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Abstract
Cancer is the world’s dreaded disease and its prevalence is expanding globally. The study of integrated molecular networks is crucial for the basic mechanism
of cancer cells and its progression. During the present investigation we have examined different flavonoids that targets protein kinases B (AKT1) protein
which exerts their anticancer efficiency intriguing the role in cross talk cell signalling, by metabolic processes through in-silico approaches. Molecular
dynamics simulation (MDS) was performed to analyse and evaluate the stability of the complexes under physiological conditions and the results were
congruent with molecular docking. This investigation revealed the effect of a point mutation (W80R), considered based on their frequency of occurrence, with
AKT1. The ligand with high docking scores and favourable behaviour on dynamic simulations are proposed as potential W80R inhibitors. A virtual screening
analysis was performed with 12000flavonoids satisfying the Lipinski’s rule of 5 according to which drug-likeness is predicted based on its pharmacological
and biological properties to be active and taken orally. The pharmacokinetic ADME (adsorption, digestion, metabolism and excretion) studies featured drug
likeness. Subsequently, a statistical significant 3D-QSAR model of high correlation coefficient (R2) with 0.992 and cross validation coefficient (Q2) with
0.6132 at 4 component PLS (partial least square) were used to verify accuracy of the models. The molecular dynamics simulation of this study showed that
the compound is Taxifolin (I-UPAC namely2-(3,4-dihydroxyphenyl)-3,4 –dihydro-2H-chromene-5,7-diol of C15H14O5, of CID ID-443637 evidenced a better
interaction with docking score (-9.63Kcal/mol) exhibited the binding affinity with W80R mutant protein thus reflecting that natural inhibitor can be considered
for experimental evaluation which provides targeted insights for new combination of drugs in forming a network in pharmacology.

1 Introduction
Ovarian cancer marks the most lethal gynaecological malignancy which ranks the fifth leading cause of cancer deaths in females1.It is estimated that there
are 22530 cases with a mortality rate of approximately 13980 deaths in the United States in 20191 .Ovarian cancers are categorized into 3 types based on cell
origin: epithelial, stromal and germ cell2. The low survival rate and poor prognosis of ovarian cancer is due to a lack of screening methods at the early stages
and ineffective treatments for advanced stages of disease3. Moreover it is very crucial to dissect the role of tumor causing microenvironment during early
stage, proliferation, and metastasis. Thus, it becomes paramount to understand the root cause from different views of its molecular pathogenesis,
histological subtypes, hereditary factors, epidemiology, methods of treatment and diagnostic perspectives. The Cancer Genome Atlas (TCGA) revealed that the
expression of AKT1, AKT2 and AKT3 was associated with poor patient survival4. The leading cause of disease is due to genetic and epigenetic changes of the
cellular genome. So, numerous small drug molecules of AKT gene targeting mutations such as, FOXO, glucose metabolism(GSK3), apoptotic proteins
(BAD,NF-kB, FKHR). Cell cycle arrest, apoptosis, DNA repair (MDM2) are critical in disease progression. Among various kinases, over expression of AKT1
protein and associated mutations play a deciding role in cross-talk cell signalling in causing cancer. Recent studies have introduced assorted therapeutic
agents as targets specific for cancer driven factors involved in inhibition of ovarian cancer development. One such factor of kinase family is protein kinase
B/serine-threonine serves as a decisive mediator of the P13K/AKT/mTOR cell signaling pathway that has distinct physiological functions such as cell growth,
survival, proliferation, and metabolism5. Structurally AKT1 consists of three domains, including an N-terminal pleckstrin homology, a central catalytic kinases
domain, and C-terminal domain6.

AKT1 is the kinase which connects upstream signals from PI3K and mammalian targets of rapamycin complex2 (mTORC2) with downstream signals to
mTORC1 and effectors such as mTOR, GSK3b along with phosphorylation cascade which acts as substrates that induce cell cycle progression, protein
synthesis, lipid and protein phosphatases, glucose metabolism and cell growth 7. AKT1 is mutated and AKT2 is amplified in about 40% AKT1 is inhibited by
tumor suppressors including phosphatase and tensin homology (PTEN) and inositol polyphosphate 4-phosphatase type 2(INPP4B)8,9,10. Therefore, targeting
ATP binding cleft of AKT gene by inhibitors (natural/synthetic) has become attractive strategy for treating patients in ovarian cancer. Interestingly, AKT1 gene
inhibitors showed strong binding affinity with mutant forms when compared to the native form. However, the emergence of acquired drug resistance in
patients found to limit its usage in last phase of clinical trials. In ovarian cancer, overexpression of AKT is associated with advanced-stage platinum
resistance11. As an isoform of the AKT family, AKT1 is observed to be expressed unduly in a wide assortment of many human cancers including breast and
ovarian cancers12,13. This study scrutinizes substitution mutation from tryptophan to arginine at 80 residue position. The underlying molecular mechanism is
assumed to cause conformational changes in native protein structure (AKT1) which modify covalent bond interaction by limiting their practical application.
On that account, there is need to search and develop novel as well as regimes that can counteract the drug resistance induced by AKT1 gene. However, the
molecular interactions and atomic stability for the W80R have been considered as the novel and taken as a crucial platform for the present study.

W80R results in increased repression of FOXO 3 compared to wild type AKT1 in an invitro assay which then predicted to result in a gain of AKT1 protein
function. FOXO is a transcription factor in the nucleus induces CGN2 transcription in epithelial ovarian cancer cells with enhanced catenin activity. The
absence of Wnt ligand dissociates catenin from the destruction complex and translocates to the nucleus where it acts with the FOXO3 factor which is known
to play a role in the W80R protein pathway. Abnormal activation of this pathway leads to hyperactivation of catenin, which has been reported in ovarian
cancers. W80R is one of the reported mutants of AKT1 cancer which cause missense driver mutation with 238T > C of the coding sequence, also CDS (change
in the nucleotide sequence as a result of mutation, where the syntax here used is identical to the method used for the peptide sequence) mutation c.238T > A
with gene location 14q32.33 14 in the uterus section causing endometrial cancer. It has been proved that W80R contains highly conserved residues damaged
by polyphen2, targeting through PI3K/AKT1/mTOR pathway of substitution-missense variant type affecting exon of protein domain PH (the UniProt
Consortium 2019) and SIFT prediction as 312. The mutant W80R-Q79K on combination found to be displayed a very strong membrane localization and
hyperactivation in transfected HeLa cells in both presence and absence of serum under fluorescence microscopy15. The previous studies of AKT1 co-
occurring mutations(like Q79K-W80R) found to be hyperactive equal to E17K mutant widely distributed in different tissues such as endometrium
(homozygous and heterozygous), large intestine (caecum), prostrate (with heterozygosity condition) breast cancers involving cross-talk signaling pathways16.
The deleterious mutations of AKT1 (E17K and W80R) concluded to be of functional relevance exclusively in myxoidtumors 17. The altering mutations promote
growth factor independent cell proliferation as compared to wild type AKT118. AKT1 gene alterations account for most of the genetic drive contributing to the
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pulmonary sclerosing haemangioma which is a benign tumor development 19. It was observed in the patients receiving genomically targeted therapy that
W80R mutant found to be in clinical benefit of SD 4 mo+(stable disease), working efficiently with synthetic drugs temsirolimus and ixabepilone targeting
ovary granulosa cell20. In line with, the inhibition of AKT1 or its mutant proteins has been recognized as a compelling strategy for the treatment of cancers
with21 induce ovarian tumor angiogenesis22 and in immune evasion23.

Existing chemotherapeutic drugs have developed resistance to the novel compounds along with side effects despite of enormous progress in anticancer drug
discovery. Hence more targeted strategies are required to develop with sensitivity and specificity. Most of the successful anticancer compounds were
originated from natural sources or as their analogues. Flavonoids are naturally occurring secondary metabolites consisting of polyphenols having therapeutic
benefits in multiple ways. These are low-molecular-weight compounds with non-nitrogenous properties consisting of C6-C3-C6 as a backbone with different
classes24 and their activities are structure-dependent. Chemically, flavonoids depend on their structural class, degree of hydroxylation, substitutions, and
conjugations, and degree of polymerization25. Several mechanisms have been proposed for the effect of flavonoids at the initiation and promotion stages of
the carcinogenicity including influences on development and hormonal activities26. Flavonoids falls under 6 different categories based on the functional
group flavones (luteolin, apigenin), flavonols (quercetin, kaempferol), flavanones (naringenin), flavanonol (taxifolin), isoflavones, and flavan-3-ols (genistein,
epicatechin, catechin, wedelactone, ellagic acid, silibinin, folstein, parthenoilods, oridonin, curcumin, reservertol. The choice of this study has been relied on the
compounds of family called flavonoids with tremendous variety of pharmacological and biochemical consequences including hepatoprotective, antidiabetic,
cardioprotective, anti-tumor, neuroprotective, and anti-inflammatory and played a wonderful role in the preclusion of Alzheimer's disease27. In earlier
investigation in this area has demanded series of chemical methods and animal models to synthesis lead compounds with more time, investment, and level
of exposure. To overcome this issue, the computational approaches have been developed reliably in predicting the mutation both in induced drug resistance
and also to design resistance evading drugs. As a result of above mentioned short falls, the present study has aimed on the dynamic simulation at molecular
level and molecular docking studies on taxifolin targeting W80R mutant protein in protein kinase B/AKT1 protein of Ovarian cancer for designing therapeutic.
This computational study rely on learning and pattern classification methods (phylogeny, neural systems, vector machines, and FATHMM servers) which can
classify mutations, create 3D protein structures.

2 Materials And Methods

2.1 Sequence retrieval and structure analysis of selected protein
The amino acid sequence of AKT1 protein was retrieved from the Uniprot database with accession number P31749. The primary structure of the protein was
elucidated using the ProtParam tool 28 29 of the Expasy server and the difference between physical and chemical properties of the AKT1 protein (wild) and
mutant (W80R) were evaluated. Factors such as physicochemical properties, molecular weight, theoretical pI (isoelectric point), half-life, instability index (II),
aliphatic index (AI), extinction coefficient (EI), grand average hydropathy (GRAVY), and site of origin were analyzed. The secondary structure properties
prediction was carried out by the RAMPAGE server, which provides the configuration score like the total number of helices, turns, coils, predicted solvent
accessibility, with the range, existed from 0 (highly buried) to 9 (exposed region) depending on the residue exposed. Normalized B-factor is measured for a
selected protein as Z score which is a combination of template and profile-based prediction where residues are higher than zero are considered as less stable
during experimental structures. The mutant protein W80R was edited manually at the amino acid position number and submitted to homology modelling.

2.2 Homology modelling
The 480 amino acid residue length of W80R protein was retrieved to recognize the appropriate template for structure modelling and functional prediction of
the protein. This modelling depends mainly on a sequence alignment between the target and template sequence whose structure has been experimentally
determined, the 3D structure of target protein using its template was visualized by PYMOL tool; based on template-target alignment. These theoretical
structural models of the W80R protein were ranked based on the normalized discrete RMSD values. The model with the lowest RMSD score was considered as
the best model30.

2.3 Evaluation of the structure model
The quality of AKT1 and mutant form W80R models was assessed by many tools to test the stability and reliability of the model. PROCHECK suite31

quantifies the residues in favourable zones of the Ramachandran plot, were used to evaluate the stereochemical quality of the model. ERRAT tool32 find the
overall quality factor of the protein and was used to check the statistics of non-bonded interactions between different atom types. The compatibility of the
atomic model (3D) with its amino acid sequence was determined using the VERIFY 3D program. Swiss PDB viewer 4.1.07 was used for the energy
minimization of the predicted AKT1protein along with its mutant form. The W80R model was further subjected to structural analysis and verification server to
evaluate its quality, before and after energy minimization. ProSA tool33 was employed for the refinement and validation of the minimized structure to check
the native protein folding energy. The superimposition of the proposed model of AKT1 protein along with mutant form with its closest-structural homolog was
carried out using chimera 1.1134.

2.4 Selection and preparation of ligands
Natural compounds database containing more than 12,000 ligands were aimed to the AKT1 protein family were downloaded from the Pubchem library35 and
subjected to ligand preparation by ligprep wizard application of the Maestro 9.336. Ligprep tool was used to prepare the high quality of ligands, such as the
addition of hydrogen's, conversion of 2D to 3D structures, corrected bond angles and bond lengths, with lower energy structure, stereochemistry's, and ring
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conformation followed by minimization in the optimized potential of OPLS 2005 force field37, 38. Properties such as ionization did not change and tautomers
were not generated, specifically retained chiralities. Compounds were selected based on the lowest energy.

2.5 Preparation of protein molecule and active site prediction
The protein was modelled by using the protein preparation wizard of Schrodinger Suite; by adding hydrogen atoms, optimizing hydrogen bonds, and verifying
the protonation states of His, Gln, and Asn. Energy minimization was carried out using constraint 0.3A RMSD and OPLS 2005 force field. The sitemap tool
was used to identify binding pockets of W80R protein39.

2.6 Receptor grid generation
Receptor grid generation was done by the Glide application40. The receptor grid for W80R was generated using active site residues which were identified
Sitemap tool. Once the grid has generated, the ligands are docked to the protein (W80R) using Glide version 5.8(Grid-based Ligand Docking with Energetics)
docking protocol. The scaling factor (0.25) and partial charge (1 Å) represents cut-offs of Vander Waals radius scaling.

2.7 Molecular docking
Molecular docking procedures were consistently carried out using a preparation of protein of Schrodinger41 and defining the grid on the active site of the
protein. GLIDE molecular docking tool uses computational simulation methods for evaluating particular poses and ligand flexibility. GLIDE systematic
method, a new approach for rapid, accurate molecular docking and its output G-score, is found to be an empirical scoring function, is a combination of
diversified attributes. G-score is calculated in Kcal/mol, encompass ligand-protein interaction energies, hydrophobic interactions, hydrogen bonds, internal
energy, pi-pi stacking interactions, root mean square deviation (RMSD), and desolvation. GLIDE modules of the XP visualize analyses of the specific ligand-
protein interactions. The ligands were docked using Extra Precision mode(XP) and conformers were evaluated using the Glide(G) score. The G score is
calculated as follows:

where vdW denotes vanderwaals energy, Coul denotes columb energy, Lipo denotes lipophilic contact, H-bond indicates hydrogen bonding, Metal indicates
metal-binding, BuryP indicates penalty for buried polar groups, RotB indicates penalty for freezing rotatable bonds, site denotes polar interactions in the active
site and a = 0.065 while b = 0.130 were the coefficients of vdW and Coul.

2.8 ADME properties studies
Calculation of absorption, distribution, metabolism, excretion, and toxicity (ADME/T) properties were performed for best-docked ligand molecules by QikProp
software. This software predicts various limiting factors such as QP log Po/w, QPlog BB, SASA, FOSA, FISA, PISA, WPSA, volume, donarHB, acceptorHB,
dip^2/V, AC*DN*5, Caco, QlogS, rotors, rule of 5, rule of 3, the overall percentage of human oral absorption, etc42. Lipinski's rule of five43 measures the drug-
likeness for the prediction of a chemical compound as an orally active drug based on biological compounds and pharmacological properties.

2.9 Analysis of cancer-associated mutants
The deleterious W80R mutations that are specific for cancers were predicted using the FATHMM server (http://fathmm.biocompute.org.uk/)44 which allows
the distinct difference between cancer-promoting/driver mutations and other germline polymorphisms. The gene number identifiers (UniProt id) along with
mutant form as a text were provided as the input for the prediction.

2.10 Molecular alignment and 3D QSAR studies and validation
The key component of 3D QSAR analysis is the arrangement of the molecules based on the scaffold they share which generated using the training was set of
44 molecular poses with a grid spacing of 1 Å PLS (partial least square) algorithm to establish the relationship between biological activity and different
structural features. The training set was adjusted to 50%. Three models were generated by Gaussian filed extension as Gaussian steric, electrostatic,
hydrophobic, hydrogen bond donor, hydrogen bond acceptor, and aromatic ring fields. CoMFA and CoMSIA are the tools employed as independent variables in
PLS regression analysis. The best model was chosen based on the criteria of statistical robustness and visualized using contour map modules. The predictive
power and stable models were assessed using the leave one odd (LOO) cross-validation method. The crucial aspects for the test set statistics include RMSE,
Q2, SD, R2, R2CV, R2scramble, stability, F, P, Q2, Pearson's r which indicates the predictive ability of the model. A Scatter plot was generated in correlation with
predicted activity on the Y-axis and observed activity on the X-axis of the data set model46.

2.11 Contour maps visualisation
Representation of the fields as contours (surfaces) or as color intensities of the fields on the grid can be displayed in different styles. Based on the field type,
the colors are designed and field intensities are shown for one field at a time. The fields with greater absolute values than the cut-off were presented at the
maximum brightness.
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2.12 Molecular dynamics simulation
The simulation of protein-ligand complexes was implemented by GROMACS 4.5.5(Groningen machine for Chemical Simulations) software45. The complex
with the lowest binding energy was selected for molecular dynamics (MD) simulation. The ligand parameters were analyzed using PRODRG online server47 in
the framework of GROMACS force-field 43a146. The ligand enzyme complex was solvated at a simple point charge as well as a water box under periodic
boundary conditions using 1.0nm distance protein to the box faces. The system was then neutralized by Cl− or Na+ counter ions for the W80R complex with
ligand respectively. To perform energy minimization, the complex was equilibrated under volume, constant number of particles, and temperature condition for
100ps at 300k, followed by 100ps. All the covalent bonds with hydrogen bonds were considered using a linear constraint solver algorithm. The electrostatic
interactions were treated using the particle mesh Ewald method48 Further MD simulation studies were noted for 20ns to check the accuracy and stability of
the ligand-protein complexes. The potential of each trajectory produced after MD simulations were analyzed using g_rms, g_rmsf, and g_h bond of GROMACS
utilities49 the root mean square deviation (RMSD), the root mean square fluctuation (RMSF), with hydrogen bonds formed between the ligand and protein
complex.

3 Results

3.1 Mutant W80R sequence analysis
The development of anticancer compounds with variegated pharmacological effects becomes a very paramount topic and hence main class of secondary
metabolites, both dietary and synthetic flavonoids have been subjected to clinical trials50. Definite beneficial biological activities of dietary flavonoids
including antioxidants51 anticancer52 and cardio-protective properties53 have been identified in a series of previous studies. Flavonoids are known for their
wide exposure to chemo-preventive, chemotherapeutic activities, and the availability of the compound in plant sources for the human diet in routine
consumption54.

The analysis of the mutant W80R protein sequence of the AKT1 has 480 amino acid residue which plays a very crucial role in metabolism, cell proliferation,
cell survival, growth, and angiogenesis, was downloaded from Uniprot with accession number (P31750). The amino acids in the protein sequence of W80R
were found to exhibit larger contents of lysine, leucine, glutamic acid, and alanine. The ProtParam tool was used for the W80R protein sequence to compute
physio-chemical parameters such as molecular weight of 5565.45 kD. The W80R had a pI (isoelectric point) of 5.99 indicating its acidic nature (pI < 7.0) with
an aliphatic index (AI) (71.69). The protein volume is occupied by aliphatic side chains such as lysine, leucine, glutamic acid, and alanine. The instability index
of W80R measured 35.76 of the unstable nature. The grand average of hydropathicity (GRAVY) of W80R protein was lower (-0.583), which proves its high
affinity with water. The comparison of statistical characteristics are showing the differences among wild AKT1 and mutantW80R using the ProtParam tool
(Table 1). The comparison of sequence analysis of W80R mutant protein with AKT1(wild) at nucleotide and protein level was same with a slight difference,
thus proving-T, C-G rich region, and properties such as molecular weight, amino acid composition, theoretical pI, aliphatic index, and grand average of
hydropathicity (GRAVY) were found in an appropriate range of influencing the protein stability.

Table 1
Comparison of primary sequence analysis using the ProtParam tool between AKT1 (wild)

and W80R (mutant)
S.No Parameters AKT1 W80R

1. Molecular weight 5586.7kD 5565.4kD

2. pI 5.75 5.99

3. Aliphatic Index 71.69 71.69

4. Instability Index 35.47 35.76

5. GRAVY -0.575 -0.583

6. Atoms 7772 7776

7. Total number of Asp + Glu residues in a protein content 77 76

8. Total number of Arg + Lysresidues in a protein content 66 68

3.2 Homology modelling of W80R mutant protein
The 480 amino acid residue length of W80R protein was subjected to BLASTp analysis against RCSB PDB to identify the suitable template for comparative
structural modelling and functional prediction. The result of the BLASTp search revealed a template (PDB id 3O96) of high-level identity with the target
sequence of AKT1. The query coverage (100%) showed high degree of identity between two proteins (AKT1 and W80R) of 480 sequence length, and E value
(2e-60) is expected value obtained by hits, percentage identity defines the extent of two sequences, Modeller 9.13 has generated 5 models of W80R, among
these the lowest score is considered as stable which is thermodynamically subjected to further refinement. The lowest RMSD as 0.18 score model was
considered as the best one for further validation purposes30. Finally, three dimensional (3D) structure of selected protein using its template was visualized by
PYMOL tool.

3.3 Model assessment and validation
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The stability of the protein was constructed based on the backbone of torsion angles psi and phi which were evaluated by the PROCHECK server that
computes the amino acid residues in the existing zones of Ramachandran plot analysis of W80R mutant forms (Table 2). The information presented in the
Table 2 depicts Ramachandran plot through RAMPAGE server where W80R mutant protein has 79.3% amino acids falls in the most favored region with
located major active binding sites, while 13.8% in an allowed region and 6.9% residues in the outlier region of the plot with lesser significance. SAVES analysis
was conducted to confirm the quality of the protein model followed by ProSA, RMSD assessment for a high-quality structural model for virtual screening. The
quality of the predicted model of AKT1 protein and a W80R mutant was supported by a high ERRAT score of 81.99 in an acceptable protein environment. The
VERIFY 3D results of W80R showed 81.88% of the residues with an average 3D-1D score > = 0.2, indicating the stability of the model. ‘WHAT IF’ tool examines
the coarse packing quality, the model protein structure, reflecting the acceptance of good quality. The reliability of the W80R form was confirmed by ProSA
(Fig. 1) which achieved a Z score of -7.92 kcal/mol compared to the wild form AKT1 having a Z score − 7.2kcal/mol, wherein the energy is negative, reflects
the best quality of the model. The quality of the model was evaluated through the comparison of predicted structure with experimentally determined structure
followed by superimposition and atoms RMSD assessment using Chimera 1.11, proved that the predicted model is good and quite similar to the wild protein.

Table 2
Comparison of secondary structure using RAMPAGE server between AKT1and W80R mutants.

S.No Protein Properties AKT1(wild) W80R(mutant)

1. Total amino acids 480 480

2. Number of residues in favoured region (-98.0% expected) 388 (81.2%) 379 (79.3%)

  Number of residues in allowed region(-2.0% expected) 61 (12.8%) 66 (13.8%)

3. Number of residues in outlier region 29 (6.1%) 33 (6.9%)

 

3.4 Active site and score prediction
A proven algorithm for binding site identification and evaluation of the drug ability of those sites lead to modify hit-compounds to enhance receptor
complementarity. The active site was performed using a sitemap tool to assess each site by calculating attributes such as size, volume, amino acid exposure,
hydrophobicity, hydrophilicity, donor/acceptor ratio. The most reliable score was obtained in the binding pockets of W80R. The predicted amino acids in the
active region were LEU156, GLY157, GLU234, MET281, ASN279, GLU278, LYS276, ASP274, THR291, ASP292, PHE293, GLY294, LEU295, GLU298of site score for the
selected model was 1.128, druggability score − 1.149 with Volume 384.486 and size measured was 179 for further docking analysis.

3.5 Analysis of cancer associated mutants
The mutation impact for the protein W80R was classified using the FATHMM server derived from the new FATHMM-MKL algorithm. It distinguishes between
cancer-promoting/driver mutations and other germline polymorphisms. This algorithm predicts the functional, molecular, and phenotypic consequences of the
missense mutation of a functional protein using hidden Markov models (HMMs), representing the alignment of homologous sequences and conserved
protein domains with "pathogenicity weights", representing overall tolerance of protein/domain to mutations 44 The gene number identifier (uniprot id) along
with mutant form as a text was provided as the input for the prediction based on the FATHMM server predictions with a score − 1.12 responsible for benign
cancer. The functional scores for individual mutations were obtained from the FATHMM-MKL server which falls in the range of 0–1 known as single p- values
fall in the range of (0–1) where the values below 0.5 are predicted as benign and above 0.5 are deleterious.

3.6 Determination of ADME profile
Molecular properties of the selected compounds were studied using Qikprop and chosen based on the Lipinski rule of five which marks the most important
activity in drug discovery and development. Multifarious Insilco techniques have been employed to measure the drug-likeness for a compound based on
numerous descriptors. Calculation of absorption, distribution, metabolism, excretion, and toxicity (ADME/T) properties were predicted for best-docked ligand
molecules using Qikprop software. Qikprop computes almost 20 physical descriptors over a wide range of predicted properties unlike a fragment-based
approach, by screening compound libraries for hits and play a lead optimization that can be used to improve predictions by fitting to experimental data and
also to generate QSAR models. The detailed analyses of chemical and molecular descriptors and also solubility properties were tabulated in Table3, 4, and 5.
The results of ADME properties are an important index to check the clinical candidates have reached the required standard. It is revealed that compounds in
the table were ranked based on the potential drug properties. According to a previous study, ~ 40% of failures to develop medicine in the development phase
are due to poor biopharmaceutical properties (pKa-dissociation constant and bioavailability)55. The ADME as a deal medicine has following characteristics,
hydrogen bond donar < 5; hydrogen bond acceptor < 10; molecular weight < 500Da; lipid water partition coefficient < 5; water solubility partition coefficient − 6.5 
< logs < 0.5; and polar surface area 7.0–20.
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Table 3
Detailed analysis of ADME properties of ligands using QIKPROP software

CID id Mol.wt Dipole SASA FOSA FISA

443639 310.392 7.125 515.633 442.178 73.455

44264122 276.334 2.395 457.915 415.498 42.417

71424203 336.387 5.934 489.544 447.123 42.421

5907705 336.387 0.667 489.55 447.131 42.419

6421929 298.338 0.002 600.799 533.867 66.932

6440365 310.392 6.34 532.097 458.644 73.453

10688261 336.387 3.009 553.24 511.992 41.249

10852057 304.388 8.606 478.22 435.803 42.417

14407192 280.366 4.742 505.615 428.846 76.769

19792482 349.256 21.006 553.576 388.72 42.774

19792563 308.419 2.685 554.716 511.942 42.774

22321203 290.358 7.377 519.093 427.419 91.673

24952793 342.393 4.9 577.054 369.818 89.296

24952797 391.25 24.947 516.006 322.823 88.262

24966389 350.413 7.928 576.902 488.639 88.262

44538447 361.224 9.432 540.471 339.66 90.009

44560954 280.366 2.771 484.13 407.362 76.769

44610342 318.412 7.987 624.49 536.048 88.441

53693682 286.37 5.469 532.126 460.735 71.391

*SASA: total solvent accessible surface area in square angstroms using a probe with a 1.4A radius; FISA: hydrophilic component of the SASA(SASA on N,
O, and H on heteroatom);FOSA: hydrophobic component of the SASA(saturated carbon and attached hydrogen); CID ID: compound Id from PUBCHEM
database
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Table 4

Detailed analysis of ADME properties of ligands using QIKPROP software
CID ID VOLUME DonorHB AcceptorHB dip2/v AC*DN

443639 846.643 1 2.75 0.059953 0.005333

44264122 721.579 0 4 0.007948 0

71424203 799.111 2 6 0.044058 0.017333

5907705 799.119 2 6 0.000557 0.017333

6421929 914.122 0 3.5 0 0

6440365 855.378 1 2.75 0.046994 0.005168

10688261 914.124 2 6 0.009905 0.015337

10852057 769.386 0 4 0.096272 0

14407192 805.364 1 2.75 0.02792 0.005439

19792482 891.173 0 4 0.495123 0

19792563 896.185 0 4 0.008045 0

22321203 812.517 1 2.5 0.066971 0.004816

24952793 899.071 1 4.75 0.026703 0.008232

24952797 833.649 1 4.75 0.746536 0.009205

24966389 906.417 1 4.75 0.069341 0.008234

44538447 846.213 1 4.75 0.105131 0.008789

44560954 791.867 1 2.75 0.009697 0.00568

44610342 980.133 1 4.75 0.06508 0.007606

53693682 821.324 1 2.75 0.036413 0.005168

*.Donor HB: it is the calculated number of hydrogen bonds that would be donated by the solute to water molecules in an aqueous solution, values are
averages take over many configurations, so they can be non-integer; Acceptor HB: it is estimated as the number of hydrogen bonds that would be accepted
by the solute from water molecules in aqueous solution; dip2/v: square of the dipole moment divided by the molecular volume. This is the key term given
in Kirkwood-Onsager equation for the free energy described of solvation of a dipole moment with volume V; AC*DN: index of cohesive interaction in solids;
Volume: total solvent-accessible volume in the cubic angstroms using a probe with 1.4 A radius.
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Table 5
Solubility prediction parameters for molecular descriptors

CID QPlogpC1 QPlogPW Qplogpoct QPlogPw QPlogPo QPlogS ClQPlogS QPlogHER QPPCaco QPPMDCK QPlogKp

5318278.0 27.1 6.7 11.8 5.4 2.9 -4.5 -3.0 -4.1 1992.1 1042.1 -2.8

5469422.0 22.7 5.0 8.7 5.1 1.8 -2.8 -1.9 -4.0 3923.3 2167.8 -2.3

5469423.0 25.8 6.3 14.3 10.0 1.5 -3.3 -2.2 -3.9 3923.0 2167.6 -2.3

5907705.0 25.8 6.3 13.7 10.0 1.5 -3.3 -2.2 -3.9 3923.1 2167.7 -2.3

443637.0 30.4 6.9 10.9 5.1 3.1 -5.8 -2.6 -5.4 2297.1 1215.5 -2.8

44264122.0 27.4 6.7 11.7 5.5 3.0 -4.8 -3.0 -4.5 1992.2 1042.1 -2.8

71424203.0 30.4 7.3 15.4 10.2 2.1 -4.3 -2.2 -4.4 4024.7 2228.4 -2.3

10852057.0 24.6 5.5 10.6 5.1 2.1 -3.2 -2.3 -4.0 3923.3 2167.8 -2.3

14407192.0 25.4 6.2 10.8 5.4 2.6 -4.3 -2.6 -4.3 1853.1 963.6 -2.8

19792482.0 29.5 7.5 18.3 5.3 3.3 -5.1 -3.4 -4.6 3892.8 10000.0 -2.3

19792563.0 29.7 6.6 11.1 5.3 2.9 -4.6 -2.4 -4.6 3892.8 2149.6 -2.3

22321203.0 25.1 6.3 11.1 5.1 2.7 -4.5 -2.9 -4.6 1338.3 677.9 -3.0

24952793.0 30.3 -7.7 13.7 8.4 2.4 -4.9 -3.3 -18.3 1409.6 717.0 -2.7

24952797.0 26.6 -9.3 22.7 7.5 2.3 -4.3 -3.9 -17.7 1441.8 2759.8 -3.1

24966389.0 29.5 -8.5 13.8 7.6 2.4 -4.9 -2.9 -17.7 1441.8 734.7 -3.1

44538447.0 27.1 -8.6 14.0 7.6 2.4 -4.8 -3.4 -17.7 1387.8 2852.3 -3.1

44560954.0 24.9 -10.9 10.4 5.4 2.5 -4.0 -2.6 -17.7 1853.1 963.7 -2.8

44610342.0 32.4 -7.3 14.7 7.7 2.8 -5.8 -2.5 -17.7 1436.1 731.6 -3.1

53693682.0 26.1 -9.8 11.0 5.4 2.7 -4.8 -2.7 -17.7 2084.0 1094.1 -2.739

*QPlogPoct: predicted octanol/gas partition coefficient; QPlogPw: predicted water/gas partition coefficient; QPlogPo/w: predicted octanol/water partition
coefficient;ClQPlogS: conformation –independent predicted aqueous solubility, logs. S in mol dm− 3 is the concentration of the solute in a saturated
solution that is in equilibrium with the crystalline solid; QPlogHERG: predicted IC 50value for blockage of HERG K+ channels; QPPCaCo: predicted apparent
CaCo-2 cell permeability in nm/sec; Caco-2 cells are a model for the gut blood barrier; QPlogKp: predicted skin permeability, logKp; QPlogS: Predicted
aqueous solubility, log S, S in mol dm− 3 is the concentration of solute in the saturated solution that is in equilibrium with the crystalline solid; QPPMDCK:
Predicted apparent MDCK cell permeability in nm/sec, MDCK cells are considered to be a good mimic for the blood- barrier; QPlogpCl: Predicted
hexadecane/gas partition coefficient.

3.7 QSAR studies and validation
A dataset of 44 ligand compounds was chosen for statistical studies and classified as the training set and test set into 50% for suitable 3D QSAR model
development. The graphical interface allowed building dataset into training and testing equally for 50% by generating a correlation coefficient. The graph
obtained for all/training models/test models were observed in Fig. 2A. Molecular descriptors (ligands) were divided into a training set and test set (Table 6)
with parameters such as phase QSAR, phase activity, % extrapolation, predicted error, and predicted activity. QSAR built model was generated based on
docking poses and substructure alignment was represented with standard deviation for the regression as 10.7913, R2 gives 0.8226 measures the coefficient
of determination, where R2 always lies between 0 and 1, R2C yields 0.2055 for cross-validated where R2 is obtained to leave an N-out approach, R2scramble
(R2 is regression or coefficient of determination) obtained as 0.4889 computing the average value obtained using scrambled activities of Fig. 2B. It measures
the degree to which the molecular fields can fit random data, stability statistical measure observed to be 0.379 for the model predicting the changes obtained
in the training set composition F with 92.7 measuring higher F value indicates more statistical significant regression. Pearson 5.95e-09, root mean square
error predictions were to be 22.02 (RMSE), Q2for predicted activities with 0.2915, Pearson-r correlated with predicted activity, and observed activity observed
for test set with 0.7508. The test set was determined within the maximum range of training set.
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Table 6
List of statistical analysis generated using field based QSAR

CID ID Phase QSAR Phase ACTIVITY % Extrapolated Prediction Error Prediction Activity

368569 Test 314.424 0.653 5.16645 319.59

443637 Training 358.477 0.458 -24.7856 333.692

461867 Training 296.408 0 -0.612247 295.796

2751794 Training 314.424 0 -5.94593 308.478

44264122 Test 280.366 0.049 18.5276 298.894

6324890 Training 330.423 0 5.28888 335.712

71424203 Test 332.482 0.227 -74.0301 258.452

11566133 Test 330.466 0.055 -13.8518 5.51

14379076 Training 344.45 0 -3.96902 340.481

14633296 Test 286.456 0.246 -35.6831 250.773

15690458 Test 298.381 0.044 -2.43817 295.943

20975206 Test 236.353 0.22 9.44186 245.795

22973545 Test 300.483 0.037 -3.7.753 296.775

24207736 Training 250.38 0.039 -5.88.58 296.775

25203072 Training 286.456 0 12.9111 299.367

44254444 Test 328.407 0.044 -2.11377 326.293

44254874 Test 344.407 0.045 -0.262634 344.144

3.8 Contour visualisation
The contour maps (Fig. 3) were used to illustrate the fields required for biological activity. Field-based QSAR interface creates electrostatic, hydrophobic, and
steric fields for optimization and leads discovery. The represented green contour indicates the bulky group in a favorable region. The contour map depicts
hydrophobicity in the solvent-accessible hydrophobic pocket steric fields are considered as the most favorable regions with a high Glide score. The obtained
results have shown the steric and Gaussian field fractions are much larger than other fields suggesting most of the binding energy has been contributed from
hydrophobic interactions. 

3.9 Molecular docking studies
Molecular docking is the paramount computational tool to configure (Fig. 4) all the possible active conformations of binding at the active site for the receptor
molecule. Before performing the docking protocol, the co-crystallized ligand was re-docked into the crystal structure of the W80R receptor molecule to evaluate
the reliability of the standard precision algorithm of the Glide. A dataset of flavonoids family along with its structural analogs comprising 7000 ligands was
selected. Upon generation of Epik for suitable tautomeric states per 16 for each ligand, 12000 ligands were chosen entirely as a whole set for virtual screening
with W80R mutant protein. The top three ligands with the best binding energy were considered for further analysis (Fig. 4). 

Several hydrogen bond interactions were found in the docking result. The top-scoring compound belongs to CID-443637 was having the lower binding energy
with the Glide score of -9.63 Kcal/mol. The hydroxyl group of SER208 formed a hydrogen bond with GLU198 and also found interacted with THR211revealing
the strongest stability with the receptor molecule. The three hydrogen bond interactions provide the guarantee for stable conformation of a binding ligand
molecule to protein structure which influences the activity of ligand. The interaction with 1 pi ~ cation recognized as an energetically significant56 noncovalent
binding interaction proves to exist in a quite strong platform both in the gas phase and liquid media57 which is a special hydrophobic interaction with
LYS268having a cationic side chain amino acid, indicating that the geometry is biased towards aromatic amino acid, one that experiences a favorable pi ~ 
cation interaction 58 having IUPAC name 2-(3,4-dihydroxy phenyl)-3,4 –dihydro-2H-chromene-5,7-diol of C15H14O5 (Fig. 5). The second highest molecule of
CID 71424203 has the binding energy of -9.43 kcal/mol forming three hydrogen bond interactions with amino acid residues THR211, MET227, SER205 aromatic
amino acid residue, and TYR474of 1 pi ~ pi stacking interaction. The residue TRP80 between two aromatic amino acids has a separation of -3.35A (vDw)
having IUPAC name 2,5,7–trihydroxy-3-(4-hydroxyphenyl)-2,3-dihydrochromen-4-one of C15H12O6 (Fig. 6). The third compound CID 44264122 has the binding

energy of -9.36 kcal/mol with hydrophobic contacts with residues such as LYS268, THR291 having IUPAC name 3,4 Difluoro-8,9-dihydroxbenzo[c] chromen-6-
one of C13H6F2O4 (Fig. 7).After the comparison of all the three models, the compound CID with 443637 with the lowest energy is chosen for further
molecular dynamics simulation studies. 

Lower Glide score represents the most and highest favorable binding affinity. Hydrogen bond interactions, pi-interactions, pi staking of the best poses were
visualized and interpreted using XP visualizer with descriptors (Table 7) in ascending order. It rewards the topmost ligands for hydrogen bond with lengths
and angles deviating significantly from "ideal" hydrogen-bond interaction (1.65A H-A distance,180 D-H A angle)42 .The PhobEn measures hydrophobic
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enclosure reward on the protein. The lipophilic EvdW is the term for hydrophobic region lies within receptor and Ligand proximity. For the obtained data, PiCat,
ClBr, PhobEnPa, penalties, HB penal, exposed penal, zprot remained at zero, whereas other properties of descriptors were exhibited accordingly. 

Table 7
Top ranked hit compounds of docking with protein W80R obtained using XP visualise

CID ID Dock Score GScore Lipophilic

EvdW

PhobEn HBond Electro RotPenl Activity

443637 -9.63 -9.63 -3.22 -2.17 -3.02 -0.72 0 -0.08

4426412 -9.43 -9.43 -3.11 -2.11 -2.11 -0.57 0 -0.06

7142423 -9.36 -9.36 -3.98 -0.86 -3.2 -0.64 0.12 0

586089 -9.34 -9.34 -3.82 -2.55 -1.04 -0.15 0.13 -0.1

443902 -9.32 -9.32 -3.93 -1.7 -2.05 -0.45 0.09 -0.31

847733 -9.26 -9.26 -5.25 -2.7 -0.7 -0.25 0.14 -0.32

443639 -9.2 -9.2 -4.95 -2.09 -1.08 -0.7 0.1 -0.16

6901802 -9.18 -9.18 -4.5 -1.65 -2.4 -0.32 0.52 0

2157490 -9.16 -9.16 -3.81 -1.89 -2.49 -0.88 0.41 -0.84

3239870 -9.15 -9.15 -3.27 -1.97 -0.7 -0.18 0.14 -0.32

5880326 -9.14 -9.14 -4.7 -1.84 -1.87 -0.64 0.41 -0.85

4013888 -8.97 -8.97 -4.24 -1.87 -0.7 -0.23 0.14 -0.32

5942266 -8.9 -8.9 -4.73 -2.65 -1.27 -0.32 0.57 0

586088 -8.71 -8.71 -4.18 -1.98 -0.85 -0.43 0.13 -0.11

80337 -8.71 -8.71 -3.45 -1.85 -1.7 -0.35 0 0

229016 -8.66 -8.66 -4.66 -2.31 -0.67 -0.65 0.13 -0.24

*G Score-total G score along with sum of XP terms(G score = a*vdW + b*Coul + Lipo + Hbond + Metal + BuryP + RotB + Site where vdW is vanderwaals
energy, Coloumb energy, Lipo is lipophilic contact, Hbondis hydrogen bonding, Metal is metal-binding, BuryPis penalty for buried polar groups, RotBis
penalty for freezing rotatable bonds, site is polar interactions in the active site and a = 0.065 while b = 0.130 were the coefficients of vdW and Coul.

Dock score
-Vanderwaals + coulombic + HBonds represents potentiality of bonding. In simple rigid systems, the ligand is searched in a 6 dimensional rotational or
translational space to fit in the binding site, which can serve as a lead compound for drug design60

Lipophilic term is derived from the hydrophobic grid potential and the fraction of the total protein ligand vdW energy, PhobEn- can be as hydrophobic
enclosure reward for penalty for ligands with large hydrophobic contacts and low hydrogen bond scores phobic penal for penalty for exposed hydrophobic
ligand groups, Rot Penal for rotatable bond penalty.

4.10 Molecular dynamics simulation
MD simulations were performed to W80R protein-ligand complex with least binding energy (Fig. 8a). The results of MD trajectories were evaluated by root
mean square deviation (RMSD) and root mean square fluctuation (RMSF) plot which could provide significant insights into understanding structural changes
in atomic details. The RMSD is a significant parameter to analyze the equilibrium in MD trajectories, which is estimated for backbone atoms of W80R protein
and taxifolin ligand complex. For W80R protein complex, the fluctuations were raised about 0.3 to 0.4nm during initial stage (Fig. 8a).Clear and noticeable
deviations were observed in the residues of RMSD values with increase in time from 200ps to 600ps. Majority of residues resulted to attain a stable state at
600psbetween 0.45nm to 0.5nm. At the same time, W80R protein–ligand complex fluctuated from 700ps to 900ps at 0.4nm and remained stable between
0.4nm to 0.45 nm until the end of simulation 61 

RMSF results were obtained by considering the average of all backbone residues of atoms to inspect the local variations of protein flexibility (Fig. 8b). The
fluctuations observed above have an important role in protein complex flexibility and thus affect protein-ligand activity and stability. The high RMSF value
shows more flexibility with a maximum level of fluctuation in the residue positions of 355 and405 at 6Åof the backbone structure, while the minimum RMSF
shows very limited movements. The RMSF graph for the W80R-ligand complex was shown in Fig. 8b. The W80R-ligand complex has attained the amino acid
residues at 455 and500 also show a fluctuation at 5Å of RMSF. While at positions 305 and355 at4Å indicate similar steep up graph at 5Å.The amino acid
residues between 15, 55, and 105, 155, have shown medial deviation at 3Å. 

To determine the residue interaction network, RING2.0 software identifies all types of non-covalent interactions in atomic levels which have wide different
energies and lengths. The output has been visualized in two different ways (i) interaction network which has been visualized using different labels and (ii)
structural contacts using RING_viz-script for pymol (Fig. 9). The applications of RING 2.0 have a growth in protein folding patterns, domain-domain
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communication and catalytic activity, inter-intrachain interactions that combine both solvent and ligand atoms. Residue interaction network (RIN) describes
the single amino acid as nodes and physicochemical properties as edges including covalent and non-covalent bonds. RIN has become common practice to
explore the complexity inherent in macromolecular systems59.

4 Discussion
The enigmatic in ovarian cancer is that in nearly 75% of patients, cancer do recurse during first two years and fail to respond to available therapeutic drugs
due to acquired resistance62,63 in addition to late diagnosis in advanced clinical stages and metastasis within the peritoneal cavity63,64. Therefore, there is
immediate need to design novel drugs to deal with the existing problem.Numerous studies since a decade has reported that Flavinoids as candidates are
meant to block, retard, or reverse the progression of carcinogenesis80. Although various studies have been carried out using flavinoids but the anticancer
mechanisms have not been defined clearly. However, it was found that the flavonoids such as quercetin and silymarin induce anti-cancer mechanisms in
ovarian cancer cells65,66. Consequently, the effects of apigenin, luteolin and myricetin on ovarian cancer have to uncover the link between potential
mechanisms underlying their anticancer effects. Quercetin inhibits cell proliferation of ovarian cancer cell line of SKOV-3 which correlated with findings of67

caused on concentration and time-dependent manner68 showed to inhibit UVB induced skin cancer cell proliferation and induce apoptosis in vivo models
upon apigenin treatment. Taxifolin invitro studies have been efficient especially in anticancer, antimicrobial activities but leaves a strong gap in the invivo
studies at root level.

The lead compound in the current study was recognised as taxifolin which has potent to exhibit anti-cancer effects on U2OS and Saos-2 in osteosarcoma cell
lines by inhibiting the proliferation and disrupting colony formation. In vivo studies exhibit intraperitoneal administration in nude mice bearing U2OS xenograft
that resists tumor growth. This potency is known to arrest the G1 phase of the cell cycle in U2OS and Saos-2 cell lines. Taxifolin has known to function by
inhibiting colon carcinogenesis by NF-kB mediated Wnt/b catenin signalling through upregulation of Nrf2 pathway while downregulation in genes such as
TNF-α, COX-2, β-catenin, and cyclin-D1 were inhibited by NF-kB and Wnt signalling pathway69. It is also reported that injection of taxifolin has reduced the
proliferative activity on wistar rats with benign prostatic hyperplasia70. Taxifolin also has an excellent report on antiangiogenic effect by new blood vessels
and its branches per area of chick chorioallantoic membrane assay which is inhibited by tube formation on matrigel matrix in human umbilical vein of
endothelial cells which were evaluated against tachyzoites in vitro with IC50 of 1.39µg/mL(p ≤ 0.05) along with pyrimethamine. Taxifolin has known to
express anti-proliferative effect on cancer cell types by inhibiting cell lipogenesis and inhibits the fatty acid synthesis in cancer cell lines which is able to
prevent the growth of cancer cells79.

An extensive animal (rat) study of antioxidant activity on taxifolin acid has shown the decreased lipid peroxidation in the serum and liver levels. The presence
of OH groups at position 5th and 7th together with 4-OXO function in the A and C rings were meant for scavenging effect while O-dihydroxy group in the B ring
provided stability71. Consequently, In vivo studies on taxifolin induced in apoptosis of HCT116 and HT 29 cells revealed PARP1 over expression is responsible
for ovarian cancer. AKT and catenin proved that down-regulated expression by taxifolin on HCT 116 and HT 29 cells demonstrates a decline in p-AKT and
catenin in a dose of 40 µM against DMSO altering in G2 cell cycle and its regulators72. The expression levels of AKT, SKP-2, v-mc avian myelocytomatosis
viral oncogene homolog(c-myc) and p-Ser473, have reduced activity on AKT gene by taxifolin73. Although the above mentioned experimental outcomes have
contributed for diversified pharmacological activities with AKT1 protein, we still lack the detailed and molecular changes wrt to W80R mutant protein of AKT1
family. Consequently, the marginal overview of the molecular mechanism and atomic level with W80R mutation has aimed to identify hits for optimization
from large data set of compounds from the PubChem database screening of flavonoids in parallel to W80R mutant protein of AKT1 targeting ovarian cancer.
The Table 1 for the receptor molecule W80R of 480 amino acid sequence provides the detailed knowledge about the stability of protein using Protoparam
tools of Expasy server. The extensive evaluation on W80R sequence at nucleotide level reveals its density, while other parameters such as A-T,C-G rich region,
molecular weight, amino acid composition, theoretical pI, aliphatic index, instability index and GRAVY significantly stand up for stability factor. The most
favoured region by RAMPAGE server was assessed to be 79.3% (Table 2) with active site binding. Furthermore, the reliability of the protein model has been
assessed by 3D or homology modelling. Therefore, Generation of 3D protein structure from sequence information, in the absence of experimentally
determined structures in protein data bank through computational approaches has become topmost priority in the scientific community based on structural
biology research for several decades74,75,76. The protein was henceforth evaluated with SAVES server (structural analysis and verification) for quality check,
structural refinement through energy minimization in lowest energy state in its stable conformation, followed by ProSA (Fig. 1) and superimposition analysis
with experimentally determined template structure as well as atoms and RMSD assessment to obtained a high -quality structural model for virtual
screening77. The predicted score for 3D homology model of RMSD for the W80R protein was 0.18, the model was considered as the best one for further
validation purposes.3D QSAR studies have been performed with structural similarity to predict the unknown/untested ligands for better potency by correlating
mathematical and statistical values. QSAR models can prioritize ideas in virtual screening as well in the optimization of lead compounds. Thus it has gained
acceptance in in-silco drug discovery. The scatter plot QSAR tool (Fig. 2) assessed the molecular fields for the compounds which estimate the stability and
establish statistical value to be 0.379 predicting the changes obtained in the training set composition with 92.7 measured higher F indicates more statistical
significant regression. The dataset of 44 ligands was classified into test and training models randomly with combined mathematical and statistical
approaches for the drug candidate represents phase activity of 358.477% extrapolated for 0.458 with the predicted activity of 333.692 and predicted error of
-24.7856 which was a good combination as a lead compound (Table 6). As per Lipinski's rule of five, a drug is good molecule if it possesses ADME
(absorption, distribution, metabolism, and excretion) properties43. All the physicochemical properties and drug-likeness were listed in Table 3, 4 and
5consequently; it becomes easy for the lead compound to enter the mammalian cell to interact with proteins and regulating gene expression in metabolic
pathways. The top 10 hits obtained by molecular docking were further docked into the active binding sites of protein using a sitemap tool of above score 1
and grid generation followed by XP protocol (Table 7). However, a contour map is one such tool used in the present study to determine favourable regions
based on field-based QSAR which depends on steric, electrostatic, hydrophobicity in solvent-accessible pockets based on least binding energy. This
application plays a vital role in combination therapies of multi-drug-resistant conditions as well in drug discovery.
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The evaluated hydrophobicity gives an accurate check for the drug-ability of a compound (Fig. 3). Sitemap tool treats entire protein to locate binding sites
whose size, the extent of solvent exposure is assessed based on scoring function by ranks. Active sites are ranked based on ligand propensity of binding
measured by their ability to bind tightly for passively absorbed small molecules. Among the predicted combinations, active site amino acid residues of site
score 1.128, drug-ability score − 1.149, volume 384.486, and size 179 (Fig. 4) were taken for further analysis. Taxifolin holds good interactions with the
binding domain of W80R, highest Glide score of -9.63kcal/mol with O-H of SER 208 and H bond GLU 198 and THR 211 amino acid residues and one pi-cation
interaction and one hydrophobic bond with LYS 268 (Fig. 5). The lead molecule satisfied all the surface area calculations using QIKPROP tool of SASA,
FISA,FOSA, PSA and partition coefficient of Qplogpoct, QPlogPw, QPlogPo, QPlogS, ClQPlog, QPlogHER, QPPCaco, QPPMDCK, QPlogKp, wherefore, this
inhibitor of the PI3K/AKT pathway has shown diverse aptitudes for anticancer activity in both preclinical and clinical experimental values and also supported
through in-silico analysis.

It has been reported by the administration of taxifolin in colorectal cancer cell lines and in HCT 116 xenograft mouse model had shown excellent antitumor
activity. The studies proved that the administration of taxifolin hindered the mRNA expression of β-catenin thus compiling anti-proliferative activity which was
arbitrated by PI3K/AKT signal by jamming Wnt/ β –catenin signaling transduction through hampering the β expression72. The elucidation of suppression by
taxifolin on nuclear factor-kB, C-Fos, and mitogen-activated protein kinase also decreased osteoclast specific gene expression including Trap, Mmp-9,
Cathepsin K, C-Fos, Nfatc1, and Rank; taxifolin osteoclastogenesis via regulation of many RANKL signaling pathways was also confirmed78,79. Taken
together, these studies demonstrated that Wnt/catenin pathway plays a crucial role in ovarian cancer development and this idea also laid a strong platform
for the development of targeted curatives.

CID- 44264122 with 2 hydrogen bonds of a hydroxyl group (-OH) interacting with LYS268, THR291, ILE290, and THR211 and ILE290 and –OH with THR 291 and
oxy bond with residue LYS 268 (Fig. 6) with Glide XP score − 9.43Kcal/mol. The hydrogen bond interaction with residues of TYR474, SER215, THR211, with 1 pi-pi
interaction at TRP80 residue, and 1 pi-cationic interaction bonding with LYS265 with G score − 9.36Kcal/mol showed good hydrophobic interactions (Fig. 7).
The molecular dynamics simulation was performed to obtain lowest error and data loss. The fluctuations in relative positions of atoms in protein-ligand
complex explains the structural stability (RMSD) at 0.45nm to 0.50nm between 600 to 800ps (Fig. 8a). The RMSF has shown a steep up graph at 5A with a
slight medial deviation and not much structural change in protein cavity was observed80,81,82 (Fig. 8b). Residue interaction network (RINs) consider single
amino acid as nodes and physio-chemical interactions as edges (Fig. 9) representing the protein structure as RINs have become common practice to explore
the complexity inherent in macromolecular systems. Henceforth, the taxifolin has been suggested as a drug for human use in clinical trials.

5 Conclusions
The mutant forms of the amino acid were found to induce pathological outcomes disrupting the native conformation of a protein. The W80R mutation in the
PH domain of AKT1 had been reported to cause ovarian cancer by in-vitro studies and recorded in My Cancer genome database. The synthetic drugs reported
in clinical trials are being used currently. To examine the detailed molecular mechanism of W80R, we conducted molecular docking along with dynamic
simulation studies to understand the stability of the mutant structure, which is known to cause a damaging effect of the mutation. Furthermore, a rise in
RMSD values for stability in trajectory and conformational drifts were observed in W80R protein. The expected result supported the molecular cause in a
mutant form which resulted in a gain of ovarian cancer. However, experimental evaluation or in vivo studies is recommended for further validation.
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Figure 1

Protein structure analysis (ProSA) of the W80R(mutant) on the left side and AKT1(wild)on right side. (a)Overall quality of W80R model represents Z score of
-7.9Kcal/mol(b)Overall quality of the wild protein AKT1 represents Z score of -7.2Kcal/mol.
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Figure 2

(A) Scatter plot diagram between actual activity and predicted activity showing QSAR results of all molecular descriptors (B) Activity predicted between only
training set chemical descriptors(C) Predicted activity between test set of chemical descriptor

Figure 3

The CoMFA steric field with 2Å in a green hydrophobic region as grid spacing is displayed for the compound CID ID: 5482167.
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Figure 4

A docked complex of W80R protein in ribbon model with inhibitor CID ID 443637 (Taxifolin) at an active site of binding pocket with XP score -9.63 kcal/mol.

Figure 5

Representation of W80R receptor molecule with CID ID-443637 as a ligand interaction with protein residues SER205, THR211, GLU198 of a hydroxyl group (-
OH) and 1 pi-cation interaction with LYS268 with noticeable solvent exposure sites observed at some residue locations with highest Glide XP score of
-9.63Kcal/ mol.
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Figure 6

Representation of W80R protein-inhibitor complex of CID 44264122 with 2 hydrogen bonds of a hydroxyl group (-OH) interacting with LYS268, THR291,
ILE290, and THR211 and ILE290 and –OH with THR 291 and oxy bond with residue LYS 268 with Glide XP score: -9.43Kcal/mol.

Figure 7

Representation of W80R receptor molecule with inhibitor at the active site showing protein-ligand hydrogen bond interaction with residues as TYR474,
SER215, THR211, with 1 pi-pi interaction at TRP80 residue, and 1 pi-cationic interaction bonding with LYS265 with G score -9.36Kcal/mol.
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Figure 8

(a)Root mean square deviation (RMSD) of the C-alpha backbone of the W80R protein complex and ligand taxifolin (X-axis time scale in ps and Y-axis in
RMSD in nm). (b)Root mean square fluctuation (RMSF) for C-alpha backbone atom of a W80R protein complex with ligand taxifolin (X-axis shows amino acid
residue number and Y-axis shows RMSF in nm).

Figure 9

Visualisation of residual network of W80R protein complex.


