1. Rezvani, M., Therapeutic Potential of Mesenchymal Stromal Cells and Extracellular Vesicles in the Treatment of Radiation Lesions-A Review. Cells, 2021. 10(2).doi:10.3390/cells10020427
2. Qiu, X., K. Dong, J. Guan, and J. He, Hydrogen attenuates radiation-induced intestinal damage by reducing oxidative stress and inflammatory response. Int Immunopharmacol, 2020. 84: p. 106517.doi:10.1016/j.intimp.2020.106517
3. Gandle, C., S. Dhingra, and S. Agarwal, Radiation-Induced Enteritis. Clin Gastroenterol Hepatol, 2020. 18(3): p. A39-a40.doi:10.1016/j.cgh.2018.11.060
4. Loge, L., C. Florescu, A. Alves, and B. Menahem, Radiation enteritis: Diagnostic and therapeutic issues. J Visc Surg, 2020. 157(6): p. 475-485.doi:10.1016/j.jviscsurg.2020.08.012
5. Gregorieff, A., Y. Liu, M.R. Inanlou, Y. Khomchuk, and J.L. Wrana, Yap-dependent reprogramming of Lgr5(+) stem cells drives intestinal regeneration and cancer. Nature, 2015. 526(7575): p. 715-8.doi:10.1038/nature15382
6. Chaves-Pérez, A., M. Yilmaz, C. Perna, S. de la Rosa, and N. Djouder, URI is required to maintain intestinal architecture during ionizing radiation. Science, 2019. 364(6443).doi:10.1126/science.aaq1165
7. Hauer-Jensen, M., L.M. Fink, and J. Wang, Radiation injury and the protein C pathway. Crit Care Med, 2004. 32(5 Suppl): p. S325-30.doi:10.1097/01.ccm.0000126358.15697.75
8. Banerjee, S., Q. Fu, S.K. Shah, S.B. Melnyk, E. Sterneck, M. Hauer-Jensen, et al., C/EBPδ protects from radiation-induced intestinal injury and sepsis by suppression of inflammatory and nitrosative stress. Sci Rep, 2019. 9(1): p. 13953.doi:10.1038/s41598-019-49437-x
9. Hu, B., C. Jin, H.B. Li, J. Tong, X. Ouyang, N.M. Cetinbas, et al., The DNA-sensing AIM2 inflammasome controls radiation-induced cell death and tissue injury. Science, 2016. 354(6313): p. 765-768.doi:10.1126/science.aaf7532
10. Stansborough, R.L., E.H. Bateman, N. Al-Dasooqi, J.M. Bowen, D.M.K. Keefe, A.S.J. Yeoh, et al., Fractionated abdominal irradiation induces intestinal microvascular changes in an in vivo model of radiotherapy-induced gut toxicity. Support Care Cancer, 2017. 25(6): p. 1973-1983.doi:10.1007/s00520-017-3601-3
11. Cui, M., H. Xiao, Y. Li, L. Zhou, S. Zhao, D. Luo, et al., Faecal microbiota transplantation protects against radiation-induced toxicity. EMBO Mol Med, 2017. 9(4): p. 448-461.doi:10.15252/emmm.201606932
12. Shadad, A.K., F.J. Sullivan, J.D. Martin, and L.J. Egan, Gastrointestinal radiation injury: prevention and treatment. World J Gastroenterol, 2013. 19(2): p. 199-208.doi:10.3748/wjg.v19.i2.199
13. Singh, V.K. and T.M. Seed, The efficacy and safety of amifostine for the acute radiation syndrome. Expert Opin Drug Saf, 2019. 18(11): p. 1077-1090.doi:10.1080/14740338.2019.1666104
14. Eltzschig, H.K., D.L. Bratton, and S.P. Colgan, Targeting hypoxia signalling for the treatment of ischaemic and inflammatory diseases. Nat Rev Drug Discov, 2014. 13(11): p. 852-69.doi:10.1038/nrd4422
15. Prabhakar, N.R. and G.L. Semenza, Adaptive and maladaptive cardiorespiratory responses to continuous and intermittent hypoxia mediated by hypoxia-inducible factors 1 and 2. Physiol Rev, 2012. 92(3): p. 967-1003.doi:10.1152/physrev.00030.2011
16. Rankin, E.B. and A.J. Giaccia, Hypoxic control of metastasis. Science, 2016. 352(6282): p. 175-80.doi:10.1126/science.aaf4405
17. Nakazawa, M.S., T.S. Eisinger-Mathason, N. Sadri, J.D. Ochocki, T.P. Gade, R.K. Amin, et al., Epigenetic re-expression of HIF-2α suppresses soft tissue sarcoma growth. Nat Commun, 2016. 7: p. 10539.doi:10.1038/ncomms10539
18. Nakazawa, M.S., B. Keith, and M.C. Simon, Oxygen availability and metabolic adaptations. Nat Rev Cancer, 2016. 16(10): p. 663-73.doi:10.1038/nrc.2016.84
19. Olcina, M.M. and A.J. Giaccia, Reducing radiation-induced gastrointestinal toxicity - the role of the PHD/HIF axis. J Clin Invest, 2016. 126(10): p. 3708-3715.doi:10.1172/jci84432
20. Taniguchi, C.M., Y.R. Miao, A.N. Diep, C. Wu, E.B. Rankin, T.F. Atwood, et al., PHD inhibition mitigates and protects against radiation-induced gastrointestinal toxicity via HIF2. Sci Transl Med, 2014. 6(236): p. 236ra64.doi:10.1126/scitranslmed.3008523
21. Zhang, P., J. Du, H. Zhao, Y. Cheng, S. Dong, Y. Yang, et al., Radioprotective effects of roxadustat (FG-4592) in haematopoietic system. J Cell Mol Med, 2019. 23(1): p. 349-356.doi:10.1111/jcmm.13937
22. Chen, N., C. Hao, X. Peng, H. Lin, A. Yin, L. Hao, et al., Roxadustat for Anemia in Patients with Kidney Disease Not Receiving Dialysis. N Engl J Med, 2019. 381(11): p. 1001-1010.doi:10.1056/NEJMoa1813599
23. Barratt, J., B. Andric, A. Tataradze, M. Schömig, M. Reusch, U. Valluri, et al., Roxadustat for the treatment of anaemia in chronic kidney disease patients not on dialysis: a Phase 3, randomized, open-label, active-controlled study (DOLOMITES). Nephrol Dial Transplant, 2021. 36(9): p. 1616-1628.doi:10.1093/ndt/gfab191
24. Dhillon, S., Roxadustat: First Global Approval. Drugs, 2019. 79(5): p. 563-572.doi:10.1007/s40265-019-01077-1
25. Akizawa, T., M. Iwasaki, Y. Yamaguchi, Y. Majikawa, and M. Reusch, Phase 3, Randomized, Double-Blind, Active-Comparator (Darbepoetin Alfa) Study of Oral Roxadustat in CKD Patients with Anemia on Hemodialysis in Japan. J Am Soc Nephrol, 2020. 31(7): p. 1628-1639.doi:10.1681/asn.2019060623
26. van der Vijgh, W.J. and A.E. Korst, Amifostine (Ethyol): pharmacokinetic and pharmacodynamic effects in vivo. Eur J Cancer, 1996. 32A Suppl 4: p. S26-30.doi:10.1016/s0959-8049(96)00332-2
27. Forristal, C.E., I.G. Winkler, B. Nowlan, V. Barbier, G. Walkinshaw, and J.P. Levesque, Pharmacologic stabilization of HIF-1α increases hematopoietic stem cell quiescence in vivo and accelerates blood recovery after severe irradiation. Blood, 2013. 121(5): p. 759-69.doi:10.1182/blood-2012-02-408419
28. Cummins, E.P., E. Berra, K.M. Comerford, A. Ginouves, K.T. Fitzgerald, F. Seeballuck, et al., Prolyl hydroxylase-1 negatively regulates IkappaB kinase-beta, giving insight into hypoxia-induced NFkappaB activity. Proc Natl Acad Sci U S A, 2006. 103(48): p. 18154-9.doi:10.1073/pnas.0602235103
29. Eckmann, L., T. Nebelsiek, A.A. Fingerle, S.M. Dann, J. Mages, R. Lang, et al., Opposing functions of IKKbeta during acute and chronic intestinal inflammation. Proc Natl Acad Sci U S A, 2008. 105(39): p. 15058-63.doi:10.1073/pnas.0808216105