[1] M. Zhang, R. Lin, X. Wang, J. Xue, C. Deng, C. Feng, H. Zhuang, J. Ma, C. Qin, L. Wan, 3D printing of Haversian bone-mimicking scaffolds for multicellular delivery in bone regeneration, Science advances 6(12) (2020) eaaz6725.
[2] Z. Othman, H. Fernandes, A.J. Groot, T.M. Luider, A. Alcinesio, D. de Melo Pereira, A.P. Guttenplan, H. Yuan, P. Habibovic, The role of ENPP1/PC-1 in osteoinduction by calcium phosphate ceramics, Biomaterials 210 (2019) 12-24.
[3] S. Pina, J.M. Oliveira, R.L. Reis, Natural-based nanocomposites for bone tissue engineering and regenerative medicine: a review, Advanced Materials 27(7) (2015) 1143-1169.
[4] W.Z. Lew, S.W. Feng, S.Y. Lee, H.M. Huang, The review of bioeffects of static magnetic fields on the oral tissue-derived cells and its application in regenerative medicine, Cells 10(10) (2021) 2662.
[5] Y. Xia, J. Sun, L. Zhao, F. Zhang, X.J. Liang, Y. Guo, M.D. Weir, M.A. Reynolds, N. Gu, H.H. Xu, Magnetic field and nano-scaffolds with stem cells to enhance bone regeneration, Biomaterials 183 (2018) 151-170.
[6] Y. Kong, J. Duan, F. Liu, L. Han, G. Li, C. Sun, Y. Sang, S. Wang, F. Yi, H. Liu, Regulation of stem cell fate using nanostructure-mediated physical signals, Chemical Society Reviews (2021).
[7] Y. Qiao, X. Liu, B. Li, Y. Han, Y. Zheng, K.W.K. Yeung, C. Li, Z. Cui, Y. Liang, Z. Li, Treatment of MRSA-infected osteomyelitis using bacterial capturing, magnetically targeted composites with microwave-assisted bacterial killing, Nature communications 11(1) (2020) 1-13.
[8] S. Khizar, N.M. Ahmad, N. Zine, N. Jaffrezic-Renault, A. Errachid-el-salhi, A. Elaissari, Magnetic nanoparticles: From synthesis to Theranostic applications, ACS Applied Nano Materials 4(5) (2021) 4284-4306.
[9] H.M. Yun, S.J. Ahn, K.R. Park, M.J. Kim, J.J. Kim, G.Z. Jin, H.W. Kim, E.C. Kim, Magnetic nanocomposite scaffolds combined with static magnetic field in the stimulation of osteoblastic differentiation and bone formation, Biomaterials 85 (2016) 88-98.
[10] J. Li, X. Lu, Y. Zhang, F. Cheng, Y. Li, X. Wen, S. Yang, Transmittance tunable smart window based on magnetically responsive 1D nanochains, ACS Applied Materials & Interfaces 12(28) (2020) 31637-31644.
[11] Q. Xiong, C.Y. Lim, J. Ren, J. Zhou, K. Pu, M.B. Chan-Park, H. Mao, Y.C. Lam, H. Duan, Magnetic nanochain integrated microfluidic biochips, Nature communications 9(1) (2018) 1-11.
[12] M. Ma, Q. Zhang, J. Dou, H. Zhang, D. Yin, W. Geng, Y. Zhou, Fabrication of one-dimensional Fe3O4/P(GMA-DVB) nanochains by magnetic-field-induced precipitation polymerization, Journal of colloid and interface science 374(1) (2012) 339-344.
[13] M. Ma, Q. Zhang, H. Zhang, T. Xin, B. Zhang, X. Fan, One-Pot Synthesis of Highly Magnetically Sensitive Nanochains Coated with a Fluorescent Shell by Magnetic-Field-Induced Precipitation Polymerization, Science of Advanced Materials 5(6) (2013) 623-629.
[14] J. Sun, X. Liu, J. Huang, L. Song, Z. Chen, H. Liu, Y. Li, Y. Zhang, N. Gu, Magnetic assembly-mediated enhancement of differentiation of mouse bone marrow cells cultured on magnetic colloidal assemblies, Scientific reports 4(1) (2014) 1-8.
[15] J. Zhou, C. Wang, P. Wang, P.B. Messersmith, H. Duan, Multifunctional magnetic nanochains: exploiting self-polymerization and versatile reactivity of mussel-inspired polydopamine, Chemistry of Materials 27(8) (2015) 3071-3076.
[16] J. Jia, J.C. Yu, Y.X.J. Wang, K.M. Chan, Magnetic nanochains of FeNi3 prepared by a template-free microwave-hydrothermal method, ACS applied materials & interfaces 2(9) (2010) 2579-2584.
[17] X. Li, L. Sun, H. Wang, K. Xie, Q. Long, X. Lai, L. Liao, Synthesis of cobalt nanowires in aqueous solution under an external magnetic field, Beilstein Journal of Nanotechnology 7(1) (2016) 990-994.
[18] J. Zhang, W. Xiang, Y. Liu, M. Hu, K. Zhao, Synthesis of high-aspect-ratio nickel nanowires by dropping method, Nanoscale Research Letters 11(1) (2016) 1-5.
[19] A. Saha, H. Ben Halima, A. Saini, J. Gallardo-Gonzalez, N. Zine, C. Viñas, A. Elaissari, A. Errachid, F. Teixidor, Magnetic Nanoparticles Fishing for Biomarkers in Artificial Saliva, Molecules 25(17) (2020) 3968.
[20] M. Tarhini, J. Vega-Chacón, M. Jafelicci, N. Zine, A. Errachid, H. Fessi, A. Elaissari, Structured magnetic core/silica internal shell layer and protein out layer shell (BSA@SiO2@SME): preparation and characterization, Chemistry Africa 3(1) (2020) 127-134.
[21] A. Bitar, J. Vega-Chacón, Z. Lgourna, H. Fessi, M. Jafelicci Jr, A. Elaissari, Submicron silica shell-magnetic core preparation and characterization, Colloids and Surfaces A: Physicochemical and Engineering Aspects 537 (2018) 318-324.
[22] F. Qi, R. Liao, Y. Shuai, H. Pan, G. Qian, S. Peng, C. Shuai, A conductive network enhances nerve cell response, Additive Manufacturing (2022) 102694.
[23] L. Yu, T. He, J. Yao, W. Xu, S. Peng, P. Feng, C. Shuai, Cu ions and cetyltrimethylammonium bromide loaded into montmorillonite: a synergistic antibacterial system for bone scaffolds, Materials Chemistry Frontiers 6(1) (2022) 103-116.
[24] S. Kralj, D. Makovec, Magnetic assembly of superparamagnetic iron oxide nanoparticle clusters into nanochains and nanobundles, ACS nano 9(10) (2015) 9700-9707.
[25] S. Kralj, T. Potrc, P. Kocbek, S. Marchesan, D. Makovec, Design and fabrication of magnetically responsive nanocarriers for drug delivery, Current medicinal chemistry 24(5) (2017) 454-469.
[26] A. Nikmah, A. Taufiq, A. Hidayat, Sunaryono, H. Susanto, Excellent Antimicrobial Activity of Fe3O4/SiO2/Ag Nanocomposites, Nano 16(05) (2021) 2150049.
[27] A. Rajan, M. Sharma, N.K. Sahu, Assessing magnetic and inductive thermal properties of various surfactants functionalised Fe3O4 nanoparticles for hyperthermia, Scientific reports 10(1) (2020) 1-15.
[28] L. Wang, C. Shen, Y. Cao, PVP modified Fe3O4@SiO2 nanoparticles as a new adsorbent for hydrophobic substances, Journal of Physics and Chemistry of Solids 133 (2019) 28-34.
[29] Z. Chen, H. Wang, Y. Wang, R. Lv, X. Yang, J. Wang, L. Li, W. Ren, Improved optical damage threshold graphene Oxide/SiO2 absorber fabricated by sol-gel technique for mode-locked erbium-doped fiber lasers, Carbon 144 (2019) 737-744.
[30] J. Chen, M. Qiao, W. Wang, Q. Zhang, A novel magnetic mesoporous Fe3O4@Void@mSiO2-Pd(0) nanochains with high heterogeneous catalysis efficiency for Suzuki coupling reaction, Composites Communications 16 (2019) 41-49.
[31] P. Feng, J. Jia, S. Peng, Y. Shuai, H. Pan, X. Bai, C. Shuai, Transcrystalline growth of PLLA on carbon fiber grafted with nano-SiO2 towards boosting interfacial bonding in bone scaffold, Biomaterials Research 26(1) (2022) 1-15.
[32] M. Maniruzzaman, 3D and 4D printing in biomedical applications: process engineering and additive manufacturing, John Wiley & Sons2019.
[33] F. Beltrán, M. De La Orden, V. Lorenzo, E. Pérez, M. Cerrada, J.M. Urreaga, Water-induced structural changes in poly (lactic acid) and PLLA-clay nanocomposites, Polymer 107 (2016) 211-222.
[34] L. Yang, P. Zou, J. Cao, Y. Sun, D. Han, S. Yang, G. Chen, X. Kong, J. Yang, Facile synthesis and paramagnetic properties of Fe3O4@SiO2 core-shell nanoparticles, Superlattices and Microstructures 76 (2014) 205-212.
[35] R. Augustine, P. Dan, I. Schlachet, D. Rouxel, P. Menu, A. Sosnik, Chitosan ascorbate hydrogel improves water uptake capacity and cell adhesion of electrospun poly (epsilon-caprolactone) membranes, International Journal of Pharmaceutics 559 (2019) 420-426.
[36] H. Liang, Y. Yang, D. Xie, L. Li, N. Mao, C. Wang, Z. Tian, Q. Jiang, L. Shen, Trabecular-like Ti-6Al-4V scaffolds for orthopedic: fabrication by selective laser melting and in vitro biocompatibility, Journal of Materials Science & Technology 35(7) (2019) 1284-1297.
[37] C. Shuai, L. Yu, P. Feng, S. Peng, H. Pan, X. Bai, Construction of a stereocomplex between poly (d-lactide) grafted hydroxyapatite and poly (l-lactide): toward a bioactive composite scaffold with enhanced interfacial bonding, Journal of Materials Chemistry B (2022).
[38] D.M. González-García, Á. Marcos-Fernández, L.M. Rodríguez-Lorenzo, R. Jiménez-Gallegos, N. Vargas-Becerril, L. Téllez-Jurado, Synthesis and in vitro cytocompatibility of segmented poly (ester-urethane) s and poly (ester-urea-urethane) s for bone tissue engineering, Polymers 10(9) (2018) 991.
[39] C. Gao, M. Yao, S. Peng, W. Tan, C. Shuai, Pre-oxidation induced in situ interface strengthening in biodegradable Zn/nano-SiC composites prepared by selective laser melting, Journal of Advanced Research (2021).
[40] S. Bhattacharyya, S.S. Ghosh, Transmembrane TNFα-expressed macrophage membrane-coated chitosan nanoparticles as cancer therapeutics, ACS omega 5(3) (2020) 1572-1580.
[41] Y. Zhang, S. Liu, Y. Yao, Y. Chen, S. Zhou, X. Yang, K. Wang, J. Liu, Invasion and Defense Interactions between Enzyme-Active Liquid Coacervate Protocells and Living Cells, Small 16(29) (2020) 2002073.
[42] Y. Yang, Y. Cheng, M. Yang, G. Qian, S. Peng, F. Qi, C. Shuai, Semicoherent strengthens graphene/zinc scaffolds, Materials Today Nano 17 (2022) 100163.
[43] H. Chen, J. Sun, Z. Wang, Y. Zhou, Z. Lou, B. Chen, P. Wang, Z. Guo, H. Tang, J. Ma, Magnetic cell-scaffold interface constructed by superparamagnetic IONP enhanced osteogenesis of adipose-derived stem cells, ACS applied materials & interfaces 10(51) (2018) 44279-44289.
[44] H. Wang, X. Zeng, L. Pang, H. Wang, B. Lin, Z. Deng, E.L.X. Qi, N. Miao, D. Wang, P. Huang, Integrative treatment of anti-tumor/bone repair by combination of MoS2 nanosheets with 3D printed bioactive borosilicate glass scaffolds, Chemical Engineering Journal 396 (2020) 125081.
[45] J. Yang, H. Zhang, P. Shang, Effect of static magnetic field on bone and its molecular mechanism, Chinese Science Bulletin 65(13) (2020) 1238-1250.
[46] H.Y. Xu, N. Gu, Magnetic responsive scaffolds and magnetic fields in bone repair and regeneration, Frontiers of Materials Science 8(1) (2014) 20-31.
[47] J. Zan, G. Qian, F. Deng, J. Zhang, Z. Zeng, S. Peng, C. Shuai, Dilemma and breakthrough of biodegradable poly-l-lactic acid in bone tissue repair, Journal of Materials Research and Technology (2022).
[48] U. Anjaneyulu, B. Priyadarshini, U. Vijayalakshmi, Preparation of Ag doped hydroxyapatite-Fe3O4-chitosan composites: In vitro biocompatibility study on MG-63 cells for orthopedic applications, Advanced Science Letters 24(8) (2018) 5901-5906.
[49] Z.C. Wu, W.P. Li, C.H. Luo, C.H. Su, C.S. Yeh, Rattle-Type Fe3O4@ CuS Developed to Conduct Magnetically Guided Photoinduced Hyperthermia at First and Second NIR Biological Windows, Advanced Functional Materials 25(41) (2015) 6527-6537.
[50] Z. Li, F. Yang, Y. Yin, Smart materials by nanoscale magnetic assembly, Advanced Functional Materials 30(2) (2020) 1903467.
[51] Z. Li, M. Wang, X. Zhang, D. Wang, W. Xu, Y. Yin, Magnetic assembly of nanocubes for orientation-dependent photonic responses, Nano Letters 19(9) (2019) 6673-6680.
[52] M. Wang, L. He, Y. Yin, Magnetic field guided colloidal assembly, Materials Today 16(4) (2013) 110-116.
[53] Y. Zhu, Q. Yang, M. Yang, X. Zhan, F. Lan, J. He, Z. Gu, Y. Wu, Protein corona of magnetic hydroxyapatite scaffold improves cell proliferation via activation of mitogen-activated protein kinase signaling pathway, ACS nano 11(4) (2017) 3690-3704.