Billard, P. Clayton, N. Jozet-Alves, C. (2020). Cuttlefish retrieve whether they smelt or saw a previously encountered item. Scientific Reports. 10. 5413. 10.1038/s41598-020-62335-x.
Blaser, R. Heyser, C. (2015). Spontaneous object recognition: a promising approach to the comparative study of memory. Frontiers of Behavioral Neuroscience, 9:183. https://doi.org/10.3389/fnbeh.2015.00183
Borrelli, L. Chiandetti, C. Fiorito, G. (2020). A standardized battery of tests to measure Octopus vulgaris' behavioural performance. Invertebrate neuroscience : IN, 20(1), 4. https://doi.org/10.1007/s10158-020-02377
Bublitz, A., Weinhold, S. R., Strobel, S., Dehnhardt, G., & Hanke, F. D. (2017). Reconsideration of Serial Visual Reversal Learning in Octopus (Octopus vulgaris) from a Methodological Perspective. Frontiers in physiology, 8, 54. https://doi.org/10.3389/fphys.2017.00054
Cinalli, D. A., Jr, Cohen, S. J., Guthrie, K., & Stackman, R. W., Jr (2020). Object Recognition Memory: Distinct Yet Complementary Roles of the Mouse CA1 and Perirhinal Cortex. Frontiers in molecular neuroscience, 13, 527543. https://doi.org/10.3389/fnmol.2020.527543
Ennaceur, A. (2018). Object novelty recognition memory. In A. Ennaceur & M. A. de Souza Silva (Eds.), Handbook of behavioral neuroscience: Vol. 27. Handbook of object novelty recognition (p. 1–22). Elsevier Academic Press.
Fiorito, G. and Scotto, P. (1992). Observational Learning in Octopus vulgaris. Science (New York, N.Y.). 256. 545-7. 10.1126/science.256.5056.545.
Fiorito, G. Biederman, G. B. Davey, V. A. Gherardi, F. (1998). The role of stimulus preexposure in problem solving by Octopus vulgaris. Animal cognition, 1(2), 107–112. https://doi.org/10.1007/s100710050015
Fiorito, G. Affuso, A. Basil, J. Cole, A. de Girolamo, P. D'Angelo, L. Dickel, L. Gestal, C. Grasso, F. Kuba, M. Mark, F. Melillo, D. Osorio, D. Perkins, K. Ponte, G. Shashar, N. Smith, D. Smith, J. & Andrews, P. L. (2015). Guidelines for the Care and Welfare of Cephalopods in Research -A consensus based on an initiative by CephRes, FELASA and the Boyd Group. Laboratory animals, 49(2 Suppl), 1–90. https://doi.org/10.1177/0023677215580006
Fuss, T. Bleckmann,H. , Schluessel, V. (2014). Visual discrimination abilities in the gray bamboo shark (Chiloscyllium griseum). Zoology (Jena) 117, 104–111. doi: 10.1016/j.zool.2013.10.009
Jung, S. Song, H. Hyun, Y. Kim, Y. Whang, I. Choi, T. Jo, S. (2018). A Brain Atlas of the Long Arm Octopus, Octopus minor. Experimental Neurobiology. 27. 257. 10.5607/en.2018.27.4.257.
Kelman, E. J. Osorio, D. Baddeley, R. J. (2008). A review of cuttlefish camouflage and object recognition and evidence for depth perception. The Journal of experimental biology, 211(Pt 11), 1757–1763. https://doi.org/10.1242/jeb.015149
Kuba, M. Byrne, R. Meisel, D. Mather, J. (2006). When do octopuses play? Effects of repeated testing, object type, age, and food deprivation on object play in Octopus vulgaris. Journal of comparative psychology (Washington, D.C. : 1983). 120. 184-90. 10.1037/0735-7036.120.3.184.
Leger, M., Quiedeville, A., Bouet, V. et al. Object recognition test in mice. Nat Protoc 8, 2531–2537 (2013). https://doi.org/10.1038/nprot.2013.155
Lueptow L. M. (2017). Novel Object Recognition Test for the Investigation of Learning and Memory in Mice. Journal of visualized experiments : JoVE, (126), 55718. https://doi.org/10.3791/55718
Mather, J.A. (1991) Navigation by spatial memory and use of visual landmarks in octopuses. J Comp Physiol A 168, 491–497. https://doi.org/10.1007/BF00199609
Mathiasen JR, DiCamillo A. (2010). Novel object recognition in the rat: a facile assay for cognitive function. Curr Protoc Pharmacol. Jun;Chapter 5:Unit 5.59. doi: 10.1002/0471141755.ph0559s49. PMID: 22294372.
Rajalingham, R. Schmidt, K. DiCarlo, J. J. (2015). Comparison of Object Recognition Behavior in Human and Monkey. The Journal of neuroscience : the official journal of the Society for Neuroscience, 35(35), 12127–12136. https://doi.org/10.1523/JNEUROSCI.0573-15.2015
Richter JN, Hochner B, Kuba MJ (2016). Pull or Push? Octopuses Solve a Puzzle Problem Pull or Push? Octopuses Solve a Puzzle Problem. PLOS ONE 11(3): e0152048. https://doi.org/10.1371/journal.pone.0152048
Rosas, C. Gallardo, P. Mascaró, M. Caamal-Monsreal, C. Pascual, C. (2014). Octopus maya. Cephalopod Culture. 383-396. 10.1007/978-94-017-8648-5_20.
Rossato J, Gonzalez M. Radiske A. Apolinário G. Conde-Ocazionez S. Bevilaqua R. Cammarota M. (2019). PKMζ Inhibition Disrupts Reconsolidation and Erases Object Recognition Memory. Journal of Neuroscience 6, 39 (10) 1828-1841; DOI: 10.1523/JNEUROSCI.2270-18.2018
Roth G. (2013) Invertebrate Cognition and Intelligence. In: The Long Evolution of Brains and Minds. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6259-6_8
Shigeno, S. Ragsdale, C. (2015). The gyri of the octopus vertical lobe have distinct neurochemical identities: Compartments in octopus frontal-vertical system. Journal of Comparative Neurology. 523. 10.1002/cne.23755.
Shigeno, S. Andrews, P. Ponte, G. Fiorito, G. (2018). Cephalopod Brains: An Overview of Current Knowledge to Facilitate Comparison With Vertebrates. Frontiers in physiology, 9, 952. https://doi.org/10.3389/fphys.2018.00952
Shomrat, T. Zarrella, I. Fiorito, G. Hochner, B. (2008). The octopus vertical lobe modulates short-term learning rate and uses LTP to acquire long-term memory. Current biology : CB, 18(5), 337–342. https://doi.org/10.1016/j.cub.2008.01.056
Shomrat, T. Turchetti-Maia, A. L. Stern-Mentch, N. Basil, J. A. Hochner, B. (2015). The vertical lobe of cephalopods: an attractive brain structure for understanding the evolution of advanced learning and memory systems. Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology, 201(9), 947–956. https://doi.org/10.1007/s00359-015-1023-6
Simons, M. Tibbetts, E. (2019). Insects as models for studying the evolution of animal cognition. Current Opinion in Insect Science. 34. 10.1016/j.cois.2019.05.009.
Solvi, C. Gutierrez A., S. Chittka, L. (2020). Bumble bees display cross-modal object recognition between visual and tactile senses. Science (New York, N.Y.), 367(6480), 910–912. https://doi.org/10.1126/science.aay8064
Spetch, M. Friedman, A. Vuong, Q. (2006). Dynamic object recognition in pigeons and humans. Learning & behavior. 34. 215-28. 10.3758/BF03192877.
Stöwe, M. Bugnyar, T. Loretto, M. Schloegl, C. Range, F. Kotrschal, K. (2006). Novel object exploration in ravens (Corvus corax): Effects of social relationships. Behavioural processes. 73. 68-75. 10.1016/j.beproc.2006.03.015.
Sutherland, N. S. (1962). Visual discrimination of shape by Octopus: Squares and crosses. Journal of Comparative and Physiological Psychology, 55(6), 939–943. https://doi.org/10.1037/h0040049
Tanimizu, T. Kono, K. Kida, S. (2017). Brain networks activated to form object recognition memory. Brain research bulletin, 141, 27–34. https://doi.org/10.1016/j.brainresbull.2017.05.017
Tomita, M. Aoki, S. (2014). Visual Discrimination Learning in the Small Octopus Octopus ocellatus. Ethology. 120. 10.1111/eth.12258.
Toms, C. N. Echevarria, D. J. (2014). Back to basics: searching for a comprehensive framework for exploring individual differences in zebrafish (Danio rerio) behavior. Zebrafish, 11(4), 325–340. https://doi.org/10.1089/zeb.2013.0952
Tricarico, E. Borrelli, L. Gherardi, F. Fiorito, G. (2011). I know my neighbour: individual recognition in Octopus vulgaris. PloS one, 6(4), e18710. https://doi.org/10.1371/journal.pone.0018710
Voss GL, Solís-Ramírez MJ. 1966. Octopus maya, a new species from the Bay of Campeche. Bull. Mar. Sci. 16: 615.
Wells, M. J. Young, J. Z. (1975). The subfrontal lobe and touch learning in the octopus. Brain research, 92(1), 103–121. https://doi.org/10.1016/0006-8993(75)90530-2
Zarrella I, Ponte G, Baldascino E, Fiorito G. Learning and memory in Octopus vulgaris: a case of biological plasticity. Curr Opin Neurobiol. 2015 Dec;35:74-9. doi: 10.1016/j.conb.2015.06.012. Epub 2015 Jul 14. PMID: 26186237.