1. Wyatt RJ, Julian BA. IgA nephropathy. N Engl J Med (2013) 368(25):2402-14. Epub 2013/06/21. doi: 10.1056/NEJMra1206793. PubMed PMID: 23782179.
2. Reid S, Cawthon PM, Craig JC, Samuels JA, Molony DA, Strippoli GF. Non-immunosuppressive treatment for IgA nephropathy. Cochrane Database Syst Rev (2011) (3):Cd003962. Epub 2011/03/18. doi: 10.1002/14651858.CD003962.pub2. PubMed PMID: 21412884.
3. D'Amico G. Natural history of idiopathic IgA nephropathy and factors predictive of disease outcome. Semin Nephrol (2004) 24(3):179-96. Epub 2004/05/25. doi: 10.1016/j.semnephrol.2004.01.001. PubMed PMID: 15156525.
4. Berthoux FC, Mohey H, Afiani A. Natural history of primary IgA nephropathy. Semin Nephrol (2008) 28(1):4-9. Epub 2008/01/29. doi: 10.1016/j.semnephrol.2007.10.001. PubMed PMID: 18222341.
5. Moriyama T, Tanaka K, Iwasaki C, Oshima Y, Ochi A, Kataoka H, et al. Prognosis in IgA nephropathy: 30-year analysis of 1,012 patients at a single center in Japan. PLoS One (2014) 9(3):e91756. Epub 2014/03/25. doi: 10.1371/journal.pone.0091756. PubMed PMID: 24658533; PubMed Central PMCID: PMCPMC3962373.
6. Reich HN, Troyanov S, Scholey JW, Cattran DC. Remission of proteinuria improves prognosis in IgA nephropathy. J Am Soc Nephrol (2007) 18(12):3177-83. Epub 2007/11/06. doi: 10.1681/asn.2007050526. PubMed PMID: 17978307.
7. Zhang C, Zeng X, Li Z, Wang Z, Li S. Immunoglobulin A nephropathy: current progress and future directions. Transl Res (2015) 166(2):134-44. Epub 2015/03/24. doi: 10.1016/j.trsl.2015.02.007. PubMed PMID: 25797891.
8. Bellur SS, Troyanov S, Cook HT, Roberts IS. Immunostaining findings in IgA nephropathy: correlation with histology and clinical outcome in the Oxford classification patient cohort. Nephrol Dial Transplant (2011) 26(8):2533-6. Epub 2011/01/29. doi: 10.1093/ndt/gfq812. PubMed PMID: 21273233.
9. Camilla R, Suzuki H, Daprà V, Loiacono E, Peruzzi L, Amore A, et al. Oxidative stress and galactose-deficient IgA1 as markers of progression in IgA nephropathy. Clin J Am Soc Nephrol (2011) 6(8):1903-11. Epub 2011/07/26. doi: 10.2215/cjn.11571210. PubMed PMID: 21784819; PubMed Central PMCID: PMCPMC3156425.
10. Toda N, Mukoyama M, Yanagita M, Yokoi H. CTGF in kidney fibrosis and glomerulonephritis. Inflamm Regen (2018) 38:14. Epub 2018/08/21. doi: 10.1186/s41232-018-0070-0. PubMed PMID: 30123390; PubMed Central PMCID: PMCPMC6091167.
11. Beck KF, Pfeilschifter J. Gasotransmitter synthesis and signalling in the renal glomerulus. Implications for glomerular diseases. Cell Signal (2021) 77:109823. Epub 2020/11/06. doi: 10.1016/j.cellsig.2020.109823. PubMed PMID: 33152441.
12. Sanchez-Rodriguez E, Southard CT, Kiryluk K. GWAS-Based Discoveries in IgA Nephropathy, Membranous Nephropathy, and Steroid Sensitive Nephrotic Syndrome. Clin J Am Soc Nephrol (2020). Epub 2020/07/19. doi: 10.2215/cjn.14031119. PubMed PMID: 32680915.
13. Zhou XJ, Qi YY, Hou P, Lv JC, Shi SF, Liu LJ, et al. Cumulative effects of variants identified by genome-wide association studies in IgA nephropathy. Sci Rep (2014) 4:4904. Epub 2014/05/09. doi: 10.1038/srep04904. PubMed PMID: 24811838; PubMed Central PMCID: PMCPMC4014895.
14. Wuttke M, Köttgen A. Insights into kidney diseases from genome-wide association studies. Nat Rev Nephrol (2016) 12(9):549-62. Epub 2016/08/02. doi: 10.1038/nrneph.2016.107. PubMed PMID: 27477491.
15. Zheng Y, Lu P, Deng Y, Wen L, Wang Y, Ma X, et al. Single-Cell Transcriptomics Reveal Immune Mechanisms of the Onset and Progression of IgA Nephropathy. Cell Rep (2020) 33(12):108525. Epub 2020/12/29. doi: 10.1016/j.celrep.2020.108525. PubMed PMID: 33357427.
16. Shi M, Ouyang Y, Yang M, Yang M, Zhang X, Huang W, et al. IgA Nephropathy Susceptibility Loci and Disease Progression. Clin J Am Soc Nephrol (2018) 13(9):1330-8. Epub 2018/07/26. doi: 10.2215/cjn.13701217. PubMed PMID: 30042224; PubMed Central PMCID: PMCPMC6140573.
17. Koukoui L, Blau A, Kopolovic J, Pras M, Livneh A. A possible favorable effect of colchicine in IgA nephropathy in a carrier of a MEFV mutation. Clin Nephrol (2004) 62(3):226-8. Epub 2004/10/16. doi: 10.5414/cnp62226. PubMed PMID: 15481855.
18. Yu F, Tie Y, Zhang Y, Wang Z, Yu L, Zhong L, et al. Circular RNA expression profiles and bioinformatic analysis in coronary heart disease. Epigenomics (2020) 12(5):439-54. Epub 2020/02/12. doi: 10.2217/epi-2019-0369. PubMed PMID: 32043895.
19. Lee SH, Hadipour-Lakmehsari S, Kim DH, Di Paola M, Kuzmanov U, Shah S, et al. Bioinformatic analysis of membrane and associated proteins in murine cardiomyocytes and human myocardium. Sci Data (2020) 7(1):425. Epub 2020/12/03. doi: 10.1038/s41597-020-00762-1. PubMed PMID: 33262348; PubMed Central PMCID: PMCPMC7708497.
20. Liu GM, Zeng HD, Zhang CY, Xu JW. Key genes associated with diabetes mellitus and hepatocellular carcinoma. Pathol Res Pract (2019) 215(11):152510. Epub 2019/10/09. doi: 10.1016/j.prp.2019.152510. PubMed PMID: 31591054.
21. Wang YJ, Schug J, Won KJ, Liu C, Naji A, Avrahami D, et al. Single-Cell Transcriptomics of the Human Endocrine Pancreas. Diabetes (2016) 65(10):3028-38. Epub 2016/07/02. doi: 10.2337/db16-0405. PubMed PMID: 27364731; PubMed Central PMCID: PMCPMC5033269.
22. Saik OV, Klimontov VV. Bioinformatic Reconstruction and Analysis of Gene Networks Related to Glucose Variability in Diabetes and Its Complications. Int J Mol Sci (2020) 21(22). Epub 2020/11/22. doi: 10.3390/ijms21228691. PubMed PMID: 33217980; PubMed Central PMCID: PMCPMC7698756.
23. Trost B, Engchuan W, Nguyen CM, Thiruvahindrapuram B, Dolzhenko E, Backstrom I, et al. Genome-wide detection of tandem DNA repeats that are expanded in autism. Nature (2020) 586(7827):80-6. Epub 2020/07/28. doi: 10.1038/s41586-020-2579-z. PubMed PMID: 32717741.
24. Cuellar-Partida G, Tung JY, Eriksson N, Albrecht E, Aliev F, Andreassen OA, et al. Genome-wide association study identifies 48 common genetic variants associated with handedness. Nat Hum Behav (2021) 5(1):59-70. Epub 2020/09/30. doi: 10.1038/s41562-020-00956-y. PubMed PMID: 32989287; PubMed Central PMCID: PMCPMC7116623.
25. Slyper M, Porter CBM, Ashenberg O, Waldman J, Drokhlyansky E, Wakiro I, et al. A single-cell and single-nucleus RNA-Seq toolbox for fresh and frozen human tumors. Nat Med (2020) 26(5):792-802. Epub 2020/05/15. doi: 10.1038/s41591-020-0844-1. PubMed PMID: 32405060; PubMed Central PMCID: PMCPMC7220853.
26. Rozenblatt-Rosen O, Regev A, Oberdoerffer P, Nawy T, Hupalowska A, Rood JE, et al. The Human Tumor Atlas Network: Charting Tumor Transitions across Space and Time at Single-Cell Resolution. Cell (2020) 181(2):236-49. Epub 2020/04/18. doi: 10.1016/j.cell.2020.03.053. PubMed PMID: 32302568; PubMed Central PMCID: PMCPMC7376497.
27. Dong S, Men W, Yang S, Xu S. Identification of lung adenocarcinoma biomarkers based on bioinformatic analysis and human samples. Oncol Rep (2020) 43(5):1437-50. Epub 2020/04/24. doi: 10.3892/or.2020.7526. PubMed PMID: 32323809; PubMed Central PMCID: PMCPMC7108011.
28. Noë M, Niknafs N, Fischer CG, Hackeng WM, Beleva Guthrie V, Hosoda W, et al. Genomic characterization of malignant progression in neoplastic pancreatic cysts. Nat Commun (2020) 11(1):4085. Epub 2020/08/17. doi: 10.1038/s41467-020-17917-8. PubMed PMID: 32796935; PubMed Central PMCID: PMCPMC7428044.
29. Liu S, Wang C, Yang H, Zhu T, Jiang H, Chen J. Weighted gene co-expression network analysis identifies FCER1G as a key gene associated with diabetic kidney disease. Ann Transl Med (2020) 8(21):1427. Epub 2020/12/15. doi: 10.21037/atm-20-1087. PubMed PMID: 33313172; PubMed Central PMCID: PMCPMC7723642.
30. Gorski M, Jung B, Li Y, Matias-Garcia PR, Wuttke M, Coassin S, et al. Meta-analysis uncovers genome-wide significant variants for rapid kidney function decline. Kidney Int (2020). Epub 2020/11/03. doi: 10.1016/j.kint.2020.09.030. PubMed PMID: 33137338.
31. Wang W, Shen J, Qi C, Pu J, Chen H, Zuo Z. The key candidate genes in tubulointerstitial injury of chronic kidney diseases patients as determined by bioinformatic analysis. Cell Biochem Funct (2020) 38(6):761-72. Epub 2020/04/28. doi: 10.1002/cbf.3545. PubMed PMID: 32340064.
32. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics (2008) 9:559. Epub 2008/12/31. doi: 10.1186/1471-2105-9-559. PubMed PMID: 19114008; PubMed Central PMCID: PMCPMC2631488.
33. Hermiston ML, Xu Z, Weiss A. CD45: a critical regulator of signaling thresholds in immune cells. Annual review of immunology (2003) 21:107-37. Epub 2002/11/05. doi: 10.1146/annurev.immunol.21.120601.140946. PubMed PMID: 12414720.
34. Mustelin T, Vang T, Bottini N. Protein tyrosine phosphatases and the immune response. Nature reviews Immunology (2005) 5(1):43-57. Epub 2005/01/05. doi: 10.1038/nri1530. PubMed PMID: 15630428.
35. Ghattas MA, Raslan N, Sadeq A, Al Sorkhy M, Atatreh N. Druggability analysis and classification of protein tyrosine phosphatase active sites. Drug design, development and therapy (2016) 10:3197-209. Epub 2016/10/21. doi: 10.2147/dddt.S111443. PubMed PMID: 27757011; PubMed Central PMCID: PMCPMC5053377.
36. Rheinländer A, Schraven B, Bommhardt U. CD45 in human physiology and clinical medicine. Immunology letters (2018) 196:22-32. Epub 2018/01/26. doi: 10.1016/j.imlet.2018.01.009. PubMed PMID: 29366662.
37. Al Barashdi MA, Ali A, McMullin MF, Mills K. Protein tyrosine phosphatase receptor type C (PTPRC or CD45). Journal of clinical pathology (2021) 74(9):548-52. Epub 2021/05/28. doi: 10.1136/jclinpath-2020-206927. PubMed PMID: 34039664; PubMed Central PMCID: PMCPMC8380896.
38. Rudnicki M, Perco P, B DH, Leierer J, Heinzel A, Mühlberger I, et al. Renal microRNA- and RNA-profiles in progressive chronic kidney disease. European journal of clinical investigation (2016) 46(3):213-26. Epub 2015/12/29. doi: 10.1111/eci.12585. PubMed PMID: 26707063.
39. Felberg J, Johnson P. Stable interdomain interaction within the cytoplasmic domain of CD45 increases enzyme stability. Biochemical and biophysical research communications (2000) 271(2):292-8. Epub 2000/05/09. doi: 10.1006/bbrc.2000.2623. PubMed PMID: 10799290.
40. Hermiston ML, Tan AL, Gupta VA, Majeti R, Weiss A. The juxtamembrane wedge negatively regulates CD45 function in B cells. Immunity (2005) 23(6):635-47. Epub 2005/12/17. doi: 10.1016/j.immuni.2005.11.001. PubMed PMID: 16356861.
41. Dawes R, Hennig B, Irving W, Petrova S, Boxall S, Ward V, et al. Altered CD45 expression in C77G carriers influences immune function and outcome of hepatitis C infection. Journal of medical genetics (2006) 43(8):678-84. Epub 2006/03/01. doi: 10.1136/jmg.2005.040485. PubMed PMID: 16505159; PubMed Central PMCID: PMCPMC2564592.
42. Sasaki T, Sasaki-Irie J, Penninger JM. New insights into the transmembrane protein tyrosine phosphatase CD45. The international journal of biochemistry & cell biology (2001) 33(11):1041-6. Epub 2001/09/12. doi: 10.1016/s1357-2725(01)00075-9. PubMed PMID: 11551820.
43. Steel AW, Mela CM, Lindsay JO, Gazzard BG, Goodier MR. Increased proportion of CD16(+) NK cells in the colonic lamina propria of inflammatory bowel disease patients, but not after azathioprine treatment. Alimentary pharmacology & therapeutics (2011) 33(1):115-26. Epub 2010/11/19. doi: 10.1111/j.1365-2036.2010.04499.x. PubMed PMID: 21083588.
44. Alunno A, Padjen I, Fanouriakis A, Boumpas DT. Pathogenic and Therapeutic Relevance of JAK/STAT Signaling in Systemic Lupus Erythematosus: Integration of Distinct Inflammatory Pathways and the Prospect of Their Inhibition with an Oral Agent. Cells (2019) 8(8). Epub 2019/08/25. doi: 10.3390/cells8080898. PubMed PMID: 31443172; PubMed Central PMCID: PMCPMC6721755.
45. Morris DL, Sheng Y, Zhang Y, Wang YF, Zhu Z, Tombleson P, et al. Genome-wide association meta-analysis in Chinese and European individuals identifies ten new loci associated with systemic lupus erythematosus. Nature genetics (2016) 48(8):940-6. Epub 2016/07/12. doi: 10.1038/ng.3603. PubMed PMID: 27399966; PubMed Central PMCID: PMCPMC4966635.
46. Qian D, Liu L, Zhu T, Wen L, Zhu Z, Yin X, et al. JAK2 and PTPRC mRNA expression in peripheral blood mononuclear cells from patients with systemic lupus erythematosus. Clinical rheumatology (2020) 39(2):443-8. Epub 2019/11/25. doi: 10.1007/s10067-019-04778-w. PubMed PMID: 31760539.
47. Wang K, Wu YG, Su J, Zhang JJ, Zhang P, Qi XM. Total glucosides of paeony regulates JAK2/STAT3 activation and macrophage proliferation in diabetic rat kidneys. The American journal of Chinese medicine (2012) 40(3):521-36. Epub 2012/06/30. doi: 10.1142/s0192415x12500401. PubMed PMID: 22745068.
48. Huang JS, Lee YH, Chuang LY, Guh JY, Hwang JY. Cinnamaldehyde and nitric oxide attenuate advanced glycation end products-induced the Jak/STAT signaling in human renal tubular cells. Journal of cellular biochemistry (2015) 116(6):1028-38. Epub 2015/01/07. doi: 10.1002/jcb.25058. PubMed PMID: 25561392.
49. Chen X, Tang Y, Zhang Y, Zhuo M, Tang Z, Yu Y, et al. Tapasin modification on the intracellular epitope HBcAg18-27 enhances HBV-specific CTL immune response and inhibits hepatitis B virus replication in vivo. Laboratory investigation; a journal of technical methods and pathology (2014) 94(5):478-90. Epub 2014/03/13. doi: 10.1038/labinvest.2014.6. PubMed PMID: 24614195.
50. Knoppova B, Reily C, Maillard N, Rizk DV, Moldoveanu Z, Mestecky J, et al. The Origin and Activities of IgA1-Containing Immune Complexes in IgA Nephropathy. Frontiers in immunology (2016) 7:117. Epub 2016/05/06. doi: 10.3389/fimmu.2016.00117. PubMed PMID: 27148252; PubMed Central PMCID: PMCPMC4828451.
51. Shea-Donohue T, Fasano A, Smith A, Zhao A. Enteric pathogens and gut function: Role of cytokines and STATs. Gut microbes (2010) 1(5):316-24. Epub 2011/02/18. doi: 10.4161/gmic.1.5.13329. PubMed PMID: 21327040; PubMed Central PMCID: PMCPMC3023616.
52. Li HF, et al. Expression and Significance of CD34 and CD45 in Tublointerstitial Lesion of IgA Nephropathy.[master’s thesis] HeBei Medical University (2007).