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Abstract

Background: Royston-Parmar flexible parametric survival models (FPMs) can be
fitted on either the cause-specific hazards or cumulative incidence scale in the
presence of competing risks. An advantage of modelling within this framework for
competing risks data is the ease at which alternative predictions to the
(cause-specific or subdistribution) hazard ratio can be obtained. Restricted mean
survival time (RMST), or restricted mean failure time (RMFT) on the mortality
scale, is one such measure. This has an attractive interpretation, especially when
the proportionality assumption is violated. Compared to similar measures, fewer
assumptions are required and it does not require extrapolation. Furthermore, one
can easily obtain the expected number of life-years lost, or gained, due to a
particular cause of death, which is a further useful prognostic measure as
introduced by Andersen.
Methods: In the presence of competing risks, prediction of RMFT and the

expected life-years lost due to a cause of death are presented using
Royston-Parmar FPMs. These can be predicted for a specific covariate pattern to
facilitate interpretation in observational studies at the individual level, or at the
population-level using standardisation to obtain marginal measures. Predictions
are illustrated using English colorectal data and are obtained using the Stata
post-estimation command, standsurv.
Results: Reporting such measures facilitate interpretation of a competing risks

analysis, particularly when the proportional hazards assumption is not
appropriate. Standardisation provides a useful way to obtain marginal estimates
to make absolute comparisons between two covariate groups. Predictions can be
made at various time-points and presented visually for each cause of death to
better understand the overall impact of different covariate groups.
Conclusions: We describe estimation of RMFT, and expected life-years lost

partitioned by each competing cause of death after fitting a single FPM on either
the log-cumulative subdistribution, or cause-specific hazards scale. These can be
used to facilitate interpretation of a competing risks analysis when the
proportionality assumption is in doubt.

Keywords: competing risks; restricted mean survival time; restricted mean life
time; flexible parametric model; life-years lost; survival analysis1
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In observational studies of time-to-event data, researchers are often interested in4

decomposing the overall probability of death into component parts due to the event5

of interest, and competing, but mutually exclusive outcome events. For example,6

in cancer studies, it is of interest to partition the overall probability of death into7

the probability of death due to cancer and the probability of death due to other8

causes. These are referred to as cause-specific cumulative incidence functions (CIFs)9

and are often chosen as the primary estimand of interest. The cause-specific CIF10

gives the probability of dying from the cause of interest at a particular time whilst11

also being at risk of dying from other causes of death [1, 2]. In order to arrive at12

these quantities and to circumvent bias, methods that appropriately account for the13

competing nature of the events must be applied. The restricted mean failure time14

(RMFT) has been proposed as an alternative summary measure that is based on15

the area under the all-cause probability of death up to a specific time-point[3]. In16

an analogous way to the decomposition into cause-specific CIFs, the RMFT can be17

further partitioned to give the expected number of life years lost due to a specific18

cause before a given time-point. In this paper, we describe how the aforementioned19

measures can be obtained using a flexible parametric model (FPM) as the estimation20

approach by modelling covariate effects either using (1) the direct relationship with21

the cause-specific CIF on the subdistribution hazards (SDHs) scale, or (2) modelling22

all cause-specific hazard functions (CSHs) to obtain each cause-specific CIF [4,23

5, 6, 7]. Choosing FPMs as the estimation method allows us to estimate effects24

conditional on covariates, and effects averaged over specific covariate distributions.25

Forming contrasts to compare exposure groups is often a further key focus in many26

large population-based studies. A common approach would be to report either cause-27

specific hazard ratios (HRs), which measures the effect of an exposure group on the28

rate of dying from a cause of interest, or sub-distribution hazard ratios (SHRs),29

which measures the effect of an exposure group on the risk of dying from a cause30
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of interest, whilst assuming that the cause-specific HR or SHR was constant over31

time. However, it is well known, for instance, that the HR for tumor size in cancer32

studies will vary over time since diagnosis, with stronger relative effects shortly33

after diagnosis [8, 9, 10]. When non-proportional hazards are present i.e. when the34

HR is expected to change over time, it has been argued that the HR as the target35

estimand is not appropriate and there are further issues in making causal inferences36

using HR measures due to its non-collapsibility as a relative risk measure [11]. As37

an alternative to the HR, estimation of the difference in restricted mean survival38

time (RMST), also known as the restricted mean lifetime (RMLT), as the primary39

estimand has been proposed [12, 13, 14, 15, 16, 17, 18, 19]. This, in contrast to the40

HR, is known as a collapsible measure [11, 20]. Furthermore, this single summary41

measure can still be presented when relaxing the assumption of proportional hazards42

within the model-building process. These can either be presented as conditional43

differences, which is the average covariate effect on the individual, or marginal44

differences, which is the average covariate effect on the population [21].45

In the presence of competing risks, Andersen [3] introduces the analogue to the46

RMST measure for the CIF which gives the (total) number of years lost before a47

pre-specified time, i.e. RMFT, and demonstrates how this can be partitioned to48

give the expected number of life-years lost due to each cause of death [22]. In his49

approach, he estimates RMFT and expected number of life-years lost using regres-50

sion models with pseudo-observations [3, 23]. These models only allow prediction51

for specific quantities of interest and only at single time-points. Therefore sepa-52

rate models must be fitted to estimate, for example, either the cause-specific CIF53

or RMFT, when it may be of interest to obtain both and at various time-points.54

For instance, to allow comparability and to obtain the entire picture of the impact55

of different groups on outcome, it has been suggested that differences in RMST,56

RMFT and therefore, expected number of life-years lost, should be reported along-57
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side their respective survival, or cumulative incidence functions [24]. Alternatively,58

the Royston-Parmar FPM approach for estimating RMST, which is extended for59

competing risks to estimate partitioned RMFT, as introduced in this paper, can60

be used [25]. In contrast to more popular approaches, such as the Cox model, a61

parametric estimate of the baseline hazard function is obtained as part of the full62

likelihood function. This is estimated using restricted cubic splines (RCS), allowing63

easy prediction of absolute comparisons between key quantities of interest. What’s64

more, standard errors for predictions can be estimated via the delta method, which65

offers computational advantages in larger data compared to approaches for non-66

parametric and semi-parametric methods which use bootstrapping, or jack-knife67

resampling methods [26]. Further advantages include the easy inclusion of time-68

dependent effects using interactions with RCS for relaxing the proportional haz-69

ards assumption. Estimating both the baseline effects, and time-dependent effects70

to model departures from the baseline using splines allows a unified approach for71

estimating all required parameters in order to obtain predictions of all quantities72

of interest. Therefore, we introduce in this paper how RMFT as the chosen esti-73

mand can be estimated using FPMs in the presence of competing risks on either the74

CSHs or cumulative incidence scale as the estimator [7, 5]. This extends on previous75

work by Royston and Parmar where estimation in the presence of competing risks76

is not considered [16]. This approach allows the researcher to obtain differences in77

effect between exposure groups either conditional on a set of covariates, or averaged78

over a covariate distribution, also known as marginal estimates. Furthermore, both79

marginal and conditional estimates can be obtained from the same model where80

the prediction of marginal estimates using standardisation is proposed [27, 28]. We,81

therefore, further demonstrate how difference in marginal estimates of RMFT as82

the chosen estimand for the comparison between covariate groups can be obtained83

within FPMs for competing risks.84
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We begin with a brief review of competing risks in Section 2.1 and highlight85

particular interest in the cause-specific CIF. This is followed by an introduction of86

the RMFT as the chosen estimand in Section 2.2 along with other useful measure87

such as expected life-years lost. Section 2.3 details FPM approaches for estimation88

in the presence of competing risks. In Section 2.4, we show how absolute differences89

between RMFT and expected number of life-years lost are calculated to assess the90

impact of a covariate. We further demonstrate how these models can be used for91

easily obtaining marginal estimates and associated contrasts using standardisation92

in Section 2.4.4. For illustration of these various measures, English colorectal cancer93

data obtained from National Cancer Registration and Analysis Service (NCRAS)94

is analysed in Section 3 where comparisons between the most and least deprived95

colorectal cancer patients are made, accompanied by Stata code for estimation in96

Appendix D. Finally, the paper is concluded with a discussion on the use and97

estimation of RMST in the presence of competing risks within FPMs. Although98

we specifically consider application to cancer studies, where the event of interest is99

death from cancer, the methods are generalizable to other time-to-event data and100

therapeutic areas.101

2 Methods102

2.1 Overview of competing risks103

In the presence of competing risks, an individual is at risk of failing from more104

than one event where the occurrence of one event means that others cannot occur.105

In the context of a cancer survival study, this is when a patient can die from a106

multitude of other causes as well as the cancer itself. However, if the patient dies107

from one of these other causes, it means that the time at which the patient would108

have died from cancer is never observed. One of the key quantities, and often the109

chosen estimand of interest within this framework, is the cause-specific CIF [1].110
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2.1.1 Cause-specific CIF111

Let T be a non-negative random variable for the time to death from any cause.112

Furthermore, let D denote the cause of death in the presence of k = 1, . . . ,K113

competing risks, where D = 1, . . . ,K. It follows that the estimand, cause-specific114

CIF, Fk(t), is defined as,115

Fk(t) = P (T ≤ t,D = k) (1)

This is interpreted as the probability of dying from cause k by time t whilst also116

being at risk of dying from other competing causes of death. Note here that the117

cause-specific CIF is an improper distribution function since the integral of Fk(t)118

at infinity is always less than 1 [3].119

The target estimand, the cause-specific CIF, can be calculated using either all k120

CSH functions, or by utilising the one-to-one relationship between the cause-specific121

SDH function. These are briefly introduced below.122

2.1.2 Cause-specific hazards123

The CSHs, hcs
k (t), give the instantaneous mortality rate from a particular cause k124

given that the patient is still alive at time t in the presence of all the other causes125

of death such that,126

hcs
k (t) = lim

∆t→0

P [t ≤ T < t+∆t,D = k|T ≥ t)

∆t
(2)

It follows that the target estimand, the cause-specific CIF, can be calculated as a127

function of all k CSH functions,128
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Fk(t) =

∫ t

0

S(u)hcs
k (u)du (3)

where S(t) = exp
(
−
∑K

k=1

∫ t

0
hcs
k (u)du

)
is the all-cause survival function.129

2.1.3 Subdistribution hazards130

Alternatively, Gray [29] introduces the SDH function for cause k, hsd
k (t), which131

offers a direct one-to-one relationship with the cause-specific CIF estimand. This132

has the following mathematical formulation,133

hsd
k (t) = lim

∆t→0

P [t ≤ T < t+∆t,D = k|T ≥ t ∪ (T ≤ t ∩D 6= k)

∆t
(4)

which is interpreted as the instantaneous “sub”-rate of failure at time t from134

cause k amongst those who are still alive, or have died from any of the other K − 1135

competing causes excluding cause k [30].136

This is not defined as a typical epidemiological rate since the risk-set includes those137

that are either still alive or have died from a competing cause of death. However,138

if individuals do not experience the competing event, then the SDH rate and the139

CSH rate are both equivalent [31]. It should be noted that, due to the nature of the140

risk-set in the definition of a SDH, it is very difficult to interpret [32, 30, 33].141

The cause-specific CIF estimand can be directly obtained from the SDH for cause142

k using the standard survival transformation of the cumulative SDH function for143

cause k, Hsd
k (t), such that,144

Fk(t) = 1− exp
[
−Hsd

k (t)
]

(5)
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This shows that a one-to-one correspondence is maintained between the SDH145

function for a specific cause of death and the cause-specific CIF.146

The choice of which scale to model on depends entirely on the research question147

to be answered which would relate to other quantities specific to the modelling148

approach that may be of interest. For instance, if primary interest is in aetiological149

outcome, then the estimand of interest would be on the CSH rates. For interest in150

prognostic outcome, one may wish to quantify effects on the risk of dying from a151

specific cause of death. In this case, the estimand of interest would be the cause-152

specific CIF, which can be obtained as function of all CSHs, or through the SDH153

for cause k. Further discussion on this topic is provided elsewhere [34, 4].154

2.2 Overview of restricted mean survival time for competing risks155

The RMST measure quantifies the average survival, or time lived, of a patient from156

time 0 up to a pre-defined time-point, t∗. In the absence of competing risks, the157

RMST before t = t∗, µ(t∗), of a random variable T is equal to the expectation of158

min(T, t∗). RMST, in the absence of covariates, can be expressed as the estimand,159

µ(t∗) = E(min(T, t∗)) =

∫ t∗

0

S(u)du (6)

where S(t) is the all-cause survival function. If time is measured in years, this is160

the average life-years lived before time t∗. The choice of t∗ should be pre-determined161

and clinically motivated, and will vary by, for example, cancer types [16, 15]. This162

is also often chosen at maximum follow-up time [13, 35].163

In addition to this, Andersen [3] proposes calculation of the expected number of164

years lost before time t∗ such that the estimand can be defined as,165
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L(0, t∗) = t∗ − E(min(T, t∗)) = t∗ −

∫ t∗

0

S(u)du (7)

2.2.1 Expected loss in life due to a cause of death166

In the presence of competing risks, Andersen [3] shows that the (total) number of167

years lost, L(0, t∗), can be decomposed into the number of years lost due to each168

cause k [22]. It follows that since,169

S(t) = 1−
K∑

k=1

Fk(t) (8)

then the RMST in Equation 6 can be expressed as a function of each cause-specific170

CIF through the following integral,171

µ(t∗) = E(min(T, t∗)) =

∫ t∗

0

S(u)du =

∫ t∗

0

1−

K∑

k=1

Fk(u)du

= t∗ −

∫ t∗

0

K∑

k=1

Fk(u)du

(9)

Equation 7 can also be written as a sum of the integral of each cause-specific CIF172

such that,173

L(0, t∗) = t∗ −

∫ t∗

0

S(u)du =

K∑

k=1

∫ t∗

0

Fk(u)du (10)

which may also be referred to as restricted mean failure time (RMFT). It follows174

that RMFT can be partitioned where we have the estimand,175
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Lk(0, t
∗) =

∫ t∗

0

Fk(u)du (11)

which gives the expected number of years lost due to cause k before time t∗.176

2.3 Flexible parametric survival models177

For competing risks data, many adopt the cause-specific Cox proportional hazards178

model, or the Fine & Gray approach as the chosen estimator for the estimands179

introduced in Sections 2.1 and 2.2. Here, we propose the use of FPMs as the cho-180

sen estimator in order to obtain the estimand of interest. FPMs are increasing in181

popularity since the baseline SDH or CSH function is estimated as part of a fully182

specified likelihood function and allows the estimation of various estimands from183

a single model [5, 7]. These models were introduced for standard survival data (in184

the absence of competing risks) on various scales by Royston and Parmar [9] using185

a general link function, g(·), to better capture and represent the behaviour of real186

world data. To increase flexibility and more accurately capture complex shapes of187

the cumulative hazard function, Royston and Parmar [9] proposed the use of RCS188

(see Appendix A). Under the assumption of proportional hazards, Rutherford et. al189

[36] showed in simulations that FPMs more accurately capture complex shapes of190

hazard functions. They further illustrated that unbiased estimates of the HRs were191

obtained. Given a vector of M knots, m, and a vector of M −1 parameters, γγγ, with192

a RCS function, s(ln(t);γγγ,m) we have that,193

η = g(Gk(t | xk)) = sk(ln(t);γγγk,mk) + xkβββ
T
k (12)

where, β, is a vector of co-efficient parameters and, x, is a vector of covariates.194
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Equation 12 can also be easily extended for time-dependent effects to model non-195

proportionality by fitting interactions between the associated covariates and the196

spline functions. Using this interaction, a new set of knots, me, are introduced,197

which represent the eth time-dependent effect with associated parameters αααe. If198

there are e = 1, · · · , E time-dependent effects, Equation 12 can be extended such199

that,200

η = g(Gk(t | x)) = s(ln(t);γγγ,m0) + xβββT +

E∑

l=1

s(ln(t);αααl,ml)xl (13)

Non-proportional hazards are a common occurrence in studies with long follow-201

up time, or, in the context of cancer studies, when the effect of covariates (e.g202

tumor size, or treatment) on cancer-related mortality varies over time [9, 10, 8, 19].203

FPMs, extended for time-dependent effects as in the Equation above, have also204

been shown to accurately capture complex shapes of the hazard function with time-205

dependent effects i.e. where there is non-proportionality in the hazards [37]. This206

result is consistent with what was shown by Rutherford et. al. for FPMs without207

time-dependent effects i.e. proportional hazards, as mentioned above [36]. Further208

technical details on FPMs for standard survival data in the absence of competing209

risks can be found elsewhere [9, 38, 25].210

The models described in Equations 12 and 13 can be fitted on either CSHs scale211

[7], where Gk(t | x) = Sk(t | x), or cumulative incidence scale [5, 6], where Gk(t |212

x) = 1− Fk(t | x), based on different link functions, g(·). The relationship of these213

with the cause-specific CIF are defined in Sections 2.1.2 and 2.1.3. Therefore, it214

follows that, using a complementary log-log link function, the corresponding log-215

cumulative CSHs FPM (otherwise referred to as a cause-specific FPM), is,216
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ηcsk = log [− log [Sk (t | xk)]] = log [Hcs
k (t | x)] = sk(ln(t);γγγk,mk) + xkβββ

T
k (14)

and can be fitted in a similar way to the standard FPM. Alternatively, models for217

all k causes can be fitted simultaneously by restructuring the data as described by218

Hinchliffe et. al. [7].219

The log-cumulative SDHs FPM for cause k (also known as the flexible parametric220

cumulative incidence model, or FPCIM), on the other hand is defined as,221

ηsdk = log [− log [1− Fk (t | xk)]] = log
[
Hsd

k (t | x)
]
= sk(ln(t);γγγk,mk)+xkβββ

T
k (15)

and can be fitted using the approach outlined using either the full likelihood222

function as described by Mozumder et. al. [5] or by using time-dependent censoring223

weights, similar to the Fine-Gray model, as detailed by Lambert et. al. [6]. As224

previously mentioned, alternative link functions are also available for models on225

either scale. See for example, Lambert et. al. [6].226

2.4 Estimation227

2.4.1 Cause-specific cumulative incidence function228

If modelling on the cumulative incidence scale using SDHs, after fitting the FPCIM229

in Equation 15, the cause-specific CIF is obtained by the following,230

F̂k (t | x) = 1− exp
(
− exp

(
ˆηsdk (t | x)

))
(16)
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Alternatively, when modelling on the CSHs scale, after fitting the cause-specific231

FPM in Equation 14, and as shown in Equation 3, the integral below must be232

evaluated in order to obtain the cause-specific CIF,233

F̂k (t | x) =

∫ t

0

Ŝ (u | x) ĥcs
k (u | x) du (17)

where the predicted CSH function is,234

ĥcs
k (t | x) =

ds (log(t) | γ,m0)

dt
exp (ηcsk (t)) (18)

and the predicted all-cause survival function is,235

Ŝ (u | x) =

K∏

k=1

exp

(
−

∫ t

0

ĥcs
k (u | x)du

)
(19)

However, as the above integral is not of closed form, numerical approximation236

techniques must be used. Here, the Gauss-Legendre quadrature approximation237

method is used [39]. Details of this method is provided in Appendix B. Therefore,238

after fitting the cause-specific FPM for each k causes, the predicted cause-specific239

CIF at t1, · · · , t different time-points over an interval [0, t] is approximated by ap-240

plying Gaussian quadrature rules with W (u) = 1 such that,241

F̂k (t | x) =

∫ t

0

f∗

k (u)du ≈
t− 0

2

m∑

i=1

w′

if
∗

k

(
t− 0

2
u′

i +
t+ 0

2
| x

)
(20)

where, f̂∗

k (t), is the “sub”-density function such that,242
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f̂∗

k (t | x) = Ŝ (t | x) ĥcs
k (t | x) (21)

2.4.2 Restricted mean failure time and expected number of life-years lost due to243

each cause of death244

If RMFT is the chosen target estimand of interest, this can be predicted as the245

integral under the all-cause CIF such that,246

L̂ (0, t∗) =

∫ t∗

0

K∑

j=1

F̂j(u)du =

K∑

j=1

∫ t∗

0

F̂j(u)du (22)

where the predicted expected number of life-years lost before time t∗ due to each247

cause k is,248

L̂k (0, t
∗ | x) =

∫ t∗

0

F̂k(u | x)du (23)

Again, as above in Equation 17, as the integral is of closed-form, we use the249

Gauss-Legendre quadrature approximation technique to numerically evaluate,250

∫ t∗

0

F̂k(u)du ≈
t∗ − 0

2

m∑

i=1

w′

iF̂k

(
t∗ − 0

2
u′

i +
t∗ + 0

2
| x

)
(24)

It follows that the RMST can also be obtained by,251
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µ̂ (t∗ | x) = t∗ −

K∑

j=1

L̂j (0, t
∗) (25)

2.4.3 Conditional differences252

In population-based studies, i.e. non-randomised studies, it may be of interest to253

make absolute or relative comparisons between different covariate groups. As an254

alternative summary measure, or estimand, to the HR, we can calculate the differ-255

ence in RMST between two covariate groups, or the difference in expected loss in256

life due to different causes [19]. Let X be a binary covariate that denote the group257

of interest and Z be the set of measured covariates with a specific covariate pattern258

zj . To estimate the average number of life years gained in group X = 0 compared259

to group X = 1, we have that,260

µ̂(t∗ | X = 1, Z = zj)− µ̂(t∗ | X = 0, Z = zj) (26)

Alternatively, we can also estimate the expected reduction in the loss (or gain) in261

life due to cause k by,262

L̂k(0, t
∗ | X = 1, Z = zj)− L̂k(0, t

∗ | X = 0, Z = zj) (27)

Partitioning in this way is particularly useful if covariates act differently on differ-263

ent causes of death. For example, those from a particular covariate group may lose264

(or gain) some life-years due to a specific cause of death in comparison to another265

covariate group.266
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Absolute measures of gains or losses in years of life are presented above as potential267

estimates of interest. To obtain relative measures, the ratio between the RMST268

estimates, or expected loss in life due to cause k for the two covariate groups are269

calculated. Extension can also be made for comparisons on a unit increase in a270

continuous covariate Z, and for time-dependent effects.271

2.4.4 Standardisation for marginal differences272

Regression standardisation is part of the estimator that can be used to obtain273

marginal predictions for different covariate groups at each observation given a set274

of measured confounders [28, 27]. Here, we apply standardisation to RMST and275

cause-specific CIFs estimates obtained from a flexible parametric competing risks276

survival model. In this case, it is of interest to compare the average life-years lived277

before time t∗ between two different groups [18, 17]. This is done by obtaining278

marginal estimates which are calculated as an average over every individual in the279

observed dataset. This enables comparisons that solely focus on the differences280

between the two groups of interest by forcing the same covariate distribution over281

multiple confounders. If all exposures and confounders are measured at baseline,282

this is essentially equivalent to the G-formula [40]. For example, to compare males283

and females, estimates must be standardised by age in order to force the same284

age distribution for both males and females. Extension can be made for multiple285

covariates and other potential confounders. This is calculated using an average of286

RMST estimates for each patient to summarise the risk for a certain covariate group.287

For instance, let X be an indicator variable that denotes the group of interest and288

Z be the set of measured covariates. Then the predicted RMST estimate for the ith289

individual, where i = 1, . . . , N , is,290

µ̂i = t∗ −

∫ t∗

0

K∑

k=1

[
F̂k(u | X = x, Z = zi)

]
du (28)
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where X is fixed to a specific value, x, and Z is the observed covariate pattern, zi,291

for the ith individual. We can then average over the marginal distribution of Z for292

all the predicted restricted mean life estimates obtained for each individual i such293

that,294

E(µ̂stand | X = x, Z) =
1

N

N∑

i=1

µ̂i (29)

This allows us to calculate marginal differences between covariate groups. For295

example, between group X = 0 and group X = 1, the marginal difference in RMST296

is,297

E(µ̂stand | X = 1, Z)− E(µ̂stand | X = 0, Z) (30)

In recent literature, some have advocated the use of RMST as a causal measure298

[41, 42]. For a causal interpretation, the consideration of additional assumptions are299

required and by adjusting for all appropriate confounders, these measures can be300

extended and interpreted as causal effects and thus, used as an estimand [21]. This301

is because, as shown above, they provide marginal comparisons averaged over the302

same covariate distribution by using standardisation. Standardisation, otherwise303

referred to as G-computation, has also been highlighted by Gran et al. [43] as an304

approach for obtaining useful summary causal-effect measures in more complicated305

multi-state models. However, this is beyond the scope of the paper and estimation306

of causal effects are not explicitly discussed here. Note also that we only consider307

time-fixed confounders and that there are additional complexities when considering308

time-dependent risk-groups [44].309
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3 Results: Colorectal cancer survival in England310

3.1 Data311

Data was obtained from the National Cancer Registration and Analysis Service312

(NCRAS) to illustrate the estimation of various measures introduced in Section313

2.2. The data consist of English colorectal (ICD10: C18, C19 and C20) male and314

female cancer patients aged between 45 and 90 years old. Patients are diagnosed on315

or after 1998 are included with follow-up restricted to either 10 years or censored at316

31 Dec 2013, whichever comes first. Analysis is further restricted to patients from317

the most or least deprived groups as defined by the upper and lower quintiles of the318

English index of multiple deprivation 2010 (IMD 2010). These groups are selected319

to simplify analysis and to make for easy illustration of presenting different metrics320

to allow comparisons between the two groups. The final data consisted a total321

of 159,022 individuals of which 48,845 die from cancer, 7,987 from cardiovascular322

disease (CVD) and 32,133 from other causes. In Appendix C, summary statistics323

on the age distribution, and number of patients in each deprivation and sex groups324

are provided.325

3.2 Model326

For demonstration purposes, predictions are obtained after fitting an FPCIM si-327

multaneously for all k causes of death and standard errors for confidence intervals328

(CIs) are obtained using the delta method. However, predictions are also available329

after fitting cause-specific FPMs. This paper focusses on the various estimands we330

can obtain from such models, namely, the RMST measure and expected life-years331

lost.332

Models are fitted simultaneously for all k causes of death using the approach333

of Lambert et al. [6] and Geskus [45]. This fits the model after restructuring the334

data and applying time-dependent weights that are obtained parametrically to the335

censoring distribution of the competing causes of death. Alternatively, using the336
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approach described by Jeong and Fine [46], models can be fitted on individual-level337

data using the full likelihood function [47]. Models for each of the causes of death338

include sex, IMD 2010 deprivation group (upper and lower quintile only) and a339

non-linear effect of continuous age using RCS with 3 DF centred at 45 years old340

at diagnosis. Time-dependent effects to relax the proportionality assumptions are341

included for sex, non-linear age and deprivation group with 2 DF and 3 DF are342

used for the baseline RCS function. In order to evaluate whether assuming non-343

proportional (subdistribution) hazards was more sensible, and is more consistent344

with the data, a likelihood ratio test was performed. This compared the FPCIM345

with time-dependent effects to relax the proportionality assumption to the one346

without that assumed proportional SDHs. The likelihood ratio test statistic was347

752.94 and the associated p-value was less than 0.0001. This shows that relaxing the348

proportionality assumption leads to a statistically significant improvement in model349

fit. Note that this is an illustrative model and we therefore omit formal evalutation350

of the model performance. When evaluating the model in practice, we recommend351

conducting a sensitivity analysis, particularly in the selection of the number of352

knots. This can be done by comparing the Akaike information criterion and the353

Bayesian information criterion as an informal guide to selecting the appropriate354

number of knots and covariates [6].355

3.3 Analysis of data with conditional estimates356

3.3.1 Cause-specific cumulative incidence functions357

Cause-specific CIFs are presented in Figure 2 for male colorectal cancer patients.358

The probability of dying from cancer at 10 years from diagnosis for the most de-359

prived male patients is approximately 36.5% (95% CI: 35.5%, 37.5%) for those aged360

50 years old at diagnosis. This slightly increases to approximately 40.5% (95% CI:361

39.8%, 41.1%) for those aged 80 years old at diagnosis. However, the largest change362

is in the probability of dying from other causes and CVD which have an increas-363
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ing contribution to the probability of dying from any cause for older male patients364

from the most (and least) deprived groups. For instance, the probability of dying365

from any cause by 10 years from diagnosis for the most deprived 50 year old male366

patients at diagnosis is 53.6% of which 17.1% is due to other causes and CVD. In367

contrast, the all-cause probability of death for the most deprived male patients aged368

80 years old diagnosis is much higher at 92.5%. However, although the probability369

of dying due to cancer has only increased from 36.5% to 42.5%, much of the overall370

probability of dying is due to other causes (38.4%) and CVD (13.6%).371

Absolute CIF differences between the most and least deprived male patients aged372

50, 65 and 80 years old at diagnosis are presented on the third row of Figure 2.373

This shows that, for 50 year olds, the difference between CIFs for the most and374

least deprived groups are similar for deaths due to cancer and other causes. There375

is very little difference between the two deprivation groups for deaths due to CVD,376

however, this is due to a generally very low probability of death due to CVD.377

On the other hand, for older male patients, the difference in the probability of378

dying from other causes and CVD between the most and least deprived is larger379

and increases over time. This leads to a greater disparity in the probability of380

dying from other causes and CVD between the most and least deprived patients381

compared to the difference in the probability of dying due to cancer. Furthermore,382

after approximately 1 year from diagnosis for 65 year olds, and 2 years for 80 year383

olds, the difference in the probability of dying due to cancer for the most deprived384

compared to the least deprived patients reduces. This change in difference between385

the most and least deprived is greatest for the 80 year old male patients with cancer-386

specific CIF difference reducing from approximately 4.6% (95% CI: 4.2%, 5.0%) at387

1 year from diagnosis to 3.2% (95% CI: 2.6%, 3.7%) by 10 years from diagnosis.388
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3.3.2 Restricted mean failure time and expected number of life-years lost due to a389

particular cause of death390

As discussed in Section 6, as a useful summary measure, the RMST estimate can be391

obtained. This is equivalent to the white area of the associated stacked plot in Figure392

2 up to t∗ for a particular covariate pattern. Conversely, the area of the stacked areas393

give an estimate of the RMFT. The area of each of the partitioned stacks for each394

of the respective causes of death yield the expected life years lost due to cancer,395

CVD and other causes. These are presented for the most and least deprived 50, 65396

and 80 year old male patients in Figure 3. Each of the stacks represent the average397

life-years lived in total and life-years lost due to a specific cause. The plots here398

present life-years lost and lived before different points in time up to 10 years from399

diagnosis. However, particular interest here is in the life-years lived, or lost, before400

10 years from diagnosis. For example, total average life-years lived before 10 years401

from diagnosis for the most deprived 50 year old male patients is 3.99 years (95%402

CI: 3.84 years, 4.14 years). Of the 6.01 years of the total life-years lost, 2.72 years403

(95% CI: 2.60 years, 2.85 years) are due to cancer, 0.07 years (95% CI: 0.06 years,404

0.09 years) are due to CVD and 1.19 (95% CI: 1.11 years, 1.28 years) due to other405

causes.406

Table 1 presents differences in life-years lost due to each cause of death before 10407

years from diagnosis between the most and least deprived groups for 50, 65 and 80408

year olds, along with their associated 95% CIs. The absolute estimates of expected409

life-years lost for the most and least deprived patients at the individual ages are410

also presented. This provides us with an understanding of how many additional life-411

years most deprived patients are expected to lose due to a specific cause of death in412

comparison to the least deprived patients. For instance, at 10 years from diagnosis,413

50 year old male patients from the most deprived group lose an additional 0.32414

(95% CI: 0.28, 0.36) life-years due to cancer, 0.01 (95% CI: 0.01, 0.02) life-years415
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due to CVD and 0.33 (95% CI: 0.30, 0.36) life-years due to CVD compared to the416

least deprived group. For older male patients aged 80 years old, there is a greater417

disparity in life-years lost due to CVD (0.16 life-years) and other causes (0.76 life-418

years) between the most and least deprived.419

3.4 Analysis of data with marginal estimates420

When interest is in the covariate effects of particular groups, for example, between421

deprivation groups, it is useful to obtain standardised estimates as described in Sec-422

tion 2.4.4. By marginalising over the same covariate distribution, fairer comparisons423

can be made between particular covariate groups of interest. In this example, we424

standardise by age and sex in order to summarise the differences in survival between425

patients from the most and least deprived groups.426

3.4.1 Cause-specific probability of death for the most deprived compared to the427

least deprived428

Figure 4 illustrates standardised CIFs stacked for each cause of death and Figure 5429

presents absolute risk differences for each cause between the least and most deprived430

patients. As illustrated in Figure 4, patients from the most deprived group have a431

higher probability of dying from any cause (73.8%) compared to those from the432

least deprived group (63.3%). However, when partitioned into the different causes433

of death, the difference in total mortality between the most and least deprived434

groups is mostly due to other causes and CVD as indicated by the area proportions.435

The cause-specific marginal risk difference between the most and least deprived are436

presented in Figure 5 along with their respective 95% CIs. As can be seen here,437

the largest difference in risk is due to other causes and the largest difference in risk438

between the least and most deprived groups is due to other causes at 10 years from439

diagnosis (6.3%; 95% CI: 5.8%, 6.9%). Generally, the disparity in the probability440

of dying from other causes or CVD between the most and least deprived patients441

continues to increase over follow-up time. However, the cancer-specific risk difference442
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between the most and least deprived increases only for the first 2 years. After this443

point, the disparity in the probability of dying due to cancer between the most and444

least deprived begins to decrease.445

3.4.2 Expected number of life-years lost for the most deprived compared to the446

least deprived447

In Figure 3, the expected life-years lost and total average life-years lived were pre-448

sented for each cause of death before various time-points, t∗. By obtaining marginal449

estimates through standardisation over age and sex, we can focus on specific com-450

parisons between the least and most deprived patients. The marginal expected life-451

years lived for each cause of death and total average life-years lived before each452

time, t∗, are similarly illustrated in Figure 6. If t∗ = 10, then we have that the453

total average life-years lived before 10 years from diagnosis for the most deprived454

patients is 4.39 (95% CI: 3.78, 5.00). Of the 5.61 total expected life-years lost, 3.03455

(95% CI: 2.66, 3.46) years are lost due to cancer, 0.46 (95% CI: 0.27, 0.81) years456

due to CVD and 2.11 (95% CI: 1.76, 2.53) years due to other causes. By obtaining457

marginal estimates of expected life-years lost, we are able to directly compare both458

deprivation groups and determine the additional life-years lost for patients that are459

the most deprived standardised by age and sex. Thus, where t∗ = 10, we have that460

the additional life-years lost due to cancer, CVD and other causes before 10 years461

from diagnosis for the most deprived patients is 0.31 (95% CI: 0.25, 0.37), 0.05 (95%462

CI: 0.02, 0.08) and 0.44 (95% CI: 0.33, 0.54) life-years respectively.463

4 Discussion464

This paper presents novel estimation of RMLT and expected life-years lost from465

within the flexible parametric survival modelling framework in the presence of com-466

peting risks. This can be done either on the CSHs or cumulative incidence scale467

and allows easy incorporation of time-dependent effects to relax the proportionality468

assumption. These also offer additional advantages over the more popular Cox PH469
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and Fine and Gray models [7, 5]. In particular, we illustrate how one can easily ob-470

tain comparative predictions based on the expected number of life-years lost due to471

a specific cause of death in addition to other useful estimands, such as absolute dif-472

ferences in the cumulative incidence functions. A common approach for obtaining473

marginal estimates uses inverse probability weighted estimating equations. How-474

ever, different estimators need to be calculated subject to whether it is of interest475

to obtain marginal or non-marginal/conditional estimates [48, 49]. On the other476

hand, marginal estimates using standardisation are easily obtained in addition to477

conditional estimates within the FPM approach from a single model. FPMs in478

both a standard survival analysis and for competing risks data offer numerous ad-479

vantages in prediction, specifically, through its estimation of the baseline hazard480

function using RCS and easy inclusion of time-dependent effects. In spite of this, it481

is also important to consider limitations that are often highlighted. One such limita-482

tion is the problem of choosing the appropriate number of knots for the underlying483

baseline hazard function using RCS, and for when including time-dependent effects484

when relaxing the proportional hazards assumption. However, a number of extensive485

simulation studies have been carried out evaluating how many knots are required in486

order to accurately capture (both simple and complex i.e. time-dependent) shapes487

of the baseline hazard function. For instance, Bower et. al. [37] and Syriopoulou488

et. al. [50] both conclude predictions are not sensitive to the choice in the num-489

ber of knots, provided that a sufficient number of degrees of freedom are used. In490

other words, too few degrees of freedom may be too simple to accurately capture491

the effect, and too many will lead to over-fitting. As a guideline, 5 degrees of free-492

dom to capture baseline effects and 3 degrees of freedom for any time-dependent493

effects are suggested as a starting point. However, it is further suggested that for494

each individual study, sensitivity analyses are carried out in order to assess model495

fit and robustness to the choice in degrees of freedom [37, 50]. Syriopoulou et. al496
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[50] also reach similar conclusions with extension to marginal model-based esti-497

mates when obtaining predictions using standardisation. Alternatively, a penalised498

approach for choosing the appropriate number of degrees of freedom for RCS can499

be used [51]. The interpretation of the RMLT measure also has some notable limi-500

tations. Although communication in terms of changes in life-years lost to clinicians501

and patients rather than probabilities is attractive, applying an upper bound, t∗,502

to the time interval may add some difficulty in understanding of the measure. This503

is because, RMLT for an arbitrary choice of t∗ can only be used to estimate the504

average risk within a restricted time period for a group of patients. Furthermore, it505

should be highlighted that the expected life-years lost makes comparison with an506

immortal cohort where patients are alive for the whole interval from 0 to time t∗.507

A similar “unrestricted” measure that do not compare to an immortal cohort can508

be estimated within the relative survival framework based on extrapolation of the509

excess hazard rate. This is usually referred to as the number of life years lost, or510

the loss in expectation of life and is calculated based on a comparison of the life-511

expectancy of cancer patients to a comparable population group who are assumed512

to be cancer-free [52, 53, 54]. However, this relies on the assumption that this ex-513

trapolation is appropriate which is not made for the RMLT estimate. In addition to514

the above, due to the dependence of the interpretation of RMST on follow-up time,515

comparison between different studies, for example, between countries, becomes dif-516

ficult. It has also been further shown that the difference in RMST between two517

covariate groups depends on the outcome rates within each group. Therefore, it is518

recommended that differences in RMST, RMFT and expected number of life-years519

lost, are reported alongside their respective survival, or cumulative incidence func-520

tions, in order to allow comparability and to obtain the entire picture of the impact521

of different groups on outcome [24]. This further points to additional advantages of522
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estimation of RMFT within the flexible parametric modelling framework, as these523

additional measures are easily obtained from the same model.524

5 Conclusions525

The RMLT measure is presented as a useful summary measure with an attractive526

interpretation which can aid in the analysis of competing risks data. As discussed by527

others, it is also useful to present estimated cause-specific CIFs alongside CSHs [6,528

34]. We propose FPMs as the chosen estimator as it allows easy estimation of various529

estimands from a single model providing both conditional and marginal estimates.530

Note that, although not discussed here, if appropriate confounders are adjusted for,531

one can also infer causal effects between two groups using standardisation. However,532

one must also consider the additional complexities and issues in interpretation with533

the inclusion of time-dependent risk-groups [44]. Furthermore, the RMLT measure534

can be easily extended for obtaining conditional estimates, for example, the average535

life-years lived before t∗ years given survival to time t0 from diagnosis. Example536

Stata code for the model and prediction of measures provided in this paper is537

outlined in Appendix D.538
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6 List of Abbreviations539

CSH Cause-specific hazards

CIF Cumulative incidence function

CI Confidence interval

CVD Cardiovascular disease

DF Degrees of freedom

FPM Flexible parametric model

FPCIM Flexible parametric cumulative incidence model

HR Hazard ratio

LYL Life-years lost

RCS Restricted cubic splines

RMFT Restricted mean failure time

RMLT Restricted mean lifetime

RMST Restricted mean survival time

SDH Subdistribution hazards

SHR Subdistribution hazard ratio
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Figure 1: Schematics of transitions from an initial state to one of K = 2

causes of death.
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Figure 2: Stacked cause-specific CIFs by deprivation group and CIF

differences for male patients at specific ages.
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Tables718

Table 1: Expected LYL for each cause for males aged 50, 65 and 80 years old at diagnosis.

Most Deprived Least Deprived Difference

LYL 95% LCI 95% UCI LYL 95% LCI 95% UCI LYL 95% LCI 95% UCI

50 Yrs Old

Cancer 2.724 [2.604, 2.848] 2.407 [2.299, 2.519] 0.317 [0.277, 0.357]

CVD 0.069 [0.055, 0.088] 0.056 [0.044, 0.071] 0.014 [0.009, 0.018]

Other causes 1.195 [1.113, 1.282] 0.864 [0.804, 0.929] 0.330 [0.300, 0.361]

65 Yrs Old

Cancer 2.654 [2.179, 3.232] 2.340 [1.913, 2.864] 0.313 [0.250, 0.377]

CVD 0.271 [0.149, 0.495] 0.219 [0.120, 0.400] 0.052 [0.019, 0.085]

Other causes 1.662 [1.285, 2.149] 1.212 [0.930, 1.580] 0.449 [0.339, 0.559]

80 Yrs Old

Cancer 3.415 [3.055, 3.818] 3.018 [2.690, 3.386] 0.397 [0.340, 0.454]

CVD 0.840 [0.468, 1.508] 0.681 [0.378, 1.228] 0.159 [0.063, 0.255]

Other causes 2.845 [2.426, 3.337] 2.120 [1.792, 2.508] 0.725 [0.618, 0.833]
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Appendix A: Restricted cubic spline variables719

Given a vector of M knots, m and a vector of M − 1 parameters, γγγ, with M − 1

degrees of freedom (df), the restricted cubic spline function, s(ln(t);γγγ,m), is defined

as,

s(ln(t);γγγ,m) = γ0 + γ1z1 + · · ·+ γ(M−1)z(M−1) (31)

Where z1, · · · , z(M−1) are the basis functions of the restricted cubic splines and are

defined as,

z1 = ln(t) (32)

zj = (ln(t)−mj)
3
+ − φj(ln(t)−m1)

3
+ − (1− φj)(ln(t)−mM )3+, j = 2, · · · ,M − 1

where,

φj =
mM −mj

mM −m1
(33)

and

(u)+ =





u, if u > 0

0, otherwise

(34)

Usually, M knots are placed at equally spaced centiles of the distribution of the720

uncensored log-survival times including two boundary knots at the 0th and 100th721

centiles.722
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Appendix B: Gaussian quadrature723

With the general Gaussian quadrature rule, the integral of any polynomial function,724

g(u), over the interval [−1, 1] can be evaluated. This performs best for integrals that725

can be approximated by a polynomial function of degree 2m− 1, where m is a pre-726

determined number of points, otherwise known as nodes, or abscissae. Hence, this727

integral can be evaluated for,728

∫ 1

−1

g(u)du =

∫ 1

−1

W (u)g(u)du (35)

where, W (u), is a known weighting function. Here, the integral, e.g. the cause-729

specific cumulative incidence function, is calculated using Gauss-Legendre quadra-730

ture, with W (u) = 1. With this, based on a set of pre-defined number of nodes,731

u′

i, and associated Lagrange polynomials of degree m, Pm(u), weights, w′

i, for732

i = 1, . . . ,m, are obtained such that,733

w
′

i =
2

(1− u
′2
i ) (P ′

m(u′

i))
2 (36)

and are provided by Abramowitz and Stegun [55]. Therefore, equation 35 is ap-734

proximated by,735

∫ 1

−1

g(u)du ≈

m∑

i=1

w′

ig(u
′

i) (37)

However, for survival data, functions are evaluated over an interval [0, t]. There-736

fore, to apply the Gaussian quadrature rule in equation 35, integrals over the interval737

[0, t] must be changed to an interval over [−1, 1] such that,738
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Table 2: Distribution of data on key covariates included in the analysis for n = 159,022 patients

Females, n(%) Least deprived, n(%) Age, mean(sd)

Cancer 21 137 (43.27) 25 084 (51.35) 72.25 (10.57)

CVD 3 158 (39.54) 3 853 (48.24) 76.78 (7.96)

Other Causes 13 716 (42.71) 14 955 (46.57) 74.04 (9.64)

All Causes 38 011 (42.74) 43 892 (49.35) 73.30 (10.13)

Alive/Censored within 10 yrs 30 663 (43.76) 43 079 (61.47) 68.05 (9.97)

Total 68 974 (43.19) 86 971 (54.59) 70.99 (10.39)

∫ t

0

g(u)du =
t− 0

2

∫ 1

−1

g

(
t− 0

2
u+

t+ 0

2

)
du (38)

Therefore, a function evaluated at t1, . . . , t different time-points over an interval739

[0, t] is approximated by applying Gaussian quadrature rules with W (u) = 1 such740

that,741

∫ tω

0

g(u)du ≈
t− 0

2

m∑

i=1

w′

ig

(
t− 0

2
u′

i +
t+ 0

2

)
(39)

742

Appendix C: Additional summary statistics743

Table 2 provide summary statistics on the distribution of key covariates of interest744

for inclusion in analysis i.e. sex, deprivation group (least/most deprived) and age,745

by cause of death, and in total.746

Figure 7 represents the cause-specific cumulative incidence functions estimates747

obtained by the non-parametric Aalen-Johansen estimator. This summarises the748

probability of dying from each cause of death by sex and deprivation groups.749
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Figure 7: Cause-specific cumulative incidence functions (CIFs)

Aalen-Johansen estimates for each cause of death.

Figure 8 illustrates the all-cause survival probabilities obtained by the non-750

parametric Kaplan-Meier estimator. This summarises the all-cause probability of751

survival by sex and deprivation groups.752
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Appendix D: Stata code for obtaining predictions753

This appendix outlines Stata code used to obtain predictions presented in the paper.754

Some user-defined Stata commands are required which can be installed from the755

Boston College Statistical Software Components (SSC) archive by calling,756

ssc install
[
command

]
757

The following must be installed before running the code:758

• stpm2: To fit the flexible parametric models described in Section 2.3.759

• rcsgen: To generate the restricted cubic spline functions.760

• stcrprep: To restructure data and calculate time-dependent censoring761

weights in order to fit models on the subdistribution hazards scale using762

standard Stata commands.763

To obtain marginal (and non-marginal) estimates using standardisation, the764

standsurv command must be installed. This will be released on SSC soon, however,765

in the meantime, it can be installed by running,766

net from https://www.pclambert.net/downloads/standsurv767

D.0.1 Preparing the data for analysis768

To prepare the data for a survival analysis in Stata, we must first run the stset769

command. We identify the variable that records survival time (in days), exit2, the770

indicator variable for cause of death, cod, where death from cancer = 1, CVD = 2771

and other causes = 3 and finally the variable for date of diagnosis, dx. The scale772

option is used to transform the survival time into years from days and we use the773

exit option to restrict follow-up time to 10 years from diagnosis and censor those774

still alive at 2014. In order to ensure that the death indicator, d, generated after775

stset matches the death indicator for cause of death, we create a new cause of776

death indicator, cod2, so that those who die either after 10 years from diagnosis777

or 2014 are administratively censored. Finally, to generate restricted cubic spline778
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variables for the non-linear effect of age centred at 45 years old at diagnosis, we use779

rcsgen. For 3 degrees of freedom, 3 new age spline variables are created, rcsage1780

− rcsage3, and we store knot positions and matrix for orthogonalization which781

are required for post-estimation predictions at specific ages.782

stset exit2, failure(cod=1,2,3) id(id) scale(365.25) origin(dx) ///783

> exit(time min(dx + 365.25*10.01,mdy(12,31,2013)))784

785

//must ensure that those that die after follow-up time786

// are administratively censored787

gen cod2 = cond(_d==0,0,cod)788

789

//center non-linear age (rcsage) at 45 years old790

rcsgen age, gen(rcsage) df(3) orthog center(45)791

//store knot positions in global macro792

global knots `r(knots)´793

//save matrix for orthogonalization794

matrix Rage = r(R)795

To restructure the data and calculate the time-dependent censoring weights so796

that we may fit a model on the subdistribution hazards scale, we use stcrprep[56].797

Here, we specify wtstpm2 to estimate the censoring distribution using a Royston-798

Parmar flexible parametric model with covariates included in the censcov option.799

The data is restructured based on the variable failcode, which splits the data800

according to the cause of interest. This is used to fit identify for which cause the801

model is to be fitted for. For clarity, we create dummy variables for each of the causes802

of death from failcode and generate cancer, cvd and other. Another indicator803

variable, event, is also created to identify at which split time interval, or row, death804

(from any cause) is observed for that patient. To incorporate the calculated weights805

from stcrprep, we must stset the data again with tstart and tstop. These are806

also provided by stcrprep and give the times at which an individual starts and807

stops being at risk.808

stcrprep, events(cod2) keep(age mostdep sex rcsage?) trans(1 2 3) ///809

> wtstpm2 censcov(mostdep sex rcsage?) every(1)810

811
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gen event = cod2 == failcode812

813

stset tstop [iw=weight_c], failure(event) enter(tstart) noshow814

815

tab failcode, gen(cause)816

rename cause1 _cancer817

rename cause2 _cvd818

rename cause3 _other819

D.0.2 Model820

The model described in Section 2.3 can be fitted in two ways after preparing the821

data. We can either fit separate models for each of the causes of death, or fit a single822

model to cancer, CVD and other causes simultaneously. Here, we demonstrate for823

the latter to make illustration of the code for obtaining predictions post-estimation824

easier. However, in order to fit the equivalent single model with coefficients com-825

parable to the models fitted individually to each of the causes of death, the knot826

locations on the cause-specific survival time distributions must be stored. These are827

stored in global macros for each of the causes of death.828

global knotstvc_opt829

global bknotstvc_opt830

831

foreach cause in cancer other cvd {832

2. global lnbhknots_`cause´833

3. }834

835

foreach cause in cancer other cvd {836

2. stpm2 mostdep sex rcsage? if _`cause´==1, df(3) ///837

> tvc(mostdep sex rcsage?) dftvc(2) scale(h) eform838

3. global bhknots_`cause´ `e(bhknots)´839

4. global boundknots_`cause´ `e(boundary_knots)´840

5. foreach cov in mostdep sex rcsage1 rcsage2 rcsage3 {841

6. global knotstvc_opt ${knotstvc_opt} ///842

> `cov´_`cause´ `e(tvcknots_`cov´)´843

7. }844

8. global knotstvc_opt ${knotstvc_opt} _`cause´ ${bhknots_`cause´}845

9. global bknotstvc_opt ${bknotstvc_opt} _`cause´ ${boundknots_`cause´}846

10. }847
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Here we define a global macro of the list of covariates to be included in the single848

model. As the data is stacked, interactions need to be created between the covari-849

ates and the indicator variable for each cause of death. See Lunn and McNeil[57]850

for further details. The baseline coefficient, i.e. the constant in the cause-specific851

model, is calculated in cancer, cvd and other. We therefore fit a model for852

each of the causes of death simultaneously without a constant using nocons and853

the baseline splines using rcsbaseoff. Instead, the baseline splines are specified as854

time-dependent splines for the coefficient that corresponds to the constant in its855

respective model for that particular cause of death. These were stored in the global856

macro bknotstvc opt. Since knots are specified according to the time scale, rather857

than the log-time scale, the knscale(time) option is used.858

global covlist859

global covlist_tvc860

861

foreach cause in cancer cvd other {862

2. global covlist $covlist _`cause´863

3. global covlist_tvc $covlist_tvc _`cause´864

4. foreach cov in mostdep sex rcsage1 rcsage2 rcsage3 {865

5. gen `cov´_`cause´ = `cov´*_`cause´866

6. global covlist $covlist `cov´_`cause´867

7. global covlist_tvc $covlist_tvc `cov´_`cause´868

8. }869

9. }870

871

di "$covlist"872

_cancer mostdep_cancer sex_cancer rcsage1_cancer rcsage2_cancer rcsage3_cancer873

_cvd mostdep_cvd sex_cvd rcsage1_cvd rcsage2_cvd rcsage3_cvd874

_other mostdep_other sex_other rcsage1_other rcsage2_other rcsage3_other875

876

stpm2 $covlist ///877

> , scale(h) tvc($covlist_tvc) knotstvc(${knotstvc_opt}) ///878

> bknotstvc(${bknotstvc_opt}) knscale(time) rcsbaseoff eform nocons879

D.0.3 Predictions880

Although standsurv was written for obtaining marginalised predictions, it can also881

be used to obtain non-marginalised estimates. This is done by simply specifying the882
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entire covariate pattern so that the predictions are not averaged over any covariate883

distribution. To obtain predictions at a specific age, we need to calculate the spline884

variables at that particular age centred at 45 years old with the same knot locations885

and projection matrix as before. The spline variables are stored in the local macros886

c1, c2 and c3. An example is given below when the cause of interest is cancer and887

we want to make comparisons between the most and least deprived male patients888

aged either 50, 65, or 80 years old at diagnosis.889

foreach age in 50 65 80 {890

2. rcsgen, scalar(`age´) knots($knots) rmatrix(Rage) gen(c) center(45)891

892

3. global cancer_mostdep_`age´_male sex_cancer 0 sex_cvd 0 sex_other 0 ///893

> mostdep_cancer 1 mostdep_cvd 0 mostdep_other 0 ///894

> rcsage1_cancer `=c1´ rcsage2_cancer `=c2´ rcsage3_cancer `=c3´ ///895

> rcsage1_other 0 rcsage2_other 0 rcsage3_other 0 ///896

> rcsage1_cvd 0 rcsage2_cvd 0 rcsage3_cvd 0 _cancer 1 _cvd 0 _other 0897

898

4. global cancer_leastdep_`age´_male sex_cancer 0 sex_cvd 0 sex_other 0 ///899

> mostdep_cancer 0 mostdep_cvd 0 mostdep_other 0 ///900

> rcsage1_cancer `=c1´ rcsage2_cancer `=c2´ rcsage3_cancer `=c3´ ///901

> rcsage1_other 0 rcsage2_other 0 rcsage3_other 0 ///902

> rcsage1_cvd 0 rcsage2_cvd 0 rcsage3_cvd 0 _cancer 1 _cvd 0 _other 0903

5. }904

As we do not average over each observation, we must tell standsurv to only take905

the first observation in the stacked data to calculate non-marginalised predictions.906

This is done using if n == 1. The failure option is used to obtain the cumulative907

incidence functions that is specified in each at option. To calculate the difference908

between at1 and at2, we use contrast(difference).909

range tempt 0 10 101910

911

foreach age in 50 65 80 {912

2. foreach cause in cancer other cvd {913

3. standsurv if _n==1, at1(${`cause´_leastdep_`age´_male}) ///914

> at2(${`cause´_mostdep_`age´_male}) ///915

> atvars(Fage`age´_`cause´_male_least CIF_`age´_`cause´_male_most) ///916

> contrastvar(CIF_`age´_`cause´_male_diff) ///917

> contrast(difference) failure timevar(tempt) ci918
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4. }919

5. }920

Since we are making predictions at particular covariate patterns for each of the921

causes separately, specifying rmft gives us estimates of the expected life-years lost922

due to a particular cause of death. To calculate RMLT, we need to take the sum923

of all of the at options, where the expected life-years lost due to cancer, CVD and924

other causes is specified in each. We do this by creating our own contrast in a user-925

defined mata function which can be called in the option userfunction. An example926

of this is also given below.927

foreach age in 50 65 80 {928

2. foreach cause in cancer cvd other {929

3. standsurv if _n==1, at1(${`cause´_leastdep_`age´_male}) ///930

> at2(${`cause´_mostdep_`age´_male}) ///931

> atvars(LYL_`age´_`cause´_leastdep LYL_`age´_`cause´_mostdep) ///932

> contrast(difference) contrastvar(LYL_`cause´`age´_diff) ///933

> rmft timevar(tempt) ci934

4. }935

5. }936

937

mata mata clear938

mata939

function RMFT(at) {940

2. return((at[1]:+at[2]:+at[3]))941

3. }942

943

end944

945

946

In order to obtain marginalised estimates, in each at option, only the covariate947

pattern for the group of interest need to be given. For the covariate distribution948

that we want to average over, as we have created interactions between the covariates949

and the causes of death, these must be mapped to each covariate e.g. sex cancer950

= sex. The others are excluded from the at option for the other causes of death. In951

this case, because we want to average over covariates that we wish to standardise952

by, we need to identify the row for each patient in the stacked data that corresponds953
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to the failure time of that individual. This is done by creating the indicator variable954

first and using it as an if condition in standsurv. As before, we give an example955

for specifying macros for use in the at options for deaths due to cancer.956

global cancer_mostdep_stand sex_cvd 0 sex_other 0 sex_cancer = sex ///957

> mostdep_cancer 1 mostdep_cvd 0 mostdep_other 0 ///958

> rcsage1_cancer = rcsage1 rcsage2_cancer = rcsage2 rcsage3_cancer = rcsage3 ///959

> rcsage1_other 0 rcsage2_other 0 rcsage3_other 0 ///960

> rcsage1_cvd 0 rcsage2_cvd 0 rcsage3_cvd 0 ///961

> _cancer 1 _cvd 0 _other 1962

963

global cancer_leastdep_stand sex_cvd 0 sex_other 0 sex_cancer = sex ///964

> mostdep_cancer 0 mostdep_cvd 0 mostdep_other 0 ///965

> rcsage1_cancer = rcsage1 rcsage2_cancer = rcsage2 rcsage3_cancer = rcsage3 ///966

> rcsage1_other 0 rcsage2_other 0 rcsage3_other 0 ///967

> rcsage1_cvd 0 rcsage2_cvd 0 rcsage3_cvd 0 ///968

> _cancer 1 _cvd 0 _other 1969

970

bysort failcode id (_t): gen first = _n==1971

The cause-specific CIF differences are thus calculated as follows,972

foreach cause in cancer other cvd {973

2. standsurv if first, at1(${`cause´_leastdep_stand}) ///974

> at2(${`cause´_mostdep_stand}) ///975

> atvars(Fstand_`cause´_least Fstand_`cause´_most) ///976

> contrast(difference) contrastvars(Fdiff_`cause´) ///977

> failure timevar(tempt) ci978

3. }979

As highlighted above, we can write user-functions to define our own contrasts.980

Below is an example for when interest is in calculating the difference in RMLT981

between the most and least deprived patients.982

mata mata clear983

mata984

: function RMFTdiff(at) {985

2. return((at[1]:+at[2]:+at[3]) :- (at[4]:+at[5]:+at[6]))986

3. }987

988

: end989

990

standsurv if first, at1(${cancer_mostdep_stand}) ///991
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> at2(${cvd_mostdep_stand}) ///992

> at3(${other_mostdep_stand}) ///993

> at4(${cancer_leastdep_stand}) ///994

> at5(${cvd_leastdep_stand}) ///995

> at6(${other_leastdep_stand}) ///996

> atvars(LYLcancer_stand_mostdep LYLcvd_stand_mostdep ///997

> LYLother_stand_mostdep LYLcancer_stand_leastdep ///998

> LYLcvd_stand_leastdep LYLother_stand_leastdep) ///999

> userfunction(RMFTdiff) userfunctionvar(RMFT_diff) ///1000

> failure timevar(tempt) ci1001



Figures

Figure 1

Schematics of transitions from an initial state to one of K = 2 causes of death.



Figure 2

Stacked cause-speci c CIFs by deprivation group and CIF dif ferences for male patients at speci c ages.



Figure 3

Stacked plots of expected life-years lost partitioned by each cause of death for male patients.



Figure 4

Estimated cause-speci c CIFs standardised by age and sex for each deprivation group.



Figure 5

Estimated CIF dif frences for each cause of death standard- ised by age and sex with 95% CIs.



Figure 6

Stacked plots of expected life-years lost for each cause of death standardised by age and sex.
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