1. Zamparo P, Cortesi M, Gatta G. The energy cost of swimming and its determinants. Eur J Appl Physiol. 2020;120(1):41-66 https://doi.org/10.1007/s00421-019-04270-y
2. Zacca R. Azevedo R, Ramos Jr, VR, Abraldes JA, Vilas-Boas JP, de Souza Castro FA, et al. Biophysical follow-up of age-group swimmers during a traditional three-peak preparation program. J Strength Cond Res. 2020;34:2585-2595 https://doi.org/10.1519/JSC.0000000000002964
3. Almeida TAF, Pessôa Filho DM, Espada MAC, Reis JR, Simionato AR, Siqueira LOC, et al. V̇O2 kinetics and energy contribution in simulated maximal performance during short and middle distance-trials in swimming. Eur J Appl Physiol. 2020;120:1097-1109 https://doi.org/10.1007/s00421-020-04348-y
5. Vescovi JD, Falenchuk O, Wells GD. Blood lactate concentration and clearance in elite swimmers during competition. Int J Sports Physiol Perform. 2011;6:106–117 https://doi.org/10.1123/ijspp.6.1.106
6. Peyrebrune MC, Toubekis AG, Lakomy HK, Nevill ME. Estimating the energy contribution during single and repeated sprint swimming. Scand J Med Sci Sports. 2012;24:369–376 https://doi.org/10.1111/j.1600-0838.2012.01517.x
7. Massini DA, Almeida TA, Vasconcelos CM, Macedo AG, Espada MA., Reis JF, et al. Are young swimmers short and middle distances energy cost sex-specific? Front. Physiol. 2021; 12:796886 https://doi.org/10.3389/fphys.2021.796886
8. Troup J, Hollander A, Bone M, Trappe S, Barzdukas A. Performance-related differenced in the anaerobic contribution of competitive freestyle swimmers. In: MacLaren D, Reilly T, Lees A (ed) Biomechanics and Medicine in Swimming VI. E & FN SPON, London, pp 271–278 (1992)
9. Fernandes RJ, Billat VL, Cruz AC, Colaço PJ, Cardoso CS, Vilas-Boas JP. Does net energy cost of swimming affect time to exhaustion at the individual's maximal oxygen consumption velocity? J Sports Med Phys Fit. 2006;46:373–380 PMID: 16998440
10. Ogita F, Onodera T, Tamaki H, Toussaint HM, Hollander AP, Wakayoshi K. Metabolic profile during exhaustive arm stroke, leg kick, and whole-body swimming lasting 15 s to 10 min. In: Chatard, J-C (ed) Biomechanics and Medicine in Swimming IX, University of Saint-Etienne, pp 361-366 (2003)
11. Reis VM, Marinho DA, Policarpo FB, Carneiro AL, Baldari C, Silva AJ. Examining the accumulated oxygen deficit method in front crawl swimming. Int J Sports Med. 2010;6:421–427 https://doi.org/10.1055/s-0030-1248286
12. Spencer MR, Gastin PB. Energy system contribution during 200-to 1500-m running in highly trained athletes. Med Sci Sports Exerc. 2001;33:157-162 https://doi.org/10.1097/00005768-200101000-00024
13. Duffield R, Dawson B, Goodman C. Energy system contribution to 400-metre and 800-metre track running. J Sports Sci. 2005;23:299-307 https://doi.org/10.1080/02640410410001730043
14. Figueiredo P, Zamparo P, Sousa A, Vilas-Boas JP, Fernandes RJ. An energy balance of the 200 m front crawl race. Eur J Appl Physiol. 2011;111:767-777 https://doi.org/10.1007/s00421-010-1696-z
15. Fernandes RJ, Billat VL, Cruz AC, Colaço PJ, Cardoso CS, Vilas-Boas JP. Has gender any effect on the relationship between time limit at V̇O2max velocity and swimming economy? J Hum Mov Studies. 2005;49:127-148 https://doi.org/10.1097/00005768-199608000-00016
16. Ogita F, Hara M, Tabata I. Anaerobic capacity and maximal oxygen uptake during arm stroke, leg kicking and whole-body swimming. Acta Physiol Scand. 1996;157:435–441 https://doi.org/10.1046/j.1365-201x.1996.490237000.x
17. Bangsbo J, Michalsik L, Petersen A. Accumulated O2 deficit during intense exercise and muscle characteristics of elite athletes. Int J Sports Med. 1993;14:207–213 https://doi.org/10.1055/s-2007-1021165
18. Falz R, Fikenzer S, Hoppe S, Busse M. Normal values of hemoglobin mass and blood volume in young, active women and men. Int J Sports Med. 2019;04:236-244 https://doi.org/10.1055/a-0826-9235
19. Koons NJ, Suresh MR, Schlotman TE, Convertino VA. Interrelationship between sex, age, blood volume, and V̇O2max. Aerospace Med Hum Perform. 2019;90:362-368 https://doi.org/10.3357/amhp.5255.2019
20. Noordhof DA, de Koning JJ, Foster C. The maximal accumulated oxygen deficit method a valid and reliable measure of anaerobic capacity? Sports Med. 2010;40:285-302 https://doi.org/10.2165/11530390-000000000-00000
21. Almeida TAF, Pessôa Filho DM, Espada MC, Reis JF, Sancassani A, Massini DA, et al. Physiological responses during high-intensity interval training in young swimmers. Front. Physiol. 2021;12:662029 https://doi.org/10.3389/fphys.2021.662029
22. Monteiro AS, Carvalho DD, Azevedo R, Vilas-Boas JP, Zacca R, Fernandes RJ. Post-swim oxygen consumption: assessment methodologies and kinetics analysis. Physiol Meas. 2020;6:105005 https://doi.org/10.1088/1361-6579/abb143
23. Ribeiro J, Figueiredo P, Guidetti L, Alves F, Toussaint H, Vilas-Boas JP, Baldari C, Fernandes RJ. AquaTrainer® snorkel does not increase hydrodynamic drag but influences turning time. Int J Sports Med. 2016;37:324-328 https://doi.org/10.1055/s-0035-1555859
24. Reis JF, Alves FB, Bruno PM, Vleck V. Millet GP. Effects of aerobic fitness on oxygen uptake kinetics in heavy intensity swimming. Eur J Appl Physiol. 2012;112:1689-1697 https://doi.org/10.1007/s00421-011-2126-6
25. Pessôa Filho DM, Siqueira LO, Simionato AR, Espada MA, Pestana DS, DiMenna FJA rapidly-incremented tethered-swimming test for defining domain-specific training zones. J Hum Kinetics. 2017;57:117-128 https://doi.org/10.1515/hukin-2017-0053
26. Medbo JI, Mohn AC, Tabata I, Bahr R, Vaage O, Sejersted OM. Anaerobic capacity determined by maximal accumulated O2 deficit. J Appl Physiol. 1988;64:50-60 https://doi.org/10.1152/jappl.1988.64.1.50
27. Rosenthal JA. Qualitative descriptors of strength of association and effect size. J Soc Serv Res. 1996;21:37-59 https://doi.org/10.1300/J079v21n04_02
28. Cohen J. Statistical power analysis for the behavioural sciences. Lawrence Earlbaum Associates, Hillsdale (1988)
29. Mukaka MM. Statistics corner: A guide to appropriate use of correlation coefficient in medical research. Malawi Med J. 2012;24:69–71 http://www.ncbi.nlm.nih.gov/pmc/articles/pmc3576830/
30. Hill DW, Vingren JL. Effects of exercise mode and participant sex on measure of anaerobic capacity. J Sports Med Phys Fitness. 2014;54:255-63 (2014) PMID: 24739287
31. Weber CL, Chia M, Inbar O. Gender differences in anaerobic power of the arms and legs-a scaling issue. Med Sci Sports Exerc. 2006;38:129-137 https://doi.org/10.1249/01.mss.0000179902.31527.2c
32. Medbo JI, Tabata I. Relative importance of aerobic and anaerobic energy release during short-lasting exhausting bicycle exercise. J Appl Physiol. 1989;67:1881-1886 https://doi.org/10.1152/jappl.1989.67.5.1881
33. Beneke R, Leithäuser R, Hütle RM. Dependence of the maximal lactate steady state on the motor pattern of exercise. Br J Sports Med. 2001;35:192–196 https://doi.org/10.1136/bjsm.35.3.192
34. Weyand PG, Cureton KJ, Conley DS, Higbie EJ. Peak oxygen deficit during one- and two-legged cycling in men and women. Med Sci Sports Exerc. 1993;25:584-591 PMID: 8492686
35. Green S, Dawson BT. The oxygen uptake-power regression in cyclists and untrained men: implications for the accumulated oxygen deficit. Eur J Appl Physiol Occupat Physiol. 1995;70:351-359 https://doi.org/10.1007/bf00865033
36. Li Y, Niessen M, Chen X, Hartmann U. Method-induced differences of energy contributions in women’s kayaking. Int J Sports Physiol Perform. 2018;13:9-13 https://doi.org/10.1123/ijspp.2016-0491
4. Holmér I. Physiology of swimming man. Exerc Sport Sci Rev. 1979;7:87–123 PMID: 399467