This paper discusses a new formula to solve for the angle of isosceles triangles given proportion of differentiated unequivalent 'base' edge length versus the always equivalent 'leg' edges. The equation is equal to the arcsine of (X/2), the net result of the series multiplied by two. This formula is to be called ‘isn^-1(x)’, short for inverse isosceles sine equivalent. Also discussed is the non-inverse ‘isn(x)’ which is the cyclic function which is determined to correspond as the equivalent of the classic sine formula to isosceles triangles. The formula set is clearly superior and powerful at calculating the angle and measure of any given obtuse or acute triangle of an unclassified type, as well as unifying a simplest-fit formula across all types of triangle.