[1] journals.lww.com.
[2] Safavi K. Prevalence of alopecia areata in the First National Health and Nutrition Examination Survey[J]. Arch Dermatol, 1992,128(5):702.
[3] Betz R C, Petukhova L, Ripke S, et al. Genome-wide meta-analysis in alopecia areata resolves HLA associations and reveals two new susceptibility loci[J]. Nat Commun, 2015,6:5966.
[4] Alzolibani A A. Epidemiologic and genetic characteristics of alopecia areata (part 1)[J]. Acta Dermatovenerol Alp Pannonica Adriat, 2011,20(4):191-198.
[5] Strazzulla L C, Wang E, Avila L, et al. Alopecia areata: Disease characteristics, clinical evaluation, and new perspectives on pathogenesis[J]. J Am Acad Dermatol, 2018,78(1):1-12.
[6] Rajabi F, Drake L A, Senna M M, et al. Alopecia areata: a review of disease pathogenesis[J]. Br J Dermatol, 2018,179(5):1033-1048.
[7] Wang E, McElwee K J. Etiopathogenesis of alopecia areata: Why do our patients get it?[J]. Dermatol Ther, 2011,24(3):337-347.
[8] Brzezinska-Wcislo L, Bergler-Czop B, Wcislo-Dziadecka D, et al. New aspects of the treatment of alopecia areata[J]. Postepy Dermatol Alergol, 2014,31(4):262-265.
[9] Islam N, Leung P S, Huntley A C, et al. The autoimmune basis of alopecia areata: a comprehensive review[J]. Autoimmun Rev, 2015,14(2):81-89.
[10] Perera E, Yip L, Sinclair R. Alopecia areata[J]. Curr Probl Dermatol, 2015,47:67-75.
[11] Dainichi T, Kabashima K. Alopecia areata: What's new in epidemiology, pathogenesis, diagnosis, and therapeutic options?[J]. J Dermatol Sci, 2017,86(1):3-12.
[12] Petukhova L, Christiano A M. The genetic architecture of alopecia areata[J]. J Investig Dermatol Symp Proc, 2013,16(1):S16-S22.
[13] Biran R, Zlotogorski A, Ramot Y. The genetics of alopecia areata: new approaches, new findings, new treatments[J]. J Dermatol Sci, 2015,78(1):11-20.
[14] Han Y M, Sheng Y Y, Xu F, et al. Imbalance of T-helper 17 and regulatory T cells in patients with alopecia areata[J]. J Dermatol, 2015,42(10):981-988.
[15] Hamed F N, Astrand A, Bertolini M, et al. Correction: Alopecia areata patients show deficiency of FOXP3+CD39+ T regulatory cells and clonotypic restriction of Treg TCRbeta-chain, which highlights the immunopathological aspect of the disease[J]. PLoS One, 2019,14(9):e222473.
[16] Speiser J J, Mondo D, Mehta V, et al. Regulatory T-cells in alopecia areata[J]. J Cutan Pathol, 2019,46(9):653-658.
[17] Pan F, Yu H, Dang E V, et al. Eos mediates Foxp3-dependent gene silencing in CD4+ regulatory T cells[J]. Science, 2009,325(5944):1142-1146.
[18] Dudda J C, Perdue N, Bachtanian E, et al. Foxp3+ regulatory T cells maintain immune homeostasis in the skin[J]. J Exp Med, 2008,205(7):1559-1565.
[19] Matzinger P. The danger model: a renewed sense of self[J]. Science, 2002,296(5566):301-305.
[20] Sakaguchi S, Yamaguchi T, Nomura T, et al. Regulatory T cells and immune tolerance[J]. Cell, 2008,133(5):775-787.
[21] Petukhova L, Duvic M, Hordinsky M, et al. Genome-wide association study in alopecia areata implicates both innate and adaptive immunity[J]. Nature, 2010,466(7302):113-117.
[22] Koskinen M K, Mikk M L, Laine A P, et al. Longitudinal Pattern of First-Phase Insulin Response Is Associated with Genetic Variants Outside the Class II HLA Region in Children with Multiple Autoantibodies[J]. Diabetes, 2019.
[23] Lempainen J, Harkonen T, Laine A, et al. Associations of polymorphisms in non-HLA loci with autoantibodies at the diagnosis of type 1 diabetes: INS and IKZF4 associate with insulin autoantibodies[J]. Pediatr Diabetes, 2013,14(7):490-496.
[24] Olsen E A, Hordinsky M K, Price V H, et al. Alopecia areata investigational assessment guidelines--Part II. National Alopecia Areata Foundation[J]. J Am Acad Dermatol, 2004,51(3):440-447.
[25] Martinez-Mir A, Zlotogorski A, Gordon D, et al. Genomewide scan for linkage reveals evidence of several susceptibility loci for alopecia areata[J]. Am J Hum Genet, 2007,80(2):316-328.
[26] Perdomo J, Crossley M. The Ikaros family protein Eos associates with C-terminal-binding protein corepressors[J]. Eur J Biochem, 2002,269(23):5885-5892.
[27] Li S, Yao W, Pan Q, et al. Association analysis revealed one susceptibility locus for vitiligo with immune-related diseases in the Chinese Han population[J]. Immunogenetics, 2015,67(7):347-354.
[28] gxreferences.blogspot.com.
[29] Shi Y, Sawada J, Sui G, et al. Coordinated histone modifications mediated by a CtBP co-repressor complex[J]. Nature, 2003,422(6933):735-738.
[30] Koipally J, Georgopoulos K. A molecular dissection of the repression circuitry of Ikaros[J]. J Biol Chem, 2002,277(31):27697-27705.
[31] Hu R, Sharma S M, Bronisz A, et al. Eos, MITF, and PU.1 recruit corepressors to osteoclast-specific genes in committed myeloid progenitors[J]. Mol Cell Biol, 2007,27(11):4018-4027.
[32] Garritano S, Gemignani F, Voegele C, et al. Determining the effectiveness of High Resolution Melting analysis for SNP genotyping and mutation scanning at the TP53 locus[J]. BMC Genet, 2009,10:5.
[33] Liew M, Pryor R, Palais R, et al. Genotyping of single-nucleotide polymorphisms by high-resolution melting of small amplicons[J]. Clin Chem, 2004,50(7):1156-1164.