Alexopoulos C, Mims C, Blackwell M (1996) Introductory mycology, 4th edn. NY John Wiley and Sons, New York
Barlocher F (1992) The ecology of aquatic hyphomycetes. Springer-Verlag, Berlin
Barlocher F (2010) Molecular approaches promise a deeper and broader understanding of the evolutionary ecology of aquatic hyphomycetes. J North Am Benthol Soc 29:1027–1041. https://doi.org/10.1899/09-081.1
Barros J, Seena S (2022) Fungi in Freshwaters : Prioritising Aquatic Hyphomycetes in Conservation Goals
Baschien C, Tsui CKM, Gulis V, et al (2013) The molecular phylogeny of aquatic hyphomycetes with affinity to the Leotiomycetes. Fungal Biol 117:660–672. https://doi.org/10.1016/j.funbio.2013.07.004
Baschien, Marvanová L, Szewzyk U (2006) Phylogeny of selected aquatic hyphomycetes based on morphological and molecular data. Nov Hedwigia 83:311–352. https://doi.org/10.1127/0029-5035/2006/0083-0311
Belliveau MJR, Bärlocher F (2005) Molecular evidence confirms multiple origins of aquatic hyphomycetes. Mycol Res 109:1407–1417. https://doi.org/10.1017/S0953756205004119
Berbee M, Taylor J (2001) Fungal molecular evolution: gene trees and geologic time. In: Systematics and evolution. Springer, pp 229–245
Bruns TD, White TJ, Taylor JW (1991) Fungal molecular systematics. Annu Rev Ecol Syst 22:525–564. https://doi.org/10.1146/annurev.es.22.110191.002521
Campbell J, Marvanová L, Gulis V (2009) Evolutionary relationships between aquatic anamorphs and teleomorphs: Tricladium and Varicosporium. Mycol Res 113:1322–1334. https://doi.org/10.1016/j.mycres.2009.09.003
Campbell J, Shearer C, Marvanová L (2006) Evolutionary relationships among aquatic anamorphs and teleomorphs: Lemonniera, Margaritispora, and Goniopila. Mycol Res 110:1025–1033. https://doi.org/10.1016/j.mycres.2006.04.012
Chauvet E (1991) Aquatic Hyphomycete Distribution in South-Western France. J Biogeogr 18:699. https://doi.org/10.2307/2845551
Chiva S, Garrido-Benavent I, Moya P, et al (2019) How did terricolous fungi originate in the Mediterranean region? A case study with a gypsicolous lichenized species. J Biogeogr 46:515–525. https://doi.org/10.1111/jbi.13519
Descals E (1997) Ingoldian Fungi: some field and laboratory techniques. Bolletí la Soc d’Història Nat les Balear 169–222
Descals E (2005) Techniques for handling Ingoldian fungi. Methods to Study Litter Decompos A Pract Guid 129–141. https://doi.org/10.1007/1-4020-3466-0_19
Descals E, Marvanová L, Webster J (1998) New taxa and combinations of aquatic hyphomycetes. Can J Bot 76:1647–1659. https://doi.org/10.1139/b98-111
Dong W, Wang B, Hyde KD, et al (2020) Freshwater Dothideomycetes. Springer Netherlands
Duarte S, Barlocher F, Cássio F, Pascoal C (2014a) Current status of DNA barcoding of aquatic hyphomycetes. Sydowia 66:191–202
Duarte S, Bärlocher F, Pascoal C, Cássio F (2016) Biogeography of aquatic hyphomycetes: Current knowledge and future perspectives. Fungal Ecol 19:169–181. https://doi.org/10.1016/j.funeco.2015.06.002
Duarte S, Bärlocher F, Trabulo J, et al (2014b) Stream-dwelling fungal decomposer communities along a gradient of eutrophication unraveled by 454 pyrosequencing. Fungal Divers 70:127–148. https://doi.org/10.1007/s13225-014-0300-y
Duarte S, Batista D, Bärlocher F, et al (2015) Some new DNA barcodes of aquatic hyphomycete species. Mycoscience 56:102–108. https://doi.org/10.1016/j.myc.2014.04.002
Duarte S, Cássio F, Pascoal C (2017) Environmental drivers are more important for structuring fungal decomposer communities than the geographic distance between streams. Limnetica 36:491–506. https://doi.org/10.23818/limn.36.17
Duarte S, Seena S, Bärlocher F, et al (2012) Preliminary Insights into the Phylogeography of Six Aquatic Hyphomycete Species. PLoS One 7:. https://doi.org/10.1371/journal.pone.0045289
Felsenstein J (1985) Confidence Limits on Phylogenies: An Approach Using the Bootstrap. Evolution (N Y) 39:783. https://doi.org/10.2307/2408678
Fernandes I, Pereira A, Trabulo J, et al (2015) Microscopy- or DNA-based analyses: Which methodology gives a truer picture of stream-dwelling decomposer fungal diversity? Fungal Ecol 18:130–134. https://doi.org/10.1016/j.funeco.2015.08.005
Ferreira V, Gulis V, Pascoal C, Graça MAS (2014) Stream pollution and fungi. In: Jones E.B.G., Hyde K.D. PKL (ed) Freshwater fungi and fungal-like organisms, De Gruyter. pp 389–412
Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes - application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118. https://doi.org/10.1111/j.1365-294X.1993.tb00005.x
Gessner M, Gulis V, Kuehn K, et al (2007) Fungal decomposers of plant litter in aquatic ecosystems. In: Kubicek C, Druzhinina I (eds) The Mycota: environmental and microbial relationships. Springer, Berlin, pp 301–321
Gordillo A, Decock C (2019) Multigene phylogenetic and morphological evidence for seven new species of Aquanectria and Gliocladiopsis (Ascomycota, Hypocreales) from tropical areas. Mycologia 111:299–318. https://doi.org/10.1080/00275514.2018.1548863
Graça MAS, Canhoto C (2006) Leaf litter processing in low order streams. Limnetica 25:1–10
Gulis V, Marvanová L, Descals E (2020) An illustrated key to the common temperate species of aquatic hyphomycetes. In: Graça MAS, Bärlocher F, Gessner MO (eds) Methods to study litter decomposition: a practical guide., Springer N. pp 223–239
Gulis V, Su R, Kuehn KA (2019) Fungal decomposers in freshwater environments. In: C.J. H (ed) Advances in environmental microbiology. Vol. 7. The structure and function of aquatic microbial communities, Springer N. pp 121–155
Hall T (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Inorg Chem Front 41:95–98. https://doi.org/10.14601/Phytopathol_Mediterr-14998u1.29
Hoang DT, Chernomor O, von Haeseler A, et al (2017) UFBoot2: Improving the ultrafast bootstrap approximation. bioRxiv 35:518–522. https://doi.org/10.1101/153916
Huang S-K, Hyde KD, Bhat DJ, Wen T-C (2018) Novel Taxa within Nectriaceae: Cosmosporella gen. nov. and Aquanectria sp. nov. from Freshwater Habitats in China. Cryptogam Mycol 39:169–192
Jabiol J, Bruder A, Gessner MO, et al (2013) Diversity patterns of leaf-associated aquatic hyphomycetes along a broad latitudinal gradient. Fungal Ecol 6:439–448. https://doi.org/10.1016/j.funeco.2013.04.002
Johnston PR, Baschien C (2020) Tricladiaceae fam. nov. (Helotiales, Leotiomycetes). Fungal Syst Evol 6:233–242. https://doi.org/10.3114/fuse.2020.06.10
Johnston PR, Quijada L, Smith CA, et al (2019) A multigene phylogeny toward a new phylogenetic classification of Leotiomycetes. IMA Fungus 10:1–22. https://doi.org/10.1186/s43008-019-0002-x
Kalyaanamoorthy S, Minh BQ, Wong TKF, et al (2017) ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat Methods 14:587–589. https://doi.org/10.1038/nmeth.4285
Katoh K, Rozewicki J, Yamada KD (2018) MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 20:1160–1166. https://doi.org/10.1093/bib/bbx108
Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol Biol Evol 30:772–780. https://doi.org/10.1093/molbev/mst010
Kumar S, Stecher G, Li M, et al (2018) MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096
Letourneau A, Seena S, Marvanová L, Bärlocher F (2010) Potential use of barcoding to identify aquatic hyphomycetes. Fungal Divers 40:51–64. https://doi.org/10.1007/s13225-009-0006-8
Letunic I, Bork P (2007) Interactive Tree Of Life (iTOL): An online tool for phylogenetic tree display and annotation. Bioinformatics 23:127–128. https://doi.org/10.1093/bioinformatics/btl529
Letunic I, Bork P (2019) Interactive Tree of Life (iTOL) v4: Recent updates and new developments. Nucleic Acids Res 47:256–259. https://doi.org/10.1093/nar/gkz239
Li Y, Steenwyk JL, Chang Y, et al (2021) A genome-scale phylogeny of the kingdom Fungi. Curr Biol 31:1653-1665.e5. https://doi.org/10.1016/j.cub.2021.01.074
Lombard L, van der Merwe NA, Groenewald JZ, Crous PW (2015) Generic concepts in Nectriaceae. Stud Mycol 80:189–245. https://doi.org/10.1016/j.simyco.2014.12.002
Marvanová L (1997) Freshwater hyphomycetes: a survey with remarks on tropical taxa. In: Janardhanan K, Rajendran C, Natarajan K, Hawksworth D (eds) Tropical Mycology. Science Publisher Inc, pp 169–226
Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ (2015) IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32:268–274. https://doi.org/10.1093/molbev/msu300
Nikolcheva LG, Bärlocher F (2002) Phylogeny of Tetracladium based on 18S rDNA. Czech Mycol 53:285–295. https://doi.org/10.33585/cmy.53404
Nilsson RH, Anslan S, Bahram M, et al (2019) Mycobiome diversity: high-throughput sequencing and identification of fungi. Nat Rev Microbiol 17:95–109. https://doi.org/10.1038/s41579-018-0116-y
Pascoal C, Cássio F (2004) Contribution of fungi and bacteria to leaf litter decomposition in a polluted river. Appl Environ Microbiol 70:5266–5273. https://doi.org/10.1128/AEM.70.9.5266-5273.2004
Pascoal C, Marvanová L, Cássio F (2005) Aquatic hyphomycete diversity in streams of Northwest Portugal. Fungal Divers 19:109–128
Pratibha J, Bhat DJ, Prabhugaonkar A (2016) Molecular phylogeny of Speiropsis pedatospora. Mycosphere 7:679–686. https://doi.org/10.5943/mycosphere/7/5/12
Prihatini R, Boonyuen N, Sivichai S (2008) Phylogenetic evidence that two submerged-habitat fungal species, Speiropsis pedatospora and Xylomyces chlamydosporus, belong to the order Jahnulales insertae sedis Dothideomycetes. Microbiol Indones 2:136–140. https://doi.org/10.5454/mi.2.2.8
Sati SC, Pathak R (2016) Anamorph (asexual stage) Teleomorph (sexual stage) Connections in Aquatic hyphomycetes. Int J Plant Reprod Biol 8:65–74. https://doi.org/10.14787/ijprb.2016
Schoch CL, Seifert KA, Huhndorf S, et al (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci U S A 109:6241–6246. https://doi.org/10.1073/pnas.1117018109
Seena S, Bärlocher F, Sobral O, et al (2019) Biodiversity of leaf litter fungi in streams along a latitudinal gradient. Sci Total Environ 661:306–315. https://doi.org/10.1016/j.scitotenv.2019.01.122
Seena S, Marvanová L, Letourneau A, Bärlocher F (2018) Articulospora – Phylogeny vs morphology. Fungal Biol 122:965–976. https://doi.org/10.1016/j.funbio.2018.06.001
Seena S, Pascoal C, Marvanová L, Cássio F (2010) DNA barcoding of fungi: A case study using ITS sequences for identifying aquatic hyphomycete species. Fungal Divers 44:77–87. https://doi.org/10.1007/s13225-010-0056-y
Shearer CA, Descals E, Kohlmeyer B, et al (2007) Fungal biodiversity in aquatic habitats. Biodivers Conserv 16:49–67. https://doi.org/10.1007/s10531-006-9120-z
Suetrong S, Boonyuen N, Pang KL, et al (2011) A taxonomic revision and phylogenetic reconstruction of the Jahnulales (Dothideomycetes), and the new family Manglicolaceae. Fungal Divers 51:163–188. https://doi.org/10.1007/s13225-011-0138-5
Suetrong S, Rungjindamai N, Sommai S, et al (2014) Wiesneriomyces a new lineage of Dothideomycetes (Ascomycota) basal to Tubeufiales. Phytotaxa 176:283–297. https://doi.org/10.11646/phytotaxa.176.1.27
Taylor J (1993) A contemporary view of the holomorph: nucleic acid sequence and computer databases are changing fungal classification. In: Reynolds D, Taylor J (eds) The Fungal Holomorph: mitotic, meiotic and pleomorphic speciation in fungal systematics. CAB International Wallingford
Trifinopoulos J, Nguyen LT, von Haeseler A, Minh BQ (2016) W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res 44:W232–W235. https://doi.org/10.1093/nar/gkw256
Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172:4238–4246. https://doi.org/10.1128/JB.172.8.4238-4246.1990
Vu D, Groenewald M, de Vries M, et al (2019) Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation. Stud Mycol 92:135–154. https://doi.org/10.1016/j.simyco.2018.05.001
Wang M, Jiang X, Wu W, et al (2015) Psychrophilic fungi from the world’s roof. Persoonia Mol Phylogeny Evol Fungi 34:100–112. https://doi.org/10.3767/003158515X685878
White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols: A Guide to Methods and Applications. Academic Press Inc, New York., pp 315–322
Wirtz N, Printzen C, Lumbsch HT (2012) Using haplotype networks, estimation of gene flow and phenotypic characters to understand species delimitation in fungi of a predominantly Antarctic Usnea group (Ascomycota, Parmeliaceae). Org Divers Evol 12:17–37. https://doi.org/10.1007/s13127-011-0066-y