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Abstract 

In this study, a new continuum traffic model is established in consideration of the diverse reactivity effect that 

emerges from driving attention and the vehicle’s inertia. To instigate this diverse reactivity effect, two new 
functions are introduced, namely, a driver’s sensitivity function relying on the flow field’s instantaneous density 
that follows a reverse tendency of optimal velocity function and an inertial equilibrium velocity function assuming 

the vehicle’s inertia coefficient. Comparative analysis is performed using the proposed model and the conventional 

full velocity difference model. To ascertain the flow field neutralization capability of this model, a neutral stability 

analysis and the attendant neutral stability condition are derived. The complex behavior of the model near the 

critical point is investigated via nonlinear analysis, and the wavy solution of the Korteweg-de Vries–Burgers 

equation is obtained. To verify the analytical solution, a numerical simulation is performed, with the results 

demonstrating excellent agreement with the obtained theoretical results. 

Corresponding author: anowar.math.buet@gmail.com PACS numbers: 89.40.-a (Transportation); 87.15. Aa (Theory 

and modeling; Computer simulation) 

I. Introduction 

The complex behaviors of traffic flow dynamics emerge 

from the driver’s activity, the vehicle’s capability, the 

cooperative or defective neighbor attitude, and the flow field 

circumstances, all of which have drawn the attention of 

scientists concerned with the dynamical behavior of complex 

physics. The multiplex phenomena of the traffic flow field have 

been investigated following two main approaches: (i) the 

Eulerian approach, revealing the whole scenario of the traffic 

flow field based on the laminar fluid flow, and (ii) the 

Lagrangian approach, focusing on each individual vehicle and 

including an offshoot widely used for simulation-based 

research that is termed the cellular automata (CA) traffic model. 

Meanwhile, to investigate the dynamical behavior of the traffic 

flow field, various types of traffic flow models have been 

proposed, including continuum models, [1–6] microscopic 

models, [7–12] lattice hydrodynamic models, [13–17] and 

various CA models [18–23] while considering various effects, 

such as the system time delay effect, the horn effect, the 

heterogeneous vehicle’s effect, and the CA–human-driven 

mixed-flow effect. However, although an array of traffic 

models have already been devised, traffic flow analysis is a 

fundamental aspect of studying the complex behavior of 

nonlinear sciences, and the majority of previous studies are 

largely conventional and straightforward, except for several 

admirable works. [24–31] With this in mind, the focus of the 

present study is on how driving concentration, or the driver’s 
sensitivity, is affected by the density of the instantaneous flow 

field under various inertial opposing forces of acceleration and 

deceleration with vehicles moving along the same roads. 

In the early stages of traffic flow analysis, the traffic flow 

field was treated as a hydrodynamical fluid flow field to 

investigate the field’s complex behavior, with scientists using 

the only available methodology, the so-called macroscopic 

approach, to study the field. In 1955, Lighthill, Whitham, and 

Richards suggested a continuum traffic model, the Lighthill–
Whitham–Richards (LWR) model, [1,2] following the first–
order continuity equation. The dynamical equation of the 

macroscopic LWR traffic model is as follows: 𝜕𝜌𝜕𝑡 + 𝜕(𝜌𝑣)𝜕𝑥 = 0, (1) 

where 𝑥, 𝑡, 𝑣, and 𝜌 are the space, time, velocity, and density 

of the traffic flow field, respectively. 

However, the velocity–density correlations of the LWR 

model, which follow the equilibrium state, appeared 

impractical and, to address this limitation, Payne [3] suggested 

another macroscopic traffic model considering a relaxation 

term, with the governing equation of the traffic model as 

follows: 𝜕𝑣𝜕𝑡 + 𝑣 𝜕𝑣𝜕𝑥 = − 𝜇𝜌𝑇 𝜕𝜌𝜕𝑥 + 𝑣𝑒−𝑣𝑇 , (2) 

where 𝜇 and 𝑇 are the anticipation coefficient and relaxation 

time, respectively. 

Moreover, in 1995, an unrevealed area of the traffic flow 

field was demonstrated by Bando et al., [7] who established a 

new traffic model named the optimal velocity (OV) model from 

the Lagrangian or microscopic standpoint where vehicles are 

investigated individually. The mathematical formulation of the 

OV model is as follows: 
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𝑑𝑣𝑛(𝑡)𝑑𝑡 = 𝑎[𝑉[∆𝑥𝑛(𝑡)] − 𝑣𝑛(𝑡)], (3) 

where 𝑎 is the sensitivity parameter of all drivers; 𝑉(∆𝑥𝑛(𝑡)) 
and 𝑣𝑛(𝑡) are the OV and current velocity of the nth vehicle at 

time 𝑡 , respectively; and ∆𝑥𝑛(𝑡)  is the headway distance 

between the 𝑛 th and 𝑛 + 1 th vehicles at time 𝑡 , which is 

measured using ∆𝑥𝑛(𝑡) = 𝑥𝑛+1(𝑡) − 𝑥𝑛(𝑡). 
Meanwhile, in 1998, Helbing and Tilch [10] modified the 

OV model, in which unrealistic high accelerations and 

deceleration had been identified, by introducing a negative 

velocity difference term, with the improved model termed the 

generalized force model. Although this negative velocity 

difference adequately enhanced the flow field stability, as Jiang 

et al. confirmed, the positive velocity difference is 

supercharged for stabilizing the flow field compared with the 

negative velocity difference. Following this, in 2001, the full 

velocity difference (FVD) model [8] was established, the 

mathematical expression of which is as follows: 𝑑𝑣𝑛(𝑡)𝑑𝑡 = 𝑎[𝑉[∆𝑥𝑛(𝑡)] − 𝑣𝑛(𝑡)] + 𝜆∆𝑣𝑛(𝑡), (4) 

where ∆𝑣𝑛(𝑡) is the velocity difference between the 𝑛th car 

and the 𝑛+1th car at time 𝑡, which is quantified by ∆𝑣𝑛(𝑡) =𝑣𝑛+1(𝑡) − 𝑣𝑛(𝑡), and 𝜆  is another sensitivity coefficient 

different from 𝑎. 

Nevertheless, although the traffic flow field is affected by 

multiple factors, the driver’s attitudes and the vehicle’s 
capabilities are the fundamental elements that have a 

significant effect on the flow field. The driver’s attitudes, 

including “crazy” driving behavior, such as overtaking and 

slow driving, are the main reasons for traffic jams, whereas 

there are no road classifications for individual vehicles, 

especially in densely populated countries such as Bangladesh, 

India, and Indonesia. For the sake of linearity, the conventional 

models and their advocates do not consider the effect of the 

driver’s attitude or, more precisely, how driving attention is 

affected by the instantaneous conditions of the flow field and 

the vehicle’s capabilities when several inertial vehicles share 

the same road. The present study was thus initiated to explore 

the unrevealed aspects of the complex behaviors of the traffic 

flow field. To this end, a continuum traffic flow model is 

developed in this study considering diverse reactivity effects 

that emerge because of varying driving attentiveness with the 

instantaneous density of the flow field when heterogeneous 

inertial vehicles share the same road. These diverse reactivity 

effects are introduced by considering two new functions: the 

driver’s sensitivity function and the inertial equilibrium 

velocity function relying on the density of the flow field and 

the internal inertia of the vehicle. 

The remainder of the paper is organized as follows. 

Section II explains the formulation of the proposed model 

before the linear stability of the model is demonstrated in 

section III. The nonlinear analysis and numerical simulation are 

then outlined in sections IV and V, respectively. Finally, 

section VI concludes the work with the main findings. 

 

II. Diverse Reactivity Traffic Model 

Formulation 

In this section, the new traffic model for the diverse 

reactivity (DR) effect is described in terms of (i) driving 

attention changes with the current density of the flow field and 

(ii) various inertial vehicles sharing the same road. The 

investigation was initially based on the conventional FVD 

model, with the model formulations initially presented in a 

microscopic form to facilitate the understanding before being 

transformed into a continuum system for further investigations. 

The dynamical equation of the DR model in microscopic form 

is as follows: 𝑑𝑣𝑛(𝑡)𝑑𝑡 = 𝑎(∆𝑥𝑛(𝑡)) ∙ [𝑉𝑘[∆𝑥𝑛(𝑡)] − 𝑣𝑛(𝑡)] + 𝜆∆𝑣𝑛(𝑡), (5) 

where 𝑎(∆𝑥𝑛(𝑡))  is the nth driver sensitivity at time t and 𝑉𝑘[∆𝑥𝑛(𝑡)] is the OV of the nth vehicle at time t with k inertial 

effect. 

The model was then converted from the microscopic to the 

macroscopic system using the following transformations: 𝑎(∆𝑥𝑛(𝑡)) → 𝑎(𝜌(𝑡)), 𝑣𝑛(𝑡) → 𝑣(𝑥, 𝑡), 𝑣𝑛+1(𝑡) → 𝑣(𝑥 + ∆, 𝑡), V𝑘[∆𝑥𝑛(𝑡)] → V𝑘(𝜌), V𝑘́[∆𝑥𝑛(𝑡)] → V̅𝑘́(ℎ) → −𝜌2V𝑘́(𝜌), 
(6) 

where 𝑣(𝑥, 𝑡)  and 𝜌(𝑥, 𝑡)  denote the velocity and density, 

respectively, in the continuum system; ℎ = 1𝜌  represents the 

headway gaps; and ∆ is the adjacent distance between two cars. 

Next, the two new functions were introduced, the driver’s 
sensitivity and inertial equilibrium velocity, [32] with the 

formulations of these functions as follows: 𝑎(𝜌) = 𝑎𝑚𝑎𝑥 − 𝑎𝑚𝑎𝑥−𝑎𝑚𝑖𝑛1+exp[20(5𝜌−𝜌𝑚)]  , (7) 

V𝑘(𝜌) = 𝑣𝑓 ∙ [(1 + exp 𝐼𝑘∙(𝜌 𝜌𝑚⁄ −0.25)0.06 )−1 −  3.72 ×10−6], (8) 

where 𝑎𝑚𝑎𝑥 and 𝑎𝑚𝑖𝑛 in Eq. (7) are the upper and lower limit 

of the driver’s sensitivity, respectively; 𝐼𝑘 and 𝑣f in Eq. (8) are 

the inertia coefficient of the nth vehicle and the free flow speed 

of the flow field, respectively; and 𝜌𝑚 and 𝜌 are the maximum 

and instantaneous density, respectively, of the flow field. 

In this formulation, the inertia coefficient range is 𝐼𝑘 =(0, 2), with the following phenomena observed: 
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𝐼𝑘 = {  
  (0, 1);  for high − inertial vehicles  1;  for medium inertial vehicles  (1, 2);  For low − inertial vehicles (9) 

 

(a) 

 

(b) 

 

Fig. 1 (a) Line curve describing the history of the driver’s 
sensitivity corresponding to the flow field density and (b) inertial 

equilibrium velocity profiles. 

Using Taylor’s series expansion, the term 𝑣(𝑥 + ∆, 𝑡) can 

be written in the following form: 𝑣(𝑥 + ∆, 𝑡) = 𝑣(𝑥, 𝑡) + 𝑣𝑥∆ + 12 𝑣𝑥∆2. (10) 

The following expression was obtained by substituting 

Eq. (6) into Eq. (5): 𝜕𝑣𝜕𝑡 + (𝑣 − 𝜆∆) 𝜕𝑣𝜕𝑥 = 𝑎(𝜌) ∙ [ ∑ 𝑤𝑘𝑚𝑘=1 𝑉𝑘(𝜌) − 𝑣] + 𝜆∆22 𝑣𝑥𝑥. 
(11) 

Finally, by combining Eq. (11) and Eq. (1), the final form 

of the DR model was obtained in macroscopic form as follows: 

𝜕𝜌𝜕𝑡 + 𝜌 𝜕𝑣𝜕𝑥 + 𝑣 𝜕𝜌𝜕𝑥 = 0, 
(12) 

 

 

𝜕𝑣𝜕𝑡 + (𝑣 − 𝜆∆) 𝜕𝑣𝜕𝑥 = 𝑎(𝜌) ∙ [ ∑ 𝑤𝑘𝑚𝑘=1 𝑉𝑘(𝜌) − 𝑣] + 𝜆∆22 𝑣𝑥𝑥. 

This presents the mathematical expression of the DR model 

in a continuum system. 

Fig. 1a shows the history of the driver’s sensitivity and the 

change in driving concentration behavior in relation to the flow 

field, whereas Fig. 1b shows the inertial equilibrium velocity 

profiles, introduced considering the vehicle’s internal inertia 

effect. However, a generalized function for several inertial 

vehicles was also introduced, whereas for simplicity, three 

types of inertial vehicles were assumed for further 

investigation: 0 < 𝐼𝑘 < 1 for high-inertial vehicles, 𝐼𝑘 = 1 for 

medium inertial vehicles, and 1 < 𝐼𝑘 < 2  for low-inertial 

vehicles, as shown in Fig. 1b. 

 

III. Linear Analysis 

Neutral stability analysis was conducted to assess the DR 

model, specifically in terms of investigating the flow field 

neutralization capability of the proposed DR model. The DR 

model can be described in vector form, as follows: 𝑯𝑡 + 𝑨𝑯𝑥 = 𝑬, (13) 

where 𝑯 = [𝜌𝑣], 𝑨 = [𝑣 𝜌0 𝑣 − 𝜆∆], 
(14) 𝑬 = [ 0𝑎(𝜌) ∙ [ ∑ 𝑤𝑘𝑚𝑘=1 𝑉𝑘(𝜌) − 𝑣] + 𝜆∆22 𝑣𝑥𝑥]. 

The eigenvalues of A are given by the following: 𝜆1 = 𝑣 and 𝜆2 = 𝑣 − 𝜆∆. (15) 

It was assumed that 𝑣0, 𝜌0, and 𝑎0 are the velocity, density, 

and driver’s sensitivity at the initial state of a homogeneous 

flow field, respectively: 𝜌(𝑥, 𝑡) = 𝜌0, 

 𝑣(𝑥, 𝑡) = 𝑣0, 𝑎(𝑥, 𝑡) = 𝑎0, 

(16) 

Subsequently, the following expression was obtained by 

applying a small disturbance on the uniform flow field: 

(𝜌(𝑥,𝑡) 𝑣(𝑥,𝑡) 𝑎(𝑥,𝑡)) = (𝜌0  𝑣0  𝑎0) + (𝜌̂𝑘 𝑣̂𝑘 𝑎̂𝑘)exp(𝑖𝑘𝑥 + 𝜎𝑘𝑡), (17) 

where 𝜎𝑘 is the frequency of the waves and 𝑘 is the number of 

the wave. 

By simplifying Eq. (17) and Eq. (12), the following 

expression was obtained: (𝜎𝑘 + 𝑣0𝑖𝑘)𝜌̂𝑘 + 𝜌0𝑖𝑘𝑣̂𝑘 = 0, 
(18) 
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𝑎(𝜌0)[ ∑ 𝑤𝑘𝑚𝑘=1 𝑉𝑘′(𝜌𝑜)]𝜌̂𝑘 − [𝑎(𝜌0) − 𝜆∆2(𝑖𝑘)22 + 𝜎𝑘 + (𝑣0 − 𝜆∆)𝑖𝑘] 𝑣̂𝑘 = 0. 

The following quadratic equation could then be obtained 

from Eq. (18): (𝜎𝑘 + 𝑣0𝑖𝑘)2 + (𝜎𝑘 + 𝑣0𝑖𝑘) ∙ [𝑎(𝜌0) + 𝜆∆2𝑘22 −𝜆∆𝑖𝑘] + [𝑎(𝜌0) ∑ 𝑤𝑘𝑚𝑘=1 𝑉𝑘′(𝜌𝑜)] ∙ (𝜌0𝑖𝑘) = 0. 
(19) 

Consider that 𝜎𝑘 = 𝜎1(𝑖𝑘) + 𝜎2(𝑖𝑘)2 +⋯ .or the stable 

flow, both roots of 𝜎𝑘  must contain a negative real term. 

However, the following inequality would be satisfied for the 

stable traffic flow states: 𝑎𝑚𝑎𝑥 − 𝑎𝑚𝑖𝑛 + [1 + 𝑒20(5𝜌−𝜌𝑚)] ∙ [𝑎𝑚𝑎𝑥 + (𝜆∆ +𝜌∑ 𝑤𝑘𝑚𝑘=1 ∙ 𝑉𝑘́(𝜌0))] > 0. 
(20) 

Thus, the following neutral stability condition for the DR 

model was obtained: 𝑎𝑚𝑎𝑥 − 𝑎𝑚𝑖𝑛 = −[1 + 𝑒20(5𝜌−𝜌𝑚)] ∙ [𝑎𝑚𝑎𝑥 +(𝜆∆ + 𝜌∑ 𝑤𝑘𝑚𝑘=1 ∙ 𝑉𝑘́(𝜌0))], (21) 

where the imaginary term of 𝜎𝑘 can be described as follows: 

Im(𝜎𝑘) = −𝑘(𝑣0 + 𝜌∑ 𝑤𝑘𝑚𝑘=1 𝑉𝑘′(𝜌𝑜)) + 𝑜(𝑘3). (22) 

The disturbance progresses from the critical velocity as 

follows: 𝑐(𝜌0) = 𝑣0 + 𝜌∑ 𝑤𝑘𝑚𝑘=1 𝑉𝑘′(𝜌𝑜). (23) 

The neutral stability condition described in Eq. (21) 

illustrates several states of the flow field by following the 

following inequalities: 

i) For the stable state: 𝑎𝑚𝑎𝑥 − 𝑎𝑚𝑖𝑛 > −[1 + 𝑒20(5𝜌−𝜌𝑚)] ∙ [𝑎𝑚𝑎𝑥 +(𝜆∆ + 𝜌∑ 𝑤𝑘𝑚𝑘=1 ∙ 𝑉𝑘́(𝜌0))]. (24) 

ii) For the marginal state: 𝑎𝑚𝑎𝑥 − 𝑎𝑚𝑖𝑛 = −[1 + 𝑒20(5𝜌−𝜌𝑚)] ∙ [𝑎𝑚𝑎𝑥 +(𝜆∆ + 𝜌∑ 𝑤𝑘𝑚𝑘=1 ∙ 𝑉𝑘́(𝜌0))]. (25) 

iii) For the unstable state: 𝑎𝑚𝑎𝑥 − 𝑎𝑚𝑖𝑛 < −[1 + 𝑒20(5𝜌−𝜌𝑚)] ∙ [𝑎𝑚𝑎𝑥 +(𝜆∆ + 𝜌∑ 𝑤𝑘𝑚𝑘=1 ∙ 𝑉𝑘́(𝜌0))]. (26) 

This presents the neutral stability criteria of the proposed 

DR model. 

 

 

 

(a) 

 

(b) 

 

Fig. 2. Phase diagram for the sensitivity–headway space. (a) 

The solid blue line indicates the neutral stability for the DR mode, 

whereas the dashed red line denotes the same for the FVD model, 

and (b) the line curves demonstrated the neutral stability history 

for the DR mode in various state. 

 

Fig. 2 shows the flow field neutralization history, as 

described in Eq. (21), of the conventional FVD model and the 

proposed DR model under various conditions. Here, the DR 

model was not in line with the conventional FVD model in 

terms of identifying the unstable region, suggesting a new 

unstable region on the flow field, whereas most followers of the 

conventional model [33–35] shared the same unstable zones, 

albeit highlighting increases and/or decreases in the instability 

of the flow field. Furthermore, the DR model suggested a 

higher unstable region for the intermediate density and 

identified a highly stable flow for low- and high-density region, 

where a smaller 𝑎𝑚𝑎𝑥 − 𝑎𝑚𝑖𝑛  ensures higher stability of the 

flow field compared with the conventional FVD model, as 

shown in Fig. 2a. The instability of the flow field identified by 

the DR model steadily increased with the increase in the 

proportions of low-inertial and high-inertial vehicles, as shown 

in Fig. 2b. 
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IV. Nonlinear Analysis 

A small disturbance that emerges, i.e., stop-and-go wave 

phenomena, was imposed on the flow field at the initial stage 

to study the complex behavior of the traffic flow. Here, 

nonlinear analysis of the DR model was performed in terms of 

the critical point to observe the flow behavior, with a new 

coordinate system introduced as follows: [36] 𝑧 = 𝑥 − 𝑐𝑡. (27) 

The following equations were obtained by combining Eq. 

(12) and Eq. (27): −𝑐𝜌𝑧 + 𝑞𝑧 = 0, 

(28) −𝑐𝑣𝑧 + (𝑣 − 𝜆∆) =  𝑎(𝜌) ∙ [ ∑ 𝑤𝑘𝑚𝑘=1 𝑉𝑘(𝜌) − 𝑣] + 𝜆∆22 𝑣𝑧𝑧, 

where 𝑞 = 𝜌𝑣  indicates that the traffic flux comes from the 

product of the density and the velocity. The first and second 

derivatives of the flow velocity can be written as follows: 𝑣𝑧 = 𝑐𝜌𝑧𝜌 − 𝑞𝜌𝑧𝜌2 , 

(29) 𝑣𝑧𝑧 = 𝑐𝜌𝑧𝑧𝜌 − 2𝑐𝜌𝑧2𝜌2 − 𝑞𝜌𝑧𝑧𝜌2 + 2𝑞𝜌𝑧𝑧2𝜌3 . 

By substituting Eq. (29) into Eq. (28), the following 

expression was obtained: −𝑐 (𝑐𝜌𝑧𝜌 − 𝑞𝜌𝑧𝜌2 ) + (𝑞𝜌 − 𝜆∆) (𝑐𝜌𝑧𝜌 − 𝑞𝜌𝑧𝜌2 ) = 𝑎(𝜌) ∙ [ ∑ 𝑤𝑘𝑚𝑘=1 𝑉𝑘(𝜌) − 𝑞𝜌] + 𝜆∆22 (𝑐𝜌𝑧𝑧𝜌 − 2𝑐𝜌𝑧2𝜌2 − 𝑞𝜌𝑧𝑧𝜌2 +𝑞𝜌𝑧2𝜌3 ). 

(30) 

The flow flux q can be expressed as follows: 𝑞 = 𝑎(𝜌) ∙ [∑ 𝑤𝑘𝑚𝑘=1 𝑉𝑘(𝜌)] + 𝑏1𝜌𝑧 + 𝑏2𝜌𝑧𝑧. (31) 

By substituting Eq. (31) into Eq. (30), the following 

expression could be obtained: −𝑐 (𝑐𝜌𝑧𝜌 − (𝜌[∑ 𝑤𝑘𝑚𝑘=1 𝑉𝑘(𝜌)]+𝑏1𝜌𝑧+𝑏2𝜌𝑧𝑧)𝜌𝑧𝜌2 ) + (𝜌[∑ 𝑤𝑘𝑚𝑘=1 𝑉𝑘(𝜌)]+𝑏1𝜌𝑧+𝑏2𝜌𝑧𝑧𝜌 − 𝜆∆) (𝑐𝜌𝑧𝜌 − (𝜌[∑ 𝑤𝑘𝑚𝑘=1 𝑉𝑘(𝜌)]+𝑏1𝜌𝑧+𝑏2𝜌𝑧𝑧)𝜌𝑧𝜌2 ) = 𝑎(𝜌) ∙ [∑ 𝑤𝑘𝑚𝑘=1 𝑉𝑘(𝜌) − 𝜌[∑ 𝑤𝑘𝑚𝑘=1 𝑉𝑘(𝜌)]+𝑏1𝜌𝑧+𝑏2𝜌𝑧𝑧𝜌 ] + 𝜆∆22 (𝑐𝜌𝑧𝑧𝜌 − 2𝑐𝜌𝑧2𝜌2 − (𝜌[∑ 𝑤𝑘𝑚𝑘=1 𝑉𝑘(𝜌)]+𝑏1𝜌𝑧+𝑏2𝜌𝑧𝑧)𝜌𝑧𝑧𝜌2 + 2(𝜌[∑ 𝑤𝑘𝑚𝑘=1 𝑉𝑘(𝜌)]+𝑏1𝜌𝑧+𝑏2𝜌𝑧𝑧)𝜌𝑧2𝜌3 ). 

(32) 

The values of 𝑏1 and 𝑏2could be obtained by equating the 

coefficients of 𝜌𝑧 and 𝜌𝑧𝑧, respectively, in Eq. (32) as follows: 𝑏1 = 𝑐𝑎(𝜌) (𝑐 + 𝜆∆) − 1𝑎(𝜌) (2𝑐 + 𝜆∆) ∙ (∑ 𝑤𝑘𝑚𝑘=1 𝑉𝑘(𝜌)) + 1𝑎(𝜌) [∑ 𝑤𝑘𝑚𝑘=1 𝑉𝑘(𝜌)]2, 
(33) 

𝑏2 = 𝜆∆22𝑎(𝜌) [𝑐 − (∑ 𝑤𝑘𝑚𝑘=1 𝑉𝑘(𝜌))]. 
Considering that 𝜌 = 𝜌ℎ + 𝜌̂(𝑥, 𝑡)  is close to the linear 

stability criteria, the following equation could be obtained 

using Taylor’s expansions for neglecting the higher-order terms 

of 𝜌̂: 𝜌(∑ 𝑤𝑘𝑚𝑘=1 𝑉𝑘(𝜌)) ≈ 𝜌ℎ(∑ 𝑤𝑘𝑚𝑘=1 𝑉𝑘(𝜌)) + (𝜌(∑ 𝑤𝑘𝑚𝑘=1 𝑉𝑘(𝜌)))𝜌 │𝜌=𝜌ℎ  𝜌̂ + 12 (𝜌(∑ 𝑤𝑘𝑚𝑘=1 𝑉𝑘(𝜌)))𝜌𝜌 │𝜌=𝜌ℎ  𝜌̂2. 

(34) 

The following expression could be obtained by substituting 

Eq. (34) into Eq. (28) and then transforming 𝜌̂ into 𝜌: −𝑐𝜌𝑧 + [(𝜌(∑ 𝑤𝑘𝑚𝑘=1 𝑉𝑘(𝜌)))𝜌 + (𝜌(∑ 𝑤𝑘𝑚𝑘=1 𝑉𝑘(𝜌)))𝜌𝜌 𝜌] 𝜌𝑧 + 𝑏1𝜌𝑧𝑧 + 𝑏2𝜌𝑧𝑧𝑧 = 0.  
(35) 

The following transformations were performed using Eq. 

(35): 𝑈 = −[(𝜌(∑ 𝑤𝑘𝑚𝑘=1 𝑉𝑘(𝜌)))𝜌 + (𝜌(∑ 𝑤𝑘𝑚𝑘=1 𝑉𝑘(𝜌)))𝜌𝜌 𝜌], 𝑋 = 𝑚𝑥, 𝑇 = −𝑚𝑡. 
(36) 

Then, the following standard Korteweg-de Vries (KdV)–
Burgers equation was obtained after performing the 

transformation: 𝑈𝑇 + 𝑈𝑈𝑥 −𝑚𝑏1𝑈𝑥𝑥 −𝑚2𝑏2𝑈𝑥𝑥𝑥 = 0. (37) 

Finally, the following analytical solution could be obtained 

from the standard KdV–Burgers equation described in Eq. (37): 𝑈 =− 3(−𝑚𝑏1)225(−𝑚2𝑏2) [1 + 2tanh (± −𝑚𝑏110𝑚2) (𝑋 + 6((−𝑚𝑏1)2)25(−𝑚2𝑏2) 𝑇 + 𝜀0)+tanh2 (± −𝑚𝑏110𝑚2) (𝑋 + 6((−𝑚𝑏1)2)25(−𝑚2𝑏2) 𝑇 + 𝜀0) ]. (38) 

where 𝜀0 indicates an arbitrary constant. 
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V. Numerical Simulations 

A numerical simulation was performed to verify the 

analytical solutions of the proposed DR model. The 

discretization process followed to obtain an explicit form of the 

model, with the following equations obtained through 

discretizing Eq. (12): 

𝜌𝑖𝑗+1 = 𝜌𝑖𝑗 + ∆𝑡∆𝑥 𝜌𝑖𝑗(𝑣𝑖𝑗 − 𝑣𝑖+1𝑗 ) + ∆𝑡∆𝑥 𝑣𝑖𝑗(𝜌𝑖𝑗 − 𝜌𝑖+1𝑗 ) (39) 

(a) If 𝑣𝑖𝑗 < 𝑐𝑖𝑗, 𝑣𝑖𝑗+1 = 𝑣𝑖𝑗 − ∆𝑡∆𝑥 𝜌𝑖𝑗(𝑣𝑖𝑗 − 𝑐𝑖𝑗)(𝑣𝑖+1𝑗 − 𝑣𝑖𝑗) + 𝑎(𝜌) ∙ ∆𝑡[∑ 𝑤𝑘𝑚𝑘=1 𝑉𝑘(𝜌𝑖𝑗) − 𝑣𝑖𝑗] + ∆𝑡 𝑐𝑖𝑗 ∆2(∆𝑥)2 (𝑣𝑖+1𝑗 −  2𝑣𝑖𝑗 +𝑣𝑖−1𝑗 ). 
(40) 

(b) If 𝑣𝑖𝑗 < 𝑐𝑖𝑗, 𝑣𝑖𝑗+1 = 𝑣𝑖𝑗 − ∆𝑡∆𝑥 𝜌𝑖𝑗(𝑣𝑖𝑗 − 𝑐𝑖𝑗)(𝑣𝑖𝑗 − 𝑣𝑖−1𝑗 ) + 𝑎(𝜌) ∙ ∆𝑡[∑ 𝑤𝑘𝑚𝑘=1 𝑉𝑘(𝜌𝑖𝑗) − 𝑣𝑖𝑗] + ∆𝑡 𝑐𝑖𝑗 ∆2(∆𝑥)2 (𝑣𝑖+1𝑗 −  2𝑣𝑖𝑗 +𝑣𝑖−1𝑗 ), 
(41) 

where 𝑐𝑖𝑗 = 𝜆𝜌𝑖𝑗. 
At the initial stage, a small disturbance was introduced, 

assuming the average density 𝜌0 , in the flow field using the 

Herrmann–Kerner [32] formula: 𝜌(𝑥, 0) = 𝜌0 + ∆𝜌0 {cosh−2 [160𝐿 (𝑥 − 5𝐿16)] − 14 cosh−2 [40𝐿 (𝑥 − 11𝐿32 )]}, (42) 

where 𝜌0  is the initial flow field density, ∆𝜌0  is the density 

fluctuations, and 𝐿 is the length of the road. 

A cyclic boundary condition was imposed on the numerical 

simulation, which took the following form: 𝜌(𝐿, 𝑡) = 𝜌(0, 𝑡) and 𝑣(𝐿, 𝑡) = 𝑣(0, 𝑡). (43) 

Meanwhile, the following parameter settings were used in 

the simulation:  𝜌𝑚 = 0.2 veh/m , ∆𝜌0 = 0.01 veh/m , ∆𝑥 =100 m , ∆𝑡 = 1 s , 𝑎𝑚𝑎𝑥 = 1.5 , 𝑎𝑚𝑖𝑛 = 0.5 , 𝜆 = 0.5 , 𝐿 =32.2 km , and 𝑣𝑓 = 30 m/s , and 𝐼𝑘 = 1.5 , 1.0 , 0.75  for the 

low-, medium-, and high-inertial vehicles, respectively. 

Fig. 3 shows the results of the comparative analysis of the 

traffic flux fundamental diagrams for the conventional FVD 

model for 𝑎 = 1 and the proposed DR model, with the average 

sensitivity (𝑎𝑚𝑎𝑥+𝑎𝑚𝑖𝑛2 )  = 1, whereas the flow field was 

investigated for 1,000 s. However, various traffic flux 

tendencies of the DR model were observed throughout the flow 

field densities, i.e., the free flow state, metastable state, and 

congested state. In the free flow and metastable states, the 

conventional FVD model (the solid green line) was superior to 

the DR model (blue dashed line) when all the vehicles were 

considered with the same inertia effect for 𝐼𝑘 = 1.0 (medium 

inertial vehicles). This was because several internal noises that 

oppressed the flow efficiency emerged with the DR model for 

the time-varying driver’s sensitivity despite being considered 

homogeneous vehicles, whereas the conventional FVD model 

fully relied on the time-constant driver’s sensitivity and on 

homogeneous vehicles, from which none of the internal noise 

originated on the flow field. By contrast, the DR model 

outperformed the conventional FVD model in the congested 

state. This is feasible since the new driver’s sensitivity function 
ensures higher driving attention in the high-density region to 

avoid collisions by confirming the optimum use of the headway 

gaps in the congested region; this is a major limitation of the 

conventional FVD model because of the time-constant driver’s 
sensitivity. 

 

Fig. 3. Fundamental diagram for traffic flux/flow field 

density of the FVD and DR models under various conditions.  

Further investigations were conducted using the DR model 

to investigate the vehicle’s inertia effects on the traffic flow 

field when several inertial vehicles must share the same road. 

Although various combinations of inertial vehicle proportions 

exist, for simplicity, the simulation relied on three types of 

inertial vehicles: 𝐼𝑘 = 1.5, 1.0, and 0.75 for the low-, medium-, 

and high-inertial vehicles, respectively, that are represented by 

the blue dashed line, the red dotted line, and the orange dashed 

line, respectively, in Fig. 3. This figure demonstrates that the 

traffic flux significantly improved in the metastable and 

congested regions with the increase in the proportions of the 

low- and high-inertial vehicles. Thus, the proposed DR model 

was found to be more efficient for the metastable and congested 

regions than the conventional FVD model. 
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VI. Conclusions 

The present study was designed to assess the complex 

behavior of the traffic flow field in relation to DR effects, 

evolved for time-varying driving attentiveness when several 

inertial vehicles share the same road. A continuum traffic 

model was proposed, termed the DR model, by imposing the 

following effects: (i) driving concentration that was gradually 

enhanced with the increase in flow field density following the 

reverse tendency of the OV function, effect and (ii) the 

vehicle’s internal inertia that depends on the vehicle size and is 

introduced by an inertial equilibrium velocity function 

considering the vehicle’s inertia coefficient effect. Notably, the 

DR model was highly efficient in terms of flow field 

neutralization capability, with the model suggesting a different 

unstable area compared with the conventional FVD model; this 

was confirmed via the neutral stability analysis. Nevertheless, 

it was found that the DR model was inferior in low-density 

regions, whereas it demonstrated a better performance in 

congested regions than the conventional FVD model. To gain a 

better understanding of the complex behavior of the DR model, 

a nonlinear analysis was performed that provided the KdV–
Burgers equation containing a wavy propagation solution for 

the flow field. Finally, a numerical simulation was conducted 

to verify the analytical solutions, with excellent agreement 

between the numerical and analytical results. 
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