1. Barzon, L.; Lavezzo, E.; Militello, V.; Toppo, S.; Palù, G. Applications of Next-Generation Sequencing Technologies to Diagnostic Virology. Int. J. Mol. Sci. 2011, 12, 7861–7884.
2. Ben-Dor, A.; Shamir, R.; Yakhini, Z. Clustering Gene Expression Patterns. J. Comput. Biol. 1999, 6, 281–297.
3. Dinu, I.; Potter, J.D.; Mueller, T.; Liu, Q.; Adewale, A.J.; Jhangri, G.S.; Einecke, G.; Famulski, K.S.; Halloran, P.; Yasui, Y. Gene-Set Analysis and Reduction. Brief. Bioinform. 2008, 10, 24–34, doi:10.1093/bib/bbn042.
4. Incorporating Pathway Information into Feature Selection towards Better Performed Gene Signatures Available online: https://www.hindawi.com/journals/bmri/2019/2497509/ (accessed on 8 March 2022).
5. Zhang, J.D.; Wiemann, S. KEGGgraph: A Graph Approach to KEGG PATHWAY in R and Bioconductor. Bioinforma. Oxf. Engl. 2009, 25, 1470–1471, doi:10.1093/bioinformatics/btp167.
6. Kanehisa, M.; Araki, M.; Goto, S.; Hattori, M.; Hirakawa, M.; Itoh, M.; Katayama, T.; Kawashima, S.; Okuda, S.; Tokimatsu, T. KEGG for Linking Genomes to Life and the Environment. Nucleic Acids Res. 2007, 36, D480–D484.
7. Ma, J.; Shojaie, A.; Michailidis, G. A Comparative Study of Topology-Based Pathway Enrichment Analysis Methods. BMC Bioinformatics 2019, 20, 546, doi:10.1186/s12859-019-3146-1.
8. A Critical Comparison of Topology-Based Pathway Analysis Methods Available online: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0191154 (accessed on 8 March 2022).
9. Breheny, P. The Group Exponential Lasso for Bi-Level Variable Selection: The Group Exponential Lasso for Bi-Level Variable Selection. Biometrics 2015, 71, 731–740, doi:10.1111/biom.12300.
10. Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S. Gene Set Enrichment Analysis: A Knowledge-Based Approach for Interpreting Genome-Wide Expression Profiles. Proc. Natl. Acad. Sci. 2005, 102, 15545–15550.
11. Cun, Y.; Fröhlich, H. Prognostic Gene Signatures for Patient Stratification in Breast Cancer - Accuracy, Stability and Interpretability of Gene Selection Approaches Using Prior Knowledge on Protein-Protein Interactions. BMC Bioinformatics 2012, 13, 69, doi:10.1186/1471-2105-13-69.
12. Staiger, C.; Cadot, S.; Kooter, R.; Dittrich, M.; Müller, T.; Klau, G.W.; Wessels, L.F.A. A Critical Evaluation of Network and Pathway-Based Classifiers for Outcome Prediction in Breast Cancer. PLoS ONE 2012, 7, e34796, doi:10.1371/journal.pone.0034796.
13. Kanehisa, M. The KEGG Database; 2002; Vol. 247;.
14. Consortium, T.G.O. Gene Ontology: Tool for the Unification of Biology. The Gene Ontology Consortium; 2000; Vol. 25;.
15. Jassal, B.; Matthews, L.; Viteri, G.; Gong, C.; Lorente, P.; Fabregat, A.; Sidiropoulos, K.; Cook, J.; Gillespie, M.; Haw, R.; et al. The Reactome Pathway Knowledgebase. Nucleic Acids Res. 2019, gkz1031, doi:10.1093/nar/gkz1031.
16. Yousef, M.; Kumar, A.; Bakir-Gungor, B. Application of Biological Domain Knowledge Based Feature Selection on Gene Expression Data. Entropy 2020, 23, 2, doi:10.3390/e23010002.
17. Yousef, M.; Abdallah, L.; Allmer, J. MaTE: Discovering Expressed Interactions between MicroRNAs and Their Targets. Bioinformatics 2019, 35, 4020–4028.
18. Yousef, M.; Ülgen, E.; Sezerman, O.U. CogNet: Classification of Gene Expression Data Based on Ranked Active-Subnetwork-Oriented KEGG Pathway Enrichment Analysis. PeerJ Comput. Sci. 2021, 7, e336.
19. Yousef, M.; Goy, G.; Mitra, R.; Eischen, C.M.; Jabeer, A.; Bakir-Gungor, B. MiRcorrNet: Machine Learning-Based Integration of MiRNA and MRNA Expression Profiles, Combined with Feature Grouping and Ranking. PeerJ 2021, 9, e11458.
20. Yousef, M.; Goy, G.; Bakir-Gungor, B. MiRModuleNet: Detecting MiRNA-MRNA Regulatory Modules. Rev.
21. Yousef, M.; Sayıcı, A.; Bakir-Gungor, B. Integrating Gene Ontology Based Grouping and Ranking into the Machine Learning Algorithm for Gene Expression Data Analysis. In Proceedings of the International Conference on Database and Expert Systems Applications; Springer, 2021; pp. 205–214.
22. Yousef, M.; Bakir-Gungor, B.; Jabeer, A.; Goy, G.; Qureshi, R.; Showe, L.C. Recursive Cluster Elimination Based Rank Function (SVM-RCE-R) Implemented in KNIME. F1000Research 2020, 9.
23. Yousef, M.; Jabeer, A.; Bakir-Gungor, B. SVM-RCE-R-OPT: Optimization of Scoring Function for SVM-RCE-R. In Database and Expert Systems Applications - DEXA 2021 Workshops; Kotsis, G., Tjoa, A.M., Khalil, I., Moser, B., Mashkoor, A., Sametinger, J., Fensel, A., Martinez-Gil, J., Fischer, L., Czech, G., Sobieczky, F., Khan, S., Eds.; Communications in Computer and Information Science; Springer International Publishing: Cham, 2021; Vol. 1479, pp. 215–224 ISBN 978-3-030-87100-0.
24. Yousef, M.; Jung, S.; Showe, L.C.; Showe, M.K. Recursive Cluster Elimination (RCE) for Classification and Feature Selection from Gene Expression Data. BMC Bioinformatics 2007, 8, 1–12.
25. Yousef, M.; Ketany, M.; Manevitz, L.; Showe, L.C.; Showe, M.K. Classification and Biomarker Identification Using Gene Network Modules and Support Vector Machines. BMC Bioinformatics 2009, 10, 1–7.
26. Home - GEO - NCBI Available online: https://www.ncbi.nlm.nih.gov/geo/ (accessed on 14 February 2022).
27. R: The R Project for Statistical Computing Available online: https://www.r-project.org/ (accessed on 14 February 2022).
28. KEGG PATHWAY Database Available online: https://www.genome.jp/kegg/pathway.html (accessed on 14 February 2022).
29. Dietz, C.; Berthold, M.R. KNIME for Open-Source Bioimage Analysis: A Tutorial. Focus Bio-Image Inform. 2016, 179–197.
30. Xu, Q.-S.; Liang, Y.-Z. Monte Carlo Cross Validation. Chemom. Intell. Lab. Syst. 2001, 56, 1–11, doi:10.1016/S0169-7439(00)00122-2.
31. Zhu, W.; Zeng, N.; Wang, N. Sensitivity, Specificity, Accuracy, Associated Confidence Interval and ROC Analysis with Practical SAS Implementations. NESUG Proc. Health Care Life Sci. Baltim. Md. 2010, 19, 67.
32. Floch, J.-P.L.; Escuyer, P.; Baudin, E.; Baudon, D.; Perlemuter, L. Blood Glucose Area under the Curve: Methodological Aspects. Diabetes Care 1990, 13, 172–175.
33. Dennis, G.; Sherman, B.T.; Hosack, D.A.; Yang, J.; Gao, W.; Lane, H.C.; Lempicki, R.A. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 2003, 4, 1–11.
34. Fabregat, A.; Sidiropoulos, K.; Viteri, G.; Forner, O.; Marin-Garcia, P.; Arnau, V.; D’Eustachio, P.; Stein, L.; Hermjakob, H. Reactome Pathway Analysis: A High-Performance in-Memory Approach. BMC Bioinformatics 2017, 18, 1–9.
35. Thanati, F.; Karatzas, E.; Baltoumas, F.A.; Stravopodis, D.J.; Eliopoulos, A.G.; Pavlopoulos, G.A. FLAME: A Web Tool for Functional and Literature Enrichment Analysis of Multiple Gene Lists. Biology 2021, 10, 665, doi:10.3390/biology10070665.
36. Limam, S.; Missaoui, N.; Hmissa, S.; Yacoubi, M.T.; Krifa, H.; Mokni, M.; Selmi, B. Investigation of Human Cytomegalovirus and Human Papillomavirus in Glioma. Cancer Invest. 2020, 38, 394–405, doi:10.1080/07357907.2020.1793352.
37. Yang, T.; Zhou, Y.; Wang, H.; Chen, S.; Shen, M.; Hu, Y.; Wang, T.; Liu, J.; Jiang, Z.; Wang, Z.; et al. Insulin Exacerbated High Glucose-Induced Epithelial-Mesenchymal Transition in Prostatic Epithelial Cells BPH-1 and Prostate Cancer Cells PC-3 via MEK/ERK Signaling Pathway. Exp. Cell Res. 2020, 394, 112145, doi:10.1016/j.yexcr.2020.112145.
38. Fenner, A. Prostate Cancer: Targeting the Ribosome in Advanced Disease. Nat. Rev. Urol. 2016, 13, 562, doi:10.1038/nrurol.2016.162.
39. Bhowmick, N.A.; Oft, J.; Dorff, T.; Pal, S.; Agarwal, N.; Figlin, R.A.; Posadas, E.M.; Freedland, S.J.; Gong, J. COVID-19 and Androgen-Targeted Therapy for Prostate Cancer Patients. Endocr. Relat. Cancer 2020, 27, R281–R292, doi:10.1530/ERC-20-0165.
40. Sun, H.; Ou, B.; Zhao, S.; Liu, X.; Song, L.; Liu, X.; Wang, R.; Peng, Z. USP11 Promotes Growth and Metastasis of Colorectal Cancer via PPP1CA-Mediated Activation of ERK/MAPK Signaling Pathway. EBioMedicine 2019, 48, 236–247, doi:10.1016/j.ebiom.2019.08.061.
41. Dmitrieva-Posocco, O.; Dzutsev, A.; Posocco, D.F.; Hou, V.; Yuan, W.; Thovarai, V.; Mufazalov, I.A.; Gunzer, M.; Shilovskiy, I.P.; Khaitov, M.R.; et al. Cell-Type-Specific Responses to Interleukin-1 Control Microbial Invasion and Tumor-Elicited Inflammation in Colorectal Cancer. Immunity 2019, 50, 166-180.e7, doi:10.1016/j.immuni.2018.11.015.
42. Bonnet, M.; Buc, E.; Sauvanet, P.; Darcha, C.; Dubois, D.; Pereira, B.; Déchelotte, P.; Bonnet, R.; Pezet, D.; Darfeuille-Michaud, A. Colonization of the Human Gut by E. Coli and Colorectal Cancer Risk. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2014, 20, 859–867, doi:10.1158/1078-0432.CCR-13-1343.
43. Yan, S.; Hui, Y.; Li, J.; Xu, X.; Li, Q.; Wei, H. Glutamine Relieves Oxidative Stress through PI3K/Akt Signaling Pathway in DSS-Induced Ulcerative Colitis Mice. Iran. J. Basic Med. Sci. 2020, 23, 1124–1129, doi:10.22038/ijbms.2020.39815.9436.
44. Low, E.N.D.; Mokhtar, N.M.; Wong, Z.; Raja Ali, R.A. Colonic Mucosal Transcriptomic Changes in Patients with Long-Duration Ulcerative Colitis Revealed Colitis-Associated Cancer Pathways. J. Crohns Colitis 2019, 13, 755–763, doi:10.1093/ecco-jcc/jjz002.
45. Okayama, S.; Arakawa, S.; Ogawa, K.; Makino, T. A Case of Hemorrhagic Colitis after Influenza A Infection. J. Microbiol. Immunol. Infect. Wei Mian Yu Gan Ran Za Zhi 2011, 44, 480–483, doi:10.1016/j.jmii.2011.04.003.
46. Makhlouf, S.; Messelmani, M.; Zaouali, J.; Mrissa, R. Cognitive Impairment in Celiac Disease and Non-Celiac Gluten Sensitivity: Review of Literature on the Main Cognitive Impairments, the Imaging and the Effect of Gluten Free Diet. Acta Neurol. Belg. 2018, 118, 21–27, doi:10.1007/s13760-017-0870-z.
47. Rashtak, S.; Murray, J.A. Celiac Disease in the Elderly. Gastroenterol. Clin. North Am. 2009, 38, 433–446, doi:10.1016/j.gtc.2009.06.005.
48. Veres-Székely, A.; Bernáth, M.; Pap, D.; Rokonay, R.; Szebeni, B.; Takács, I.M.; Lippai, R.; Cseh, Á.; Szabó, A.J.; Vannay, Á. PARK7 Diminishes Oxidative Stress-Induced Mucosal Damage in Celiac Disease. Oxid. Med. Cell. Longev. 2020, 2020, 4787202, doi:10.1155/2020/4787202.
49. Li, X.; Xu, T.; Wang, Y.; Huang, C.; Li, J. Toll-like Receptor-4 Signaling: A New Potential Therapeutic Pathway for Rheumatoid Arthritis. Rheumatol. Int. 2014, 34, 1613–1614, doi:10.1007/s00296-013-2890-1.
50. Gravallese, E.M.; Schett, G. Effects of the IL-23-IL-17 Pathway on Bone in Spondyloarthritis. Nat. Rev. Rheumatol. 2018, 14, 631–640, doi:10.1038/s41584-018-0091-8.
51. Lang, S.C.; Harre, U.; Purohit, P.; Dietel, K.; Kienhöfer, D.; Hahn, J.; Baum, W.; Herrmann, M.; Schett, G.; Mielenz, D. Neurodegeneration Enhances the Development of Arthritis. J. Immunol. Baltim. Md 1950 2017, 198, 2394–2402, doi:10.4049/jimmunol.1601472.
52. Aboubakar Nana, F.; Lecocq, M.; Ladjemi, M.Z.; Detry, B.; Dupasquier, S.; Feron, O.; Massion, P.P.; Sibille, Y.; Pilette, C.; Ocak, S. Therapeutic Potential of Focal Adhesion Kinase Inhibition in Small Cell Lung Cancer. Mol. Cancer Ther. 2019, 18, 17–27, doi:10.1158/1535-7163.MCT-18-0328.
53. Yu, X.; Li, Y.; Jiang, G.; Fang, J.; You, Z.; Shao, G.; Zhang, Z.; Jiao, A.; Peng, X. FGF21 Promotes Non-Small Cell Lung Cancer Progression by SIRT1/PI3K/AKT Signaling. Life Sci. 2021, 269, 118875, doi:10.1016/j.lfs.2020.118875.
54. Sun, Y.; Pei, W.; Wu, Y.; Yang, Y. An Association of Herpes Simplex Virus Type 1 Infection with Type 2 Diabetes. Diabetes Care 2005, 28, 435–436, doi:10.2337/diacare.28.2.435.
55. Chakraborty, C.; Doss, C.G.P.; Bandyopadhyay, S.; Agoramoorthy, G. Influence of MiRNA in Insulin Signaling Pathway and Insulin Resistance: Micro-Molecules with a Major Role in Type-2 Diabetes. Wiley Interdiscip. Rev. RNA 2014, 5, 697–712, doi:10.1002/wrna.1240.
56. Kang, K.; Xu, P.; Wang, M.; Chunyu, J.; Sun, X.; Ren, G.; Xiao, W.; Li, D. FGF21 Attenuates Neurodegeneration through Modulating Neuroinflammation and Oxidant-Stress. Biomed. Pharmacother. Biomedecine Pharmacother. 2020, 129, 110439, doi:10.1016/j.biopha.2020.110439.
57. Yu, Q.; Wang, X.; Yang, Y.; Chi, P.; Huang, J.; Qiu, S.; Zheng, X.; Chen, X. Upregulated NLGN1 Predicts Poor Survival in Colorectal Cancer. BMC Cancer 2021, 21, 884, doi:10.1186/s12885-021-08621-x.
58. Moon, J.-S.; Lee, M.-Y.; Park, S.W.; Han, W.K.; Hong, S.-W.; Ahn, J.-H.; Kim, K.-S. Androgen-Dependent Activation of Human Cytomegalovirus Major Immediate-Early Promoter in Prostate Cancer Cells. The Prostate 2008, 68, 1450–1460, doi:10.1002/pros.20817.
59. Adekoya, T.O.; Richardson, R.M. Cytokines and Chemokines as Mediators of Prostate Cancer Metastasis. Int. J. Mol. Sci. 2020, 21, E4449, doi:10.3390/ijms21124449.
60. Chen, X.; Corry, D.B.; Li, E. Mechanisms of Allergy and Adult Asthma. Curr. Opin. Allergy Clin. Immunol. 2020, 20, 36–42, doi:10.1097/ACI.0000000000000601.
61. Rosenkranz, M.A.; Dean, D.C.; Bendlin, B.B.; Jarjour, N.N.; Esnault, S.; Zetterberg, H.; Heslegrave, A.; Evans, M.D.; Davidson, R.J.; Busse, W.W. Neuroimaging and Biomarker Evidence of Neurodegeneration in Asthma. J. Allergy Clin. Immunol. 2022, 149, 589-598.e6, doi:10.1016/j.jaci.2021.09.010.
62. Yan, S.; Wang, Y.; Liu, P.; Chen, A.; Chen, M.; Yao, D.; Xu, X.; Wang, L.; Huang, X. Baicalin Attenuates Hypoxia-Induced Pulmonary Arterial Hypertension to Improve Hypoxic Cor Pulmonale by Reducing the Activity of the P38 MAPK Signaling Pathway and MMP-9. Evid.-Based Complement. Altern. Med. ECAM 2016, 2016, 2546402, doi:10.1155/2016/2546402.
63. Zha, L.-H.; Zhou, J.; Li, T.-Z.; Luo, H.; He, J.-N.; Zhao, L.; Yu, Z.-X. NLRC3: A Novel Noninvasive Biomarker for Pulmonary Hypertension Diagnosis. Aging Dis. 2018, 9, 843–851, doi:10.14336/AD.2017.1102.
64. Zuo, W.; Liu, N.; Zeng, Y.; Xiao, Z.; Wu, K.; Yang, F.; Li, B.; Song, Q.; Xiao, Y.; Liu, Q. Luteolin Ameliorates Experimental Pulmonary Arterial Hypertension via Suppressing Hippo-YAP/PI3K/AKT Signaling Pathway. Front. Pharmacol. 2021, 12, 663551, doi:10.3389/fphar.2021.663551.