Ågren GI, Hyvönen R, Baskaran P (2019) Ectomycorrhiza, friend or foe? Ecosystems 22:1561–1572. https://doi.org/10.1007/S10021-019-00356-Y
Aguilar-Trigueros CA, Hempel S, Powell JR, et al (2019) Bridging reproductive and microbial ecology: a case study in arbuscular mycorrhizal fungi. ISME J 13:873–884. https://doi.org/10.1038/s41396-018-0314-7
Amijee F, Tinker PB, Stribley DP (1989) The development of endomycorrhizal root systems. New Phytol 111:435–446. https://doi.org/10.1111/J.1469-8137.1989.TB00706.X
Arnebrant K (1994) Nitrogen amendments reduce the growth of extramatrical ectomycorrhizal mycelium. Mycorrhiza 5:7–15. https://doi.org/10.1007/BF00204014
Bässler C, Heilmann-Clausen J, Karasch P, et al (2015) Ectomycorrhizal fungi have larger fruit bodies than saprotrophic fungi. Fungal Ecol 17:205–212. https://doi.org/10.1016/j.funeco.2014.06.005
Bennett JA, Maherali H, Reinhart KO, et al (2017) Plant-soil feedbacks and mycorrhizal type influence temperate forest population dynamics. Science (80- ) 355:181–184. https://doi.org/10.1126/science.aai8212
Bougher NL, Gove TS, Malajczuk N (1990) Growth and phosphorus acquisition of karri (Eucalyptus diversicolor F. Muell.) seedlings inoculated with ectomycorrhizal fungi in relation to phosphorus supply. New Phytol 114:77–85. https://doi.org/10.1111/J.1469-8137.1990.TB00376.X
Bray RH, Kurtz LT (1945) Determination of total, organic, and available forms of phosphorus in soils. Soil Sci 59:39–45. https://doi.org/10.1097/00010694-194501000-00006
Browder JF, Niemiera AX, Harris JR, Wright RD (2005) Growth response of container-grown pin oak and Japanese maple seedlings to sulfur fertilization. HortScience 40:1524–1528. https://doi.org/10.21273/HORTSCI.40.5.1524
Brundrett MC, Bougher N, Dell B, et al (1994) Working with mycorrhizas in forestry and agriculture. In: AClAR Monograph. Pirie Printers, Canberra, Australia, pp 173–216
Brundrett MC, Tedersoo L (2018) Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol 220:1108–1115. https://doi.org/10.1111/nph.14976
Brundrett MC, Tedersoo L (2020) Resolving the mycorrhizal status of important northern hemisphere trees. Plant Soil 454:3–34. https://doi.org/10.1007/S11104-020-04627-9/TABLES/3
Bueno CG, Aldrich-Wolfe L, Chaudhary VB, et al (2019) Misdiagnosis and uncritical use of plant mycorrhizal data are not the only elephants in the room. New Phytol 224:1415–1418. https://doi.org/10.1111/nph.15976
Bueno CG, Davison J, Leon D, et al (2021) Towards a consistent benchmark for plant mycorrhizal association databases. New Phytol 231:913–916. https://doi.org/10.1111/nph.17417
Butler BJ, Crocker SJ, Domke GM, et al (2015) The forests of Southern New England, 2012. Resource Bulletin NRS-97. US Dep Agric For Serv North Res Stn 42
Cairney JWG (2011) Ectomycorrhizal fungi: the symbiotic route to the root for phosphorus in forest soils. Plant Soil 344:51–71. https://doi.org/10.1007/S11104-011-0731-0
Castellano MA (1996) Outplanting performance of mycorrhizal inoculated seedlings. In: Mukerji KG (ed) Concepts in Mycorrhizal Research. Handbook of Vegetation Science, vol 19/2. Springer, Dordrecht, pp 223–301
Cázares E, Trappe JM (1993) Vesicular endophytes in roots of the Pinaceae. Mycorrhiza 2:153–156. https://doi.org/10.1007/BF00210584
Chen W, Koide RT, Adams TS, et al (2016) Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees. Proc Natl Acad Sci 113:8741–8746. https://doi.org/10.1073/PNAS.1601006113
Cheng L, Chen W, Adams TS, et al (2016) Mycorrhizal fungi and roots are complementary in foraging within nutrient patches. Ecology 97:2815–2823. https://doi.org/10.1002/ECY.1514
Corrêa A, Cruz C, Pérez-Tienda J, Ferrol N (2014) Shedding light onto nutrient responses of arbuscular mycorrhizal plants: Nutrient interactions may lead to unpredicted outcomes of the symbiosis. Plant Sci 221–222:29–41. https://doi.org/10.1016/J.PLANTSCI.2014.01.009
Cosme M, Fernández I, Van der Heijden MGA, Pieterse CMJ (2018) Non-mycorrhizal plants: The exceptions that prove the rule. Trends Plant Sci 23:577–587. https://doi.org/10.1016/J.TPLANTS.2018.04.004
Costanza KKL, Whitney TD, McIntire CD, et al (2018) A synthesis of emerging health issues of eastern white pine (Pinus strobus) in eastern North America. For Ecol Manage 423:3–17. https://doi.org/10.1016/J.FORECO.2018.02.049
Dickie IA, Koide RT, Fayish AC (2001) Vesicular–arbuscular mycorrhizal infection of Quercus rubra seedlings. New Phytol 151:257–264. https://doi.org/10.1046/J.1469-8137.2001.00148.X
Dučić T, Berthold D, Langenfeld-Heyser R, et al (2009) Mycorrhizal communities in relation to biomass production and nutrient use efficiency in two varieties of Douglas fir (Pseudotsuga menziesii var. menziesii and var. glauca) in different forest soils. Soil Biol Biochem 41:742–753. https://doi.org/10.1016/J.SOILBIO.2009.01.013
Dumbroff EB (1968) Some observations on the effects of nutrient supply on mycorrhizal development in pine. Plant Soil 28:463–466
Elliott KJ, White AS (1994) Effects of light, nitrogen, and phosphorus on red pine seedling growth and nutrient use efficiency. For Sci 40:47–58
Elser JJ, Bracken MES, Cleland EE, et al (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10:1135–1142. https://doi.org/10.1111/J.1461-0248.2007.01113.X
Franco-Ramírez A, Pérez-Moreno J, Sánchez-Viveros G, et al (2021) Mobilization and transfer of nine macro-and micronutrients to Pinus greggii seedlings via arbuscular mycorrhizal fungi. Rev Mex Biodivers 92:e923238. https://doi.org/10.22201/IB.20078706E.2021.92.3238
Giovannetti M, Sbrana C (1998) Meeting a non-host: the behaviour of AM fungi. Mycorrhiza 8:123–130. https://doi.org/10.1007/s005720050224
Godbout C, Fortin JA (1990) Cultural control of basidiome formation in Laccaria bicolor with container-grown white pine seedlings. Mycol Res 94:1051–1058. https://doi.org/10.1016/S0953-7562(09)81332-4
Goswami S, Fisk MC, Vadeboncoeur MA, et al (2018) Phosphorus limitation of aboveground production in northern hardwood forests. Ecology 99:438–449. https://doi.org/10.1002/ECY.2100
Green TH, Mitchell RJ, Gjerstad DH (1994) Effects of nitrogen on the response of loblolly pine to drought: II. Biomass allocation and C : N balance. New Phytol 128:145–152. https://doi.org/10.1111/J.1469-8137.1994.TB03997.X
Güsewell S (2004) N:P ratios in terrestrial plants: Variation and functional significance. New Phytol 164:243–266. https://doi.org/10.1111/j.1469-8137.2004.01192.x
Handreck KA (1986) Critical concentrations of sulfur in liquid feeds for plants in containers. Sci Hortic (Amsterdam) 30:1–17. https://doi.org/10.1016/0304-4238(86)90077-4
Harpole WS, Ngai JT, Cleland EE, et al (2011) Nutrient co-limitation of primary producer communities. Ecol Lett 14:852–862. https://doi.org/10.1111/J.1461-0248.2011.01651.X
Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil, 2nd edn. College of Agriculture, University of California, Berkeley, Calif.
Hoeksema JD, Chaudhary VB, Gehring CA, et al (2010) A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecol Lett 13:394–407. https://doi.org/10.1111/j.1461-0248.2009.01430.x
Holste EK, Kobe RK, Gehring CA (2016) Plant species differ in early seedling growth and tissue nutrient responses to arbuscular and ectomycorrhizal fungi. Mycorrhiza 2016 273 27:211–223. https://doi.org/10.1007/S00572-016-0744-X
Horton T, Cázares E, Bruns T (1998) Ectomycorrhizal, vesicular-arbuscular and dark septate fungal colonization of bishop pine (Pinus muricata) seedlings in the first 5 months of growth after wildfire. Mycorrhiza 8:11–18
Ingestad T (1962) Macro element nutrition of pine, spruce, and birch seedlings in nutrient solutions. Reports Swedish Inst Exp For 51:154
Jin L, Wang Q, Wang Q, et al (2017) Mycorrhizal-induced growth depression in plants. Symbiosis 72:81–88. https://doi.org/10.1007/s13199-016-0444-5
Johnson NC (2010) Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytol 185:631–647. https://doi.org/10.1111/J.1469-8137.2009.03110.X
Johnson NC, Graham JH, Smith FA (1997) Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol 135:575–586. https://doi.org/10.1046/j.1469-8137.1997.00729.x
Kadowaki K, Yamamoto S, Sato H, et al (2018) Mycorrhizal fungi mediate the direction and strength of plant–soil feedbacks differently between arbuscular mycorrhizal and ectomycorrhizal communities. Commun Biol 1:10.1038/s42003-018-0201–9. https://doi.org/10.1038/s42003-018-0201-9
Kafkafi U (2013) Effects of chlorides in effluents used for irrigation on the irrigated crops. Isr J Plant Sci 59:139–146. https://doi.org/10.1560/IJPS.59.2-4.139
Kaiser C, Franklin O, Dieckmann U, Richter A (2014) Microbial community dynamics alleviate stoichiometric constraints during litter decay. Ecol Lett 17:680–690. https://doi.org/10.1111/ele.12269
Kavvadias VA, Miller HG (1999) Manganese and calcium nutrition of Pinus sylvestris and Pinus nigra from two different origins. I. Manganese. For An Int J For Res 72:35–46. https://doi.org/10.1093/FORESTRY/72.1.35
Kivlin SN, Emery SM, Rudgers JA (2013) Fungal symbionts alter plant responses to global change. Am J Bot 100:1445–1457. https://doi.org/10.3732/AJB.1200558
Kleczewski NM, Herms DA, Bonello P (2011) Nutrient and water availability alter belowground patterns of biomass allocation, carbon partitioning, and ectomycorrhizal abundance in Betula nigra. Trees 26:525–533. https://doi.org/10.1007/S00468-011-0613-3
Knecht MF, Göransson A (2004) Terrestrial plants require nutrients in similar proportions. Tree Physiol 24:447–460. https://doi.org/10.1093/TREEPHYS/24.4.447
Koerselman W, Meuleman AFM (1996) The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. J Appl Ecol 33:1441. https://doi.org/10.2307/2404783
Kothari SK, Marschner H, Römheld V (1991) Effect of a vesicular–arbuscular mycorrhizal fungus and rhizosphere micro‐organisms on manganese reduction in the rhizosphere and manganese concentrations in maize (Zea mays L.). New Phytol 117:649–655. https://doi.org/10.1111/j.1469-8137.1991.tb00969.x
Koyama A, Pietrangelo O, Sanderson L, Antunes PM (2017) An empirical investigation of the possibility of adaptability of arbuscular mycorrhizal fungi to new hosts. Mycorrhiza 27:553–563. https://doi.org/10.1007/S00572-017-0776-X
Kranabetter JM, Harman-Denhoed R, Hawkins BJ (2019) Saprotrophic and ectomycorrhizal fungal sporocarp stoichiometry (C : N : P) across temperate rainforests as evidence of shared nutrient constraints among symbionts. New Phytol 221:482–492. https://doi.org/10.1111/NPH.15380
Lambers H, Wright IJ, Guilherme Pereira C, et al (2021) Leaf manganese concentrations as a tool to assess belowground plant functioning in phosphorus-impoverished environments. Plant Soil 461:43–61. https://doi.org/10.1007/S11104-020-04690-2/FIGURES/10
Landis TD, Tinus RW, McDonald SE, Barnett JP (1989) Seedling Nutrition and Irrrigation. In: The Container Tree Nursery Manual. U.S. Department of Agriculture, Forest Service, Washington, DC, pp 1–119
Lehmann A, Rillig MC (2015) Arbuscular mycorrhizal contribution to copper, manganese and iron nutrient concentrations in crops – A meta-analysis. Soil Biol Biochem 81:147–158. https://doi.org/10.1016/J.SOILBIO.2014.11.013
Lilleskov EA, Kuyper TW, Bidartondo MI, Hobbie EA (2018) Atmospheric nitrogen deposition impacts on the structure and function of forest mycorrhizal communities: A review. 246:148–162. https://doi.org/10.1016/j.envpol.2018.11.074
Mayor JR, Mack MC, Schuur EAG (2015) Decoupled stoichiometric, isotopic, and fungal responses of an ectomycorrhizal black spruce forest to nitrogen and phosphorus additions. Soil Biol Biochem 88:247–256. https://doi.org/10.1016/J.SOILBIO.2015.05.028
McCarthy MC, Enquist BJ (2007) Consistency between an allometric approach and optimal partitioning theory in global patterns of plant biomass allocation. Funct Ecol 21:713–720. https://doi.org/10.1111/J.1365-2435.2007.01276.X
McGonigle TP, Miller MH, Evans DG, et al (1990) A new method which gives an objective measure of colonization of roots by vesicular—arbuscular mycorrhizal fungi. New Phytol 115:495–501. https://doi.org/10.1111/j.1469-8137.1990.tb00476.x
Montes-Rivera G, Solis-González S, Quintos-Escalante M (2001) Efecto del inoculante comercial Burize (Glomus intraradices) sobre el desarrollo de Pinus engelmannii Carr. Rev Chapingo Ser Ciencias For y del Ambient 7:123–126
Morin RS, Barnett CJ, Butler BJ, et al (2015) Forests of Vermont and New Hampshire 2012. Resour. Bull. NRS-95. Newt Square, PA US Dep Agric For Serv North Res Stn 80
Näsholm T, Högberg P, Franklin O, et al (2013) Are ectomycorrhizal fungi alleviating or aggravating nitrogen limitation of tree growth in boreal forests? New Phytol 198:214–221. https://doi.org/10.1111/NPH.12139
Nogueira MA, Nehls U, Hampp R, et al (2007) Mycorrhiza and soil bacteria influence extractable iron and manganese in soil and uptake by soybean. Plant Soil 298:273–284. https://doi.org/10.1007/s11104-007-9379-1
Nouri E, Breuillin-Sessoms F, Feller U, Reinhardt D (2014) Phosphorus and nitrogen regulate arbuscular mycorrhizal symbiosis in Petunia hybrida. PLoS One 9:e90841. https://doi.org/10.1371/JOURNAL.PONE.0090841
Peñuelas J, Poulter B, Sardans J, et al (2013) Human-induced nitrogen–phosphorus imbalances alter natural and managed ecosystems across the globe. Nat Commun 4:2934. https://doi.org/10.1038/ncomms3934
Posta K, Marschner H, Römheld V (1994) Manganese reduction in the rhizosphere of mycorrhizal and nonmycorrhizal maize. Mycorrhiza 5:119–124. https://doi.org/10.1007/BF00202343
R Core Team (2020) R: A language and environment for statistical computing. R Found Stat Comput Vienna, Au:
Rajora OP, Rahman MH, Buchert GP, Dancik BP (2000) Microsatellite DNA analysis of genetic effects of harvesting in old-growth eastern white pine (Pinus strobus) in Ontario, Canada. Mol Ecol 9:339–348. https://doi.org/10.1046/J.1365-294X.2000.00886.X
Reid CPP, Kidd FA, Ekwebelam SA (1983) Nitrogen nutrition, photosynthesis and carbon allocation in ectomycorrhizal pine. Plant Soil 71:415–432. https://doi.org/10.1007/BF02182683
Riley RC, Cavagnaro TR, Brien C, et al (2019) Resource allocation to growth or luxury consumption drives mycorrhizal responses. Ecol Lett 22:1757–1766. https://doi.org/10.1111/ELE.13353
Smith JE, Johnson KA, Cázares E (1998) Vesicular mycorrhizal colonization of seedlings of Pinaceae and Betulaceae after spore inoculation with Glomus intraradices. Mycorrhiza 1998 76 7:279–285. https://doi.org/10.1007/S005720050193
Smith SE, Read D (2008) The symbionts forming arbuscular mycorrhizas. In: Mycorrhizal Symbiosis. Academic Press, San Diego, CA, pp 13–42
St.Clair SB, Lynch JP (2005) Element accumulation patterns of deciduous and evergreen tree seedlings on acid soils: implications for sensitivity to manganese toxicity. Tree Physiol 25:85–92. https://doi.org/10.1093/TREEPHYS/25.1.85
Sterner RW, Elser JJ (2002) Ecological Stoichiometry. Princeton University Press, Princton, NJ
Sun T, Hobbie SE, Berg B, et al (2018) Contrasting dynamics and trait controls in first-order root compared with leaf litter decomposition. Proc Natl Acad Sci 115:10392–10397. https://doi.org/10.1073/pnas.1716595115
Sun T, Zhang H, Wang Z (2019) Reply to Tedersoo et al.: Plant species within the same family or genus can have different mycorrhizal types? Proc Natl Acad Sci 116:12141–12142. https://doi.org/10.1073/PNAS.1903868116
Tedersoo L, Brundrett MC (2017) Evolution of ectomycorrhizal symbiosis in plants. In: Tedersoo L (ed) Biogeography of Mycorrhizal Symbiosis. Ecological Studies 230, pp 407–467
Tedersoo L, Rahimlou S, Brundrett M (2019) Misallocation of mycorrhizal traits leads to misleading results. Proc Natl Acad Sci 116:12139–12140. https://doi.org/10.1073/PNAS.1903178116
Terrer C, Vicca S, Hungate BA, et al (2016) Mycorrhizal association as a primary control of the CO2 fertilization effect. Science (80- ) 353:72–74. https://doi.org/10.1126/SCIENCE.AAF4610
Treseder KK (2004) A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytol 164:347–355. https://doi.org/10.1111/J.1469-8137.2004.01159.X
Treseder KK, Allen EB, Egerton-Warburton LM, et al (2018) Arbuscular mycorrhizal fungi as mediators of ecosystem responses to nitrogen deposition: A trait-based predictive framework. J Ecol 106:480–489. https://doi.org/10.1111/1365-2745.12919
van den Driessche R, Wareing PF (1966) Nutrient supply, dry-matter production and nutrient uptake of forest tree seedlings. Ann Bot 30:657–672
Van Wees SC, Van der Ent S, Pieterse CM (2008) Plant immune responses triggered by beneficial microbes. Curr Opin Plant Biol 11:443–448. https://doi.org/10.1016/j.pbi.2008.05.005
Veiga RSL, Faccio A, Genre A, et al (2013) Arbuscular mycorrhizal fungi reduce growth and infect roots of the non-host plant Arabidopsis thaliana. Plant Cell Environ 36:1926–1937. https://doi.org/10.1111/PCE.12102
Vierheilig H, Coughlan AP, Wyss U, Piché Y (1998) Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi. Appl Environ Microbiol 64:5004–5007. https://doi.org/10.1128/AEM.64.12.5004-5007.1998
Vitousek PM, Porder S, Houlton BZ, Chadwick OA (2010) Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen–phosphorus interactions. Ecol Appl 20:5–15. https://doi.org/10.1890/08-0127.1
Wagg C, Antunes PM, Peterson RL (2011) Arbuscular mycorrhizal fungal phylogeny-related interactions with a non-host. Symbiosis 53:41–46. https://doi.org/10.1007/s13199-011-0107-5
Wagg C, Pautler M, Massicotte HB, Peterson RL (2008) The co-occurrence of ectomycorrhizal, arbuscular mycorrhizal, and dark septate fungi in seedlings of four members of the Pinaceae. Mycorrhiza 18:103–110. https://doi.org/10.1007/s00572-007-0157-y
Wallander H, Nylund J ‐E (1992) Effects of excess nitrogen and phosphorus starvation on the extramatrical mycelium of ectomycorrhizas of Pinus sylvestris L. New Phytol 120:495–503. https://doi.org/10.1111/J.1469-8137.1992.TB01798.X
Wang B, Qiu Y-L (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 2006 165 16:299–363. https://doi.org/10.1007/S00572-005-0033-6
Zhang J, Elser JJ (2017) Carbon:nitrogen:phosphorus stoichiometry in fungi: A meta-analysis. Front Microbiol 8:1281. https://doi.org/10.3389/FMICB.2017.01281