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Abstract
Background

Long-term exposure to microgravity during spaceflight has adverse effects on human health including
muscle atrophy, impaired immune function, and alterations in gut microbiome profile. Gut
microorganisms influence a wide range of host biological processes, but their interactions with skeletal
muscle and the immune system under microgravity are not known.

Methods

Rhesus macaques (Macaca mulatta) were subjected to -6° head-down tilted bed rest (HDBR) for 6 weeks.
Fecal samples, skeletal muscle tissue, and peripheral blood mononuclear cells (PBMCs) were collected
for metagenomic, metabolomic, and transcriptomic analyses respectively and further integrated for a
multi-omics analysis.

Results

HDBR resulted in significantly altered taxon abundance in 1 class, 5 orders, 11 families, 55 genera, and
122 species of microbes. We also identified the significantly changed metabolites in atrophied muscles,
including some crucial metabolites (such as L-alanine and L-carnitine) and hub metabolites (such as
pyridoxamine and epinephrine) involved in energy metabolism. Transcriptomic analysis of PBMCs
revealed genes related to leukocyte activation, differentiation, and interleukin-2 production that were
differentially expressed as a result of HDBR exposure. By integrating multi-omics analysis, we identified 3
bacterial genera (Klebsiella, Kluyvera, and Bifidobacterium) that were closely associated with immune
dysfunction and 5 (including Oligella, Sporosarcina, Citrobacter, Weissella, and Myroide) that were
associated with abnormal metabolism of amino acids in atrophied muscles induced by HDBR. Of note,
the reduced abundance of butyrate-producing colon bacteria Eubacterium, Roseburia and their cross-
feeding bacteria Bifidobacteria may contribute to both the impaired immune function and muscle atrophy
caused by HDBR.

Conclusions

We first reported the HDBR-associated changes in gut microbiota composition, metabolomics of skeletal
muscle and transcripts of PBMCs in non-human primate. Particularly, we revealed the underlying
microbiota-muscle and microbiota-immune interactions during simulated microgravity, implicating that
modulation of gut microbiota may represent a new strategy in enhancing crewmembers’ health and
safety during long-term space expeditions.

Background
The harsh environment of space poses a significant physiologic challenge to humans and has hindered
the progress of deep space exploration. Astronauts experience a variety of pathophysiologic changes
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during spaceflight such as space motion sickness [1], spatial disorientation [2], osteoporosis [3], muscle
atrophy [4], and impaired cardiac [5, 6], cognitive [6, 7], and immune [8] functions. The operation of the
International Space Station (ISS) further extended our knowledge of the effects of microgravity on human
health. For example, many astronauts on the ISS reported ocular issues including optic disc edema, globe
flattening, hyperopic shifts, and cotton-wool spots [9]. The National Aeronautics and Space
Administration (NASA) twins study reported increased subfoveal choroidal thickness and peripapillary
total retinal thickness [6]. Recently, a case of venous thromboembolism during spaceflight was also
confirmed by radiologists on earth [10]. Generally, the physiological and functional alterations caused by
spaceflight have been gradually well recognized.

Over the past two decades, a variety of high-throughput omics technologies such as methyl-CpG-binding
domain protein sequencing [11], RNA sequencing [12], mass spectrometry (MS) analysis and
metabolomics [13], have been used to investigate the impact of microgravity on human health. However,
each omics technologies emphasize the role of molecules of their corresponding omic layer, but miss the
complementary effects and interactions between omic layers [14]. Thus, an integrative approach to multi-
omics data analysis is needed to fully elucidate microgravity-induced physiological changes.

The gastrointestinal tract harbors complex communities of microbes that play important roles in
maintaining human health, including energy extraction, vitamin biosynthesis, protection against
pathogens, and development of the innate and adaptive immune systems [15, 16]. Although changes in
the gut microbiome profile in response to microgravity have been reported in both human and rodents [6,
17], how these relate to other microgravity-induced pathophysiologic alterations is unclear. To address
this point, we carried out an integrative multi-omics analysis covering metagenomics of fecal samples,
metabolomics of skeletal muscle and transcripts of peripheral blood mononuclear cells (PBMCs) from
rhesus macaques subjected to -6° head-down tilted bed rest (HDBR). The multi-omics dataset generated
in this study can serve as a resource for future investigations on the effects of microgravity on human
health and may guide the development of potential countermeasures for future spaceflights.

Material And Methods

Animal experiments
A total of 15 healthy male rhesus macaques aged 4–6 years and weighing 4–8 kg were provided by the
Beijing Institute of Xie’erxin Biology Resource (Beijing, China). The animals were acclimatized for
3 months at the Laboratory Animal Center of China Astronaut Research and Training Center prior to being
used in experiments. Ultimately, 5 fully acclimatized rhesus macaques were included in the study and
subjected to 42 days of -6° HDBR as previously described [18]. After the treatment, the animals were
individually housed in stainless steel mesh cages where they were allowed to recover for 32 days. The
animals had free access to food and water and their general health condition was closely monitored for
the duration of the study.

Sample collection
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All biological samples were collected according to protocols approved by the Beijing Genomics Institute
(BGI) Ethics Committee. Under light ketamine sedation, sterile heparinized peripheral blood samples were
obtained from the femoral vein of rhesus macaques before (Pre-3), during (H + 25 and H + 40), and after
(R + 12, R + 24, and R + 32) HDBR at 10:00 a.m. PBMCs were collected by Ficoll-Hypaque density gradient
centrifugation. Fecal samples were also collected from rhesus macaques before (Pre-2), during (H + 16, H 
+ 30, and H + 42), and after (R + 13, R + 17, and R + 28) HDBR (Additional file 1: Figure S1).

Muscle biopsy
Muscle tissue samples were obtained by biopsy as previously described [19]. Briefly, after general
anesthesia with isoflurane, the pre-HDBR muscle tissue sample (Pre-3) was obtained from the left soleus
of rhesus macaques using an open biopsy technique. At the end of HDBR (H + 42), a biopsy was
performed on the right soleus; and 32 days after HDBR, when the pre-HDBR biopsy site in the left soleus
was fully healed, the muscle was biopsied at a different site (R + 32) (Additional file 1: Figure S1). All
muscle samples were immediately frozen in liquid nitrogen after biopsy until use.

Transcriptome analysis
Total mRNA of PBMCs was amplified using oligo (dT) primers and sequenced by Complete Genomics
(San Jose, CA, USA). At least 20 million reads were generated for each sample, and SOAPnuke was used
to filter out those of low quality [20]. HISAT2 was used to map sequence reads to the reference genome
and RNA-Seq by Expectation Maximization was used to calculate fragments per kilobase million (FPKM)
[21]. Spearman correlations between all samples were calculated based on FPKM and were found to be
very high (> 0.95) and biological replicates clustered well together. We used DESeq2 package in R to
identify differentially expressed genes (DEGs), and performed Gene Ontology (GO) analysis for functional
annotation [22].

Metabolome analysis
Metabolite detection was carried out by ultrahigh-performance liquid chromatography (UPLC)-MS. Quality
control samples were included to evaluate data quality, and low-quality samples were removed. Feature
alignment, picking, and identification were performed using Progenesis QI software (Nonlinear Dynamics,
Newcastle, UK). MetaX software was used for data cleaning and statistical analysis [23]. Significantly
altered features (P < 0.05, fold change < 1/1.2 or > 1.2, and variable importance in projection [VIP] > 1)
were identified by combining uni- and multivariate analyses and annotated using Progenesis QI and the
Human Metabolome Database (HMDB) v.3.6 and Kyoto Encyclopedia of Genes and Genomes (KEGG)
database (www.genome.jp/kegg/) [24].

Clusters of co-abundant metabolites in muscle tissue were identified by weighted gene correlation
network analysis (WGCNA) in R package [25]. A soft threshold of β = 9 for muscle features was selected
by scale-free topology analysis for signed, weighted features co-abundance correlation network
construction. A dynamic hybrid tree-cutting algorithm with deepSplit = 4 and a minimum cluster size of 30

http://www.genome.jp/kegg/
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was used for cluster identification. If the biweight mid-correlation between 2 clusters’ eigenvectors was > 
0.8, they were considered similar and were merged. Muscle feature clusters were labeled as M1–M6.

Metagenome analysis
Raw reads sequenced on the Illumina HiSeq 2000 platform (Expression Analysis, San Diego, CA, USA) at
BGI were filtered to remove adapter contamination, low-quality reads, and host genomic DNA (rhesus
macaque, assembly Mmul_8.0.1, National Center for Biotechnology Information [NCBI]). The remaining
high-quality reads were assembled using metaSPAdes v.3.10.1 [26]. Open reading frames (ORFs) in
contigs of each sample were determined using GeneMark v.2.7 [27]. The nonredundant gene set of all
ORFs was clustered using CD-HIT v.4.5.7 based on the nucleotide sequence with thresholds of 95%
identity and 90% coverage [28]. Taxonomic annotation of gene sets was carried out using CARMA3 based
on BLASTP alignment with bacteria and archaea genes from the NCBI-NR database [29]. The gene set
was also annotated against the KEGG v.59 database using BLAST v.2.2.23.

Gene abundance was calculated based on SOAP2 alignment and species abundance and functional
profiles were summarized from their respective genes [30]. The differential alpha diversity, species, and
KEGG orthologs (KOs) at different time points were calculated with the Kruskal–Wallis test using R
software (https://www.r-project.org/). Spearman’s correlation coefficient was used to evaluate the
relationship between different genera and KOs or metabolic features according to their abundance.

Results

HDBR-associated changes in gut microbiome profile
To investigate the effect of HDBR on the gut microbiome, we carried out metagenome sequencing of 35
gut samples of rhesus macaque collected at 7 time points throughout the whole experiment (Additional
file 1: Figure S1). A total of 286.86 Gb of raw data were generated; after removing low-quality and host
reads, 275.99 Gb of high-quality data were obtained (average of 7.89 Gb per sample) (Additional file 2:
Table S1). We constructed a reference library of the rhesus macaque gut metagenome using all of the
samples (Additional file 3: Table S2); 63.10%, 21.00%, and 2.43% of the genes were annotated at the
phylum, genus, and species levels, respectively, and 45.51% were annotated to 6631 KOs. Firmicutes and
Bacteroidetes were the predominant phyla while Prevotella and Clostridium were the predominant genera
(Fig. 1A, B). Genes related to metabolism constituted the largest proportion of total genes in the KEGG
pathway analysis (Fig. 1C). 95.58% of KO functions and 49.48% of genera were shared between rhesus
macaque and human gut gene catalogs (Additional file 4: Figure S2).

To identify microbial taxa affected by spaceflight, we compared pre-HDBR (control) and HDBR as well as
HDBR and post-HDBR (recovery) gut microbiome profiles with the Kruskal–Wallis test. A number of
bacterial taxa were significantly different between control and HDBR samples (1 class, 5 orders, 11
families, 55 genera, and 122 species), and some of these showed the reverse trend during recovery period
(1 class, 1/5 orders, 3/11 families, 24/55 genera, and 72/122 species) (Additional file 5: Table S3). For
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example, the abundance of Acinetobacter and Lactococcus, two genera involved in the regulation of
inflammation and protection against infections, was decreased by HDBR but returned to the baseline (pre-
HDBR) level after 17 days of recovery (Fig. 2A). However, the abundance of some genera was not restored
even after 28 days of recovery; for example, the level of Bifidobacterium, a beneficial gut bacterium,
decreased continuously throughout the experiment (Fig. 2A).

We also identified 537 KOs with significantly altered abundance assigned to 139 genera, of which 27
were significantly altered throughout the experiment (P < 0.05). A correlation analysis showed that 44.76%
of pairwise correlations between KOs and specific genera were positive while 3.38% were negative (R2 > 
0.3, P < 0.05) (Fig. 2B). For example, a higher abundance of Myroides and Acinetobacter was associated
with increased representation of K00121, K00151, K00276, K00451, and K01555, which are involved in
tyrosine metabolism, indicating that changes in the abundance of specific genera are associated with
altered gut microbial function during HDBR.

Metabolic profile associated with HDBR in skeletal muscle
To investigate the metabolic signature associated with HDBR in greater detail, we carried out a UPLC–
MS-based metabolomic analysis to quantify metabolites in skeletal muscle tissue of rhesus macaque
before, during, and after HDBR (Additional file 1: Figure S1 and Additional file 6: Table S4). We identified
356, 287, and 100 differentially abundant features (DAFs) in the HDBR vs control, HDBR vs recovery, and
recovery vs control comparisons, respectively (P < 0.05, fold change > 1.2, VIP > 1) (Additional file 7: Figure
S3A). We focused on the 154 DAFs that were significantly altered in HDBR relative to the control and
recovery samples (P < 0.05) (Additional file 7: Figure S3B). In the KEGG pathway analysis, the top 5 most
affected pathways were tyrosine metabolism; biosynthesis of amino acids; protein digestion and
absorption; alanine, aspartate, and glutamate metabolism; and tryptophan, consistent with accelerated
protein degradation occurring in HDBR-induced muscle atrophy (Additional file 8: Table S5).

In addition, the interaction of these DAFs was evaluated by WGCNA. We classified 552 DAFs in muscle
into 6 modules (Fig. 3A). DAFs involved in tyrosine metabolism (mcc00350) were mainly distributed into
3 modules (M1, M5, and M6) (Fig. 3B, C). DAFs in M1 showed co-abundance in muscle that the levels of
all of these metabolites were decreased during HDBR but were reversed in the recovery group (Fig. 3D, E).
Consistent with the known metabolic and functional changes in skeletal muscle under microgravity, the
DAFs in M1 contained some critical amino acids involved in gluconeogenesis (eg, L-alanine [KEGG
compound C00041, HMDB00161]) and fatty acid transport (eg, L-carnitine [C00318, HMDB00062])
(Fig. 3F). Notably, we identified epinephrine (C00788, HMDB00068) as the hub metabolite of M1
(Fig. 3G). Pyridoxamine (C00534, HMDB01431), a form of vitamin B6 that participates in free radical
scavenging, was identified as the hub metabolite of M6 (Fig. 3G).

Transcriptional signature associated with HDBR in PBMCs
We collected PBMCs from 5 rhesus macaques throughout the experiment to evaluate the effect of HDBR
on gene expression in immune cells (Additional file 1: Figure S1). A total of 779.09 Mb reads were
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obtained at 6 time points (Additional file 9: Table S6). By comparing every two time points (fold change > 
2 and P < 0.05) and removing duplicate genes, we detected 65 DEGs (Additional file 10: Figure S4A) that
were significantly enriched in 44 biological processes (P < 0.05); 41 were related to immune regulation
including leukocyte activation (GO:0002694), T cell differentiation (GO:0045580), and interleukin (IL)-2
production (GO:0032663) (Additional file 10: Figure S4B and Additional file 11: Table S7). DEGs
associated with these biological processes were mainly downregulated by HDBR, which is consistent with
previous findings that immune function was impaired by simulated or actual microgravity [8, 31].

Integrated analysis of -omics data
To clarify the functional implications of microgravity-associated changes in gut microbiome profile, we
performed a multi-omic analysis of combined metagenomic, transcriptomic, and metabolomic data from
fecal samples, PBMCs, and muscle tissue, respectively. As shown in Fig. 4, 16 of the 27 genera that were
differentially represented in fecal samples during HDBR were closely associated with 27 of the 65 DEGs
in PBMCs, with Klebsiella, Kluyvera, and Bifidobacterium showing the highest correlations. More
specifically, Bifidobacterium abundance was positively correlated with the expression of
ENSMMUG00000015297 (cluster of differentiation [CD]69), ENSMMUG00000045565 (DNA damage-
inducible transcript [DDIT]4), ENSMMUG00000010956 (suppressor of cytokine signaling [SOCS]1),
ENSMMUG00000008869 (TNF alpha-induced protein [TNFAIP]3), and ENSMMUG00000011607 (nuclear
receptor subfamily 4 group A member [NR4A]2) and negatively correlated with ENSMMUG00000005738
(N-acetyltransferase [NAT]9) and ENSMMUG00000005325 (solute carrier family 5 member 10
[SLC5A]10). Some intestinal bacteria were associated with specific gene in host PBMCs. For example, the
abundance of Delftia, Stenotrophomonas, Acinetobacter, and Comamonas was positively correlated with
ENSMMUG00000038412 (docosahexaenoic acid omega-hydroxylase CYP4F3, LOC718349) and
negatively correlated with ENSMMUG00000010256 (early growth response [EGR]2) and
ENSMMUG00000008817 (zinc finger protein [ZNF]441).

By integrating metagenomic data from fecal samples and metabolomic data from atrophied muscle, we
found that 25 of the 27 differentially represented genera were closely correlated with 174 of 372
differentially expressed metabolites in muscle (Fig. 5), with Oligella, Sporosarcina, Citrobacter, Weissella,
and Myroide showing the highest correlations. Notably, the abundance of Oligella was positively
correlated with up to 45 metabolites and negatively correlated with 12 metabolites; and that of Myroide
was negatively correlated with leucodopachrome (C05604, HMDB04067) and dopaquinone (C00822,
HMDB01229), which are involved in tyrosine metabolism (mcc00350). Some bacterial genera were
closely correlated with crucial metabolites identified in HDBR-induced muscle atrophy. For example, the
abundance of Oligella was positively correlated whereas that of Citrobacter was negatively correlated
with l-alanine; Lactococcus showed a positive correlation with L-carnitine; and Providencia was positively
correlated with p-cresol (C01468, HMDB01858), a metabolite of tyrosine (Fig. 5).

Microbiota-derived short-chain fatty acids (SCFAs) are thought to mediate interactions between gut
bacteria and other tissues [32, 33]. For example, butyrate-a major SCFA produced by these
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microorganisms-prevents excessive inflammation by stimulating the function of M2 macrophages and
regulatory T cells and inhibiting neutrophil infiltration [34]; moreover, administration of butyrate was
shown to increase muscle mass and cross-sectional area in aged mice [35]. The abundance of butyrate-
producing colon bacteria such as Eubacterium and Roseburia spp. and their cross-feeding bacteria
Bifidobacterium was reduced during HDBR, suggesting that a lower level of butyrate may contribute at
least in part to the impaired immune function and muscle atrophy caused by HDBR (Additional file 12:
Figure S5). 3-Hydroxyphenylacetate can be transformed into 3,4-dihydroxybenzeneacetic acid (3,4DPHAA;
C01161, HMDB01336)-a metabolite involved in tyrosine metabolism in skeletal muscle-by the enzyme 4-
hydroxyphenylacetate 3-monooxygenase (EC: 1.14.14.9), which is produced by Providencia rettgeri.
3,4DPHAA level was increased during HDBR and returned to the baseline level during the recovery phase,
reflecting the changes in P. rettgeri abundance in the gut and suggesting that this bacterium influences
tyrosine metabolism in HDBR-induced muscle atrophy via 3,4DPHAA (Additional file 12: Figure S5).
Besides, tryptophan 2,3-dioxygenase (EC: 1.13.11.11) produces N′-formylkynurenine (C02700,
HMDB60485); which is transformed into formylanthranilic acid (C05653, HMDB04089) involved in
tryptophan metabolism by kynureninase (EC: 3.7.1.3). Both tryptophan 2,3-dioxygenase and
kynureninase are produced by gut microbes, such as Myroides and Comamonas, that showed significant
changes in abundance during HDBR (Additional file 12: Figure S5). Collectively, these findings indicate
that changes in microbiota community composition influence amino acid metabolism in skeletal muscle
as well as immune function in rhesus macaque exposed to HDBR.

Discussion
It is well established that long-term spaceflight results in a broad spectrum of deleterious effects on
human health. For example, the homeostasis of intestinal microbiota had been reported to be disturbed
both in humans and rodents exposed to microgravity [6, 17], however, the former human study involved
only a single set of twins, while the findings of the latter were not fully applicable to humans because of
interspecies physiologic differences. Given the limited availability of biological samples from astronauts,
more animal studies-especially in nonhuman primates-are needed to clarify the impact of microgravity on
physiologic functions in mammals. In this study, we performed a longitudinal analysis of changes in the
gut microbiome in response to HDBR. Consistent with the findings from the NASA twins study [36, 37],
microgravity induced a decrease in the abundance of beneficial gut bacteria such as Bifidobacterium and
an increase in that of opportunistic pathogens such as Escherichia coli; the lower abundance of
Bifidobacterium during HDBR was also observed in fecal samples and continued to decrease during the
28-day recovery period. However, HDBR does not fully simulate the environmental conditions encountered
during spaceflight and has relatively modest effects on the gut microbiome. HDBR caused no changes at
the phylum level, and only 1 class showed differential abundance in fecal samples of rhesus macaque. In
contrast, a 1-year spaceflight altered the abundance of 3 phyla and 3 classes of bacteria in the fecal
microbiome of astronauts. Surprisingly, HDBR in rhesus macaque produced more differentially abundant
families (11 vs 8), genera (55 vs 13), and species (122 vs 36) than did microgravity in humans. Given that
microbiota community composition is strongly influenced by diverse factors such as diet, lifestyle, and
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medication use, we speculate that the specific diet and nutritional supplementation for astronauts may
alleviate the negative effects of microgravity on gut microbiome composition, especially from family level
to species level.

In addition to nutrient absorption, intestinal microorganisms maintain human health through bidirectional
interactions with host biological processes including the immune system [38, 39]. Studies in pathogen-
free or gnotobiotic animals have demonstrated that the intestinal immune system influences the
compartmentalization of commensal microbiota and microbial community composition; reciprocally, gut
bacteria affect the development of organized lymphoid structures and intestinal and systemic immune
cell function [38, 39]. In this study, HDBR reduced the abundance of butyrate-producing colon bacteria
including Eubacterium, Roseburia, and Bifidobacterium. The SCFA butyrate is believed to mediate
communication between commensal bacteria and the immune system [33]. It suppresses the production
of proinflammatory cytokines released by M1 macrophages and neutrophils while activating Tregs,
stimulating the production of the anti-inflammatory cytokine IL-10, and increasing the expression of
interferon (IFN)-γ and granzyme B in cytotoxic T lymphocytes and Tc17 cells [34, 40]. As simulated or
actual microgravity can weaken immune function and increase susceptibility to infection as a result of
reduced lymphocyte proliferation and IFN-γ production [8], the reduced abundance of butyrate-producing
microbiota may contribute to the immune dysfunction caused by HDBR. Besides Bifidobacterium, we also
found that Klebsiella and Kluyvera were closely associated with immune dysfunction. Klebsiella species
causes infections such as pneumonia, urinary tract infections (UTIs), bloodstream infections, and sepsis
[41]; and Kluyvera is a potentially pathogen that infects hosts under various conditions [42]. It remains to
be determined how changes in the abundance of these two genera influence host susceptibility to
infection.

The relationship between intestinal microbiota community composition and skeletal muscle has recently
been investigated [43, 44]. Reduced muscle mass was shown to be closely correlated with a specific gut
microbiome signature [43–45]. For example, muscle atrophy in ghrelin-null mice was accompanied by
selective depletion of butyrate-producing bacteria such as Clostridium XIVa and Roseburia [44], and there
is evidence for an association between frailty and reduced abundance of butyrate-producing bacteria
[46]. The administration of probiotics such as Lactobacillus reuteri and Faecalibacterium has been
shown to alleviate the loss of muscle mass [47–49]. Butyrate treatment was also found to increase
muscle mass and cross-sectional area in aged mice [35]. Based on these previous findings, it is
reasonable to come to the conclusion that muscle atrophy caused by HDBR can be partly attributed to the
reduced abundance of butyrate-producing bacteria. Five other bacterial genera (Oligella, Sporosarcina,
Citrobacter, Weissella, and Myroide) that have been mainly implicated in UTIs were closely related to
abnormal metabolism of amino acids in HDBR-induced muscle atrophy, although the mechanistic basis
for this association is unclear. We speculate that intestinal mucosal barrier disruption and enhanced
intestinal permeability under microgravity results in the release of LPS and proinflammatory cytokines by
these pathogens, which may promote muscle atrophy [36]. Supporting this possibility, bacteria-derived
indoxyl sulfate was reported to enhance the expression of myostatin and atrogin-1 in atrophic skeletal
muscle [50].
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Conclusions
In summary, we described microbiota–immune/–muscle interactions in rhesus macaque under
simulated microgravity using a multi-omics approach. Despite the phylogenetic proximity, our results may
not be completely recapitulated in human. Nevertheless, our research has extended our understanding of
the effects of gut microbiota on host physiology under microgravity and provided us with a new strategy
to enhance astronauts’ adaptation in space, for instance, increasing the abundance of butyrate-producing
microorganisms in the intestine during space missions through dietary supplementation.
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Figure 1

Taxonomic annotation of the 3.2 Mb rhesus macaque intestinal microbiota gene catalog. (A) Top 5
abundant phyla. (B) Top 16 abundant genera. (C) KEGG functional categories of DEGs associated with
HDBR; x and y axes show the number of genes and KEGG pathways, respectively.



Page 18/23

Figure 2

Representative gut bacteria altered by HDBR and association of differentially abundant bacterial genera
with differentially represented KOs. (A) Boxplots of the abundance of Acinetobacter, Lactococcus, and
Bifidobacterium. The x and y axes show different time points and abundance (log10) of each genera,
respectively. For each interquartile range (IQR), the first and third quartiles are shown as boxes and the
line inside the box is the median. Data points (circles) outside of the whiskers are the lowest or highest
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values within 1.5 times the IQR. *P<0.05, **P<0.01 compared with P-2 by Wilcoxon test; #P<0.05,
##P<0.01 compared with H+16 by Wilcoxon test. (B) Spearman correlation coefficient heatmap (P<0.05)
of 27 differentially abundant genera (x axis) and 442 differentially represented KOs (y axis). Red and blue
represent significantly positive and negative correlations, respectively, and blank areas indicate that there
is no significant correlation.

Figure 3
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WGCNA of metabolites in atrophied muscle caused by HDBR. (A) Dendrogram of 552 muscle DAFs
clustering into 6 modules (M1–M6 colored turquoise, yellow, red, green, blue, and brown; the gray module
includes DAFs that did not meet the clustering criteria). (B) Significantly altered metabolites involved in
the tyrosine metabolism pathway. Five metabolites in M1 that decreased in abundance during HDBR and
increased during recovery are colored in turquoise; 3 metabolites in M5 showing the opposite change are
colored in blue; and 3 metabolites in M6 showing a similar change to M1 are colored in brown. The 5
remaining metabolites colored in gray did not show differential abundance. (C). Abundance of
metabolites shown in Figure 2B. *P<0.05 vs control group. (D) Heatmap of DAFs in M1 downregulated
during HDBR and upregulated during recovery in muscle. (E) Correlation of all muscle DAFs in M1
showing good similarity. M1–M6 are colored as in panel A. (F) Abundance of L-alanine and L-carnitine in
HDBR-induced muscle atrophy. *P<0.05 vs control group. (G) Epinephrine and pyridoxamine were
identified as hub metabolite for M1 and M6, respectively. Correlations of M1 and M6 DAFs were
calculated by WGCNA; a larger node size indicates a greater number of neighbors for the node.
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Figure 4

Spearman’s rank correlations between differentially abundant intestinal bacteria and DEGs in PBMCs
during HDBR. The x and y axes show the 16 genera and 27 DEGs that were significantly correlated (R2>0
and P<0.05). Red and blue colors represent positive and negative correlations, respectively, and gray
indicates that there is no significant correlation.
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Figure 5

Spearman’s rank correlation between differentially abundant intestinal bacteria and metabolites in
muscle. The x and y axes represent 25 genera and 174 metabolites with significant correlations (R2>0
and P<0.05). Red and blue represent positive and negative correlations, respectively, and white indicates
that there is no significant correlation.
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