauda, S. avenae, and A. pisum, with the LC50 values of 97.24, 140.63, and 112.31 mg/L after 48 h
treatment, respectively.
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Table 5
 

No. Compounds Corrected mortality (%)

M. crassicauda S. avenae A. pisum

24 h 48 h 24 h 48 h 24 h 48 h

1 dimethoxy-6, 6-
dimethylpyranoisoflavone

30.51 ± 
6.24bcde

38.60 
± 4.71b

16.95 
± 
2.36bc

40.35 
± 
2.36bc

23.73 
± 
4.08bc

31.58 ± 
4.08d

2 3-methoxy-4-
hydroxylonchocarpin

28.81 ± 
4.08bcde

49.12 
± 
10.27b

16.07 
± 
2.36bc

33.33 
± 
2.36bc

15.25 
± 2.36c

38.60 ± 
6.24bcd

3 4-hydroxylonchocarpin 82.47 ± 
5.67a

88.27 
± 1.91a

73.99 
± 4.26a

84.06 
± 5.17a

76.19 
± 6.64a

80.25 ± 
5.61a

4 4-methoxylonchocarpin 18.64 ± 
4.08e

33.33 
± 4.71b

8.47 ± 
7.07d

14.03 
± 6.24d

23.73 
± 
4.08bc

35.09 ± 
2.36cd

5 barbigerone 38.98 ± 
4.08b

47.37 
± 4.08b

38.98 
± 
4.08bc

47.37 
± 
4.08cd

13.56 
± 4.08c

26.32 ± 
4.08d

6 lonchocarpusone 20.34 ± 
4.71de

26.32 
± 
10.80b

8.47 ± 
4.08d

13.04 
± 6.24d

22.03 
± 
6.24bc

24.56 ± 
8.50e

7 6a,12a-dehydrodeguelin 23.73 ± 
4.08bcde

35.09 
± 6.24b

27.12 
± 6.24b

38.60 
± 
4.71bc

29.51 
± 
8.16bc

40.35 ± 
4.71bcd

8 13-homo-13-Oxa-6a, 12a-
dehydrodeguelin

22.03 ± 
4.71bc

50.87 
± 9.42b

18.64 
± 
4.08bc

36.84 
± 
4.08bc

18.33 
± 4.71c

28.07 ± 
2.36d

9 deguelin 35.59 ± 
6.24bc

54.39 
± 
6.24ab

27.12 
± 6.23b

47.37 
± 4.08b

27.45 
± 6.24b

38.10 ± 
4.71b

10 matrine 37.29 ± 
4.71bc

59.65 
± 
2.36ab

22.03 
± 
6.24bc

31.58 
± 
7.07cd

30.51 
± 
6.24bc

52.63 ± 
4.08bc

Aphicidal activity of 4-hydroxylonchocarpin from E. dulcis peel extract against M. crassicauda, S.
avenae and A. pisum

4. Discussion
The EDPE showed potent aphidicidal activities against S. avenae, A. gossypii, M. Crassicauda, and A.
pisum both in petri plate and pot culture experiments. Surprisingly, EDPE exhibited stronger or the same
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level of insecticidal activity against aphids compared to other botanical aphidicides. For example,
Parthenium hysterophorus extract showed certain insecticidal activity against Aphis craccivora Koch
(LC50 = 839 mg/L) (Reddy et al. 2017); the LC50 value of Ungernia severtzovii bulb extract against
Schizaphis graminum was 2350 mg/L (Chermenskaya et al. 2012); Angelica archangelica L. extract
exhibited high toxic for the aphids and the LC50 was about 1100 mg/L (Pavela et al. 2013). In this study,
the LC50 value of EDPE against M. Crassicauda was 140.31 mg/L, the effects of 25% EDPE SL at a
concentration of 0.016% was 88.82%. Therefore, EDPE is expected to be exploited as a new botanical
insecticide for aphid control.

During isolation of active compounds of EDPE, nine insecticidal compounds (4’, 5’ -dimethoxy-6, 6-
dimethylpyranoisoflavone, 3-methoxy-4-hydroxylonchocarpin, 4-hydroxylonchocarpin, 4-
methoxylonchocarpin, barbigerone, lonchocarpusone, 13-homo-13-Oxa-6a,12a-dehydrodeguelin, 6a, 12a-
dehydrodeguelin and deguelin) were identified. There are numerous reports on the medicinal activity of
these compounds, for example, 3-methoxy-4-hydroxylonchocarpin showed significant anti-inflammatory
activity (Jeon et al. 2012; Peng et al. 2012); 4-hydroxylonchocarpin have various pharmacological effects,
such as antibacterial, antifungal, antitubercular and antimalarial activities (Kuete et al. 2013; Mbaveng et
al. 2008); 4-methoxylonchocarpin has the potential to attenuate inflammatory diseases including colitis
(Jang et al. 2017); barbigerone has antioxidant activity, antiplasmodial activity, and apoptosis-inducing
effect (Li et al. 2009; Wangensteen et al. 2006); deguelin has been reported as a potential therapeutic
agent of lung cancer (Chun et al. 2003; Clarissa et al. 1997). However, these compounds have been less
reported for agricultural activity studies. Only deguelin has insecticidal activity, with the LC50 value was
about 10 mg/L against Callosobruchus maculatus (Belmain et al. 2012; Zhang et al. 2020). In the present
study, deguelin and 4-hydroxylonchocarpin were found to have high aphicidal activity against S. avenae,
M. Crassicauda, and A. pisum. Considering the structural specificity and high activity of 4-
hydroxylonchocarpin, it has the potential to be used as a lead compound for insecticides.

EDPE and its main constituent are safe for humans and other non-target organisms. E. dulcis is one of
the most popular aquatic vegetables in China and the peel is often discarded when consumed, but
previous studies have demonstrated that E. dulcis peel exhibits good antioxidant activity and has
potential use in food preservation as a natural food additive (Nie et al. 2021; Zhan et al. 2014). The active
substance 4-hydroxytryptamine has pharmacological activity and may be a potential antibacterial drug
against tuberculosis and gonorrhea (Kuete et al. 2013; Mbaveng et al. 2008). This indicates that extracts
from E. dulcis peel may be non-toxic or only slightly toxic to human and non-target species. Thus, EDPE
and 4-hydroxylonchocarpin may contribute to developing environmental safety insecticides to protect
crops from various pests.

5. Conclusion
EDPE has high aphicidal activity against M. Crassicauda, S. avenae, A. gossypii, and A. pisum both in
petri plate and pot culture experiments. Nine ingredients were characterized as 4’, 5’-dimethoxy-6, 6-
dimethylpyranoisoflavone, 3-methoxy-4-hydroxylonchocarpin, 4-hydroxylonchocarpin, 4-
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methoxylonchocarpin, barbigerone, lonchocarpusone, N-pentylaniline, 6a, 12a-dehydrodeguelin, and
deguelin. 4-hydroxylonchocarpin and deguelin are the active components of E. dulcis peel. EDPE and its
main active constituents could be regarded as a prospective source of botanical insecticides for aphid
control.
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Figure 1

Aphicidal activity of different organic extracts of E. dulcis against M. Crassicauda

Figure 2
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Aphicidal activity of different fractions from petroleum ether extract and ethyl acetate extract against M.
crassicauda

Figure 3

The structure of compounds soluble in chloroform isolated from E. dulcis
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