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Abstract
Research and development (R&D) investments foster green innovation, which is key to decarbonize the energy system and attain long-term climate
goals. In this paper, we link three integrated assessment models that possess a macroeconomic framework – WITCH, MERGE-ETL and GEM-E3 –
with the bottom-up technology-rich energy system model TIAM-ECN, in order to quantitatively explore how investments in R&D can support deep
decarbonization pathways. We take advantage of the endogenous technological learning feature of the �rst three models to derive R&D-induced
capital cost reductions for strategic clusters of low-carbon technologies: solar energy, on- and offshore wind energy, carbon capture and storage,
advanced fuels, and batteries for electric vehicles. We examine scenarios with different assumptions on CO2 mitigation and R&D policy. These
assumptions are harmonized among our four models, and capital cost reductions driven by R&D are exogenously incorporated in TIAM-ECN, which
enables a detailed assessment of the required energy transition. Our results show that the stringency of climate change mitigation policy remains
the key factor in�uencing the diffusion of low-carbon technologies, while R&D can support mitigation goals and in�uence the contribution of
different types of technologies. If implemented effectively and without worldwide barriers to knowledge spill-overs, R&D facilitates the deployment of
mature technologies such as solar, wind, and electric vehicles, and enables lower overall energy system costs.

Highlights
With a multi-model framework we assess the effects of R&D on the energy transition.

Mitigation targets in�uence decarbonization most, while R&D has a supporting role.

Optimal R&D favours solar and wind energy over CCS technologies.

Up to 1,000 bln $ can be saved in 2050 if free knowledge spill-overs exist.

1. Introduction
Keeping average global warming well below 2oC above pre-industrial levels as stated in the Paris Agreement (PA) is technically possible, but it
requires unprecedented and consistent action (IPCC, 2018). Increase funding in research and development (R&D) into low-carbon energy
technologies is part of it, as detailed explicitly or implicitly in the Nationally Determined Contributions (NDCs). These o�cial pledges, submitted by
signatory countries of the PA, re�ect the current level of commitment towards achieving the global climate control goal (UNFCCC, 2015). However,
the Working Group I contribution to IPCC’s Sixth Assessment Report (IPCC, 2021) shows that, even under the strict implementation of the measures
foreseen by the NDCs, global surface temperature is expected to increase at least until 2050 as a result of relentless high levels of greenhouse gas
(GHG) emissions. The International Energy Agency’s “Net Zero by 2050” report (IEA, 2021) also shows that current CO2 mitigation pledges are not
compatible with their initial aim: countries are lagging behind their mitigation efforts and urgent action is needed now to avoid global warming
beyond 1.5°C in this century.

A key aspect of decarbonization pathways is the energy transition. In 2018, GHG emissions from energy corresponded to 76% of total emissions
worldwide (Climate Watch, 2021). Hence, it is paramount that investment choices in the energy sector prioritize low carbon technologies. Some of
these technologies are already mature enough to compete with conventional fossil fuel-based technologies, for instance, solar photovoltaics (PV)
and onshore wind energy (Irena, 2020). Nevertheless, a diverse technology mix that will foster GHG mitigation at required levels also includes
technologies at initial stages of development, i.e. at low technology readiness level (TRL), and currently available at relatively high costs. Offshore
wind energy, carbon capture and storage (CCS) and advanced biofuels production are a few examples (IEA, 2020a; IEA, 2020b; IEA, 2020c).

Several studies (Bataille et al., 2016a; Grubb et al., 2014; Shayegh et al., 2017; Ockwel et al., 2015) indicate that incentives fostering innovation
towards low carbon energy technologies are important instruments to be combined with GHG mitigation policies. A diverse policy mix that includes
R&D investments is acknowledged as most effective to promote the deployment of abatement technologies (Stern and Valero, 2021; Zhu et al., 2021;
Deleidi et al., 2021; Rogge et al., 2017). In literature, research on how technological change induced by R&D may accelerate decarbonization includes
the use of integrated assessment models (IAMs) and energy system models, some of which are able to endogenously account for R&D-induced
technology learning and diffusion.  Most studies use a single model to explore R&D dynamics and its impacts on economy and environment or on
the energy system: Bosetti et al. (2008) and De Cian et al. (2012) uses the WITCH model to focus on technology innovation and diffusion impacting
GHG emissions and related policies, while Zhang et al. (2020) incorporate multi-level learning, which includes equipment trade and knowledge
accumulation, in the REMIND model to assess technology diffusion. Leibowicz et al. (2016) focus speci�cally on the impacts of different
endogenous technology diffusion formulations in MESSAGE model to inspect the implications for low-carbon technologies, while Fragkiadakis et al.
(2020) look speci�cally at Europe and use the GEM-E3 model to analyse how public and private R&D can support the EU Green Deal.

IAMs can generate least-cost long-term scenarios for energy supply and consumption subject to multiple constraints on, among many others
variables, CO2 emissions, offering a sound basis to support the policy-making process for a low carbon society (IPCC, 2014; IPCC, 2018; IAMC,
2019). Although many IAMs rely on similar theoretical approaches to model R&D, such as one-factor and two-factor learning curves, they differ in
many other aspects, such as regional and temporal scope, mathematical method, technology portfolio and sectoral representation (see for instance
the different model descriptions available at IAMC Wiki; IAMC, 2021). These differences are likely to impact the resulting low carbon scenarios



Page 3/20

derived from these IAMs. To reduce the ensuing uncertainty in long-term decarbonization scenarios, it is customary to run multi-model exercises,
where the same scenario assumptions are analysed with a set of different IAMs. Marcucci and Turton (2015) use this approach to assess induced
technological change (ITC) under different levels of mitigation action. Several other multi-model studies that do not focus on R&D can be found in
the literature (see e.g., Daioglou et al., 2020; Luderer et al., 2016; van der Zwaan et al., 2016; Rogelj et al., 2018; McCollum et al., 2018; Bosetti et al.,
2015, Vrontisi et al., 2018). 

In this paper, we investigate to which extent R&D investments support low carbon policies by combining a set of four global IAMs: WITCH, MERGE-
ETL, GEM-E3 and TIAM-ECN. The �rst three IAMs endogenously account for R&D effects driving ITC in the energy and economy system, but adopt a
simpli�ed approach with respect to, for instance, the characterization of energy demand sectors, the de�nitions of temporal and regional resolution,
and the representation of some secondary energy conversion chains. For that reason, their results with regard to technology diffusion in the energy
system might neglect effects related to the interaction and integration of the different technologies and sectors, such as the integration costs of
renewables and the CO2 abatement potential of low-carbon and energy e�cient options in the end-use sectors. Throughout this paper we refer to
these models as IAMs with ITC. Complementarily, TIAM-ECN employs exogenous R&D-driven cost reduction trajectories, but provides a detailed
representation of the global energy system, hence is suited to accurately assess the direct and indirect effects of R&D on the energy system
transition. 

We consider harmonized assumptions on learning and R&D parameters for a set of key technologies among the �rst three IAMs – WITCH, MERGE-
ETL and GEM-E3, from which we derive capital cost reductions to be exogenously incorporated into TIAM-ECN. In addition, we adopt a harmonized
approach regarding low carbon policies in all four models, allowing for a consistent set of low carbon scenarios. We then use TIAM-ECN to perform
a detailed assessment of low-carbon technology diffusion at global level until 2050.  By considering different R&D-induced cost reductions based on
different R&D strategies and derived from different IAMs , we create a set of scenarios that allows us to quantify the effect that different R&D
policies might have on the speed of low-carbon technology diffusion. 

We explain our methodology in section 2, and we present the main results of our analysis in section 3. We �nally discuss our �ndings and propose
potential improvements in section 4. 

2. Methodological Approach
In this section, we detail how we assess the role of R&D in supporting the expansion of low-carbon energy conversion technologies to tackle climate
change mitigation. WITCH, MERGE-ETL and GEM-E3 are IAMs with a top-down representation of economy and endogenous calculation of R&D
investments, whereas TIAM-ECN is a bottom-up technology-rich IAM with a focus on energy system aspects and with exogenous assumptions on
R&D (see the supplementary information – SI - for more information). Our methodological approach includes soft-linking TIAM-ECN with the other
three IAMs with respect to the evolution of technology capital costs. The three models with ITC generate different capital cost paths over time for
different low-carbon technologies, subject to assumptions regarding R&D investment strategies. These cost paths are exogenously fed into in TIAM-
ECN, which then creates scenario projections for the evolution of the global energy system. By considering costs deriving from different modelling
frameworks, we reduce the uncertainty of our outcomes. Moreover, we assess energy transition pathways taking advantage of TIAM-ECN’s
technology richness combined with WITCH’s MERGE-ETL’s and GEM-E3’s ITC features, allowing for a robust framework, from which policy
recommendations can be derived. By employing a single bottom-up model (TIAM-ECN) to calculate the �nal energy mix in our scenarios, we ensure
that the different R&D-induced cost reductions derived from the three IAMs with ITC are treated in a consistent manner. We focus on �ve key
decarbonization technology clusters currently at different maturity levels: solar (photovoltaics  - PV and concentrated solar power - CSP) and , wind
(onshore and offshore), carbon capture and storage (CCS), advanced fuels and batteries for electric vehicles (EVs).

2.1. Modelling Framework  

Our basic approach consists of harmonizing assumptions and input data related to R&D and climate change mitigation policies as much as
possible, yet keeping each model’s particularities and features. First, we harmonize scenario assumptions related to climate targets in all four
models. Second, in order to isolate the effects of different representations of knowledge dynamics, models with ITC consider the same assumptions
for the learning parameters: LBD and LBR rates, time from investment to cost reduction, knowledge depreciation rate, technology �oor cost, initial
knowledge stock. We refer the reader to the SI for more information on our methodology.  

Once the learning parameters are harmonized among WITCH, MERGE-ETL and GEM-E3, these models generate a set of scenarios and the resulting
capital cost reductions per technology cluster, period and scenario are incorporated in TIAM-ECN. Each model details the 5 groups of technologies
differently, thus we have mapped the technologies from the three IAMs to the TIAM-ECN technology portfolio, incorporating cost reductions to the
best matching processes in TIAM-ECN.  Input data from 2005 to 2020 is taken from historical records in literature and is kept constant across
scenarios. For more details on initial costs and technology disaggregation assumptions, we refer to the SI.

2.2. Scenario Framework
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We consider a total of 21 scenarios generated by TIAM-ECN. These scenarios are differentiated along three variables: (i) climate policy, (ii) R&D
policy and (iii) the IAM used to generate the capital cost reductions adopted by TIAM-ECN. We assess three different levels of climate policy: 

REF: this is the reference ‘business-as-usual’ scenario, re�ecting  current, and generally insu�cient, efforts to reduce emissions. Deployment of
low-carbon technologies, such as solar PV, in this scenario heavily depend on the corresponding cost assumptions. 

CB1460: We assume a global CO2 emission budget of 1,460 GtCO2 between 2011 and 2100, which is consistent with constraining global

average temperature increase by 2100 to well below 2oC (IPCC, 2018). In addition, a carbon tax is exogenously imposed on methane (CH4) and
nitrous oxide (N2O). 

CB710: We assume a global CO2 emission budget of 710 GtCO2 between 2011 and 2100, which is consistent with constraining global average

temperature increase by 2100 to well below 1.5oC (IPCC, 2018). In addition, a carbon tax is exogenously imposed on CH4 and N2O.

Regarding R&D policy, WITCH and MERGE-ETL optimize their R&D investments while complying with the climate policy target. Thus, technology
investment levels in REF correspond to an optimal level of investment in a baseline scenario aligned with SSP2 (Riahi et al., 2017), assuming that no
extra effort is made in promoting low-carbon R&D. GEM-E3 incorporates the optimal level of investment from WITCH in each scenario, which is a key
driver for capital cost evolution along with capital and labour. In the two climate scenarios we then consider three variants: 

OPT: R&D expenditure is freely optimized by the models with ITC so as to support achieving the climate targets set by the low carbon polices.
These scenarios hold an “OPT” su�x.  

FIX: R&D strategy is �xed to REF levels despite the existence of low carbon policies. These scenarios hold a “FIX” su�x.  

OPS: This is a sensitivity case of OPT scenario, which was generated only by TIAM-ECN. In addition to optimal R&D expenditure from the three
models with ITC, we assume perfect interregional knowledge spill-overs. These depend on the capacity of a region to absorb knowledge from
abroad, which usually depends on the human capital stock (Fragkiadakis et al., 2019), as well as on intellectual property legislation and
potential restrictions of knowledge diffusion. Here, we assume that regions can perfectly incorporate knowledge generated elsewhere and that
there are no other types of constraints (such as patents, for instance) or cost-differentiations, leading to a global convergence of capital cost
projections to the lowest level possible. These scenarios hold a “OPS” su�x.   

For each set of R&D-induced cost reductions derived from the IAMs with ITC, TIAM-ECN generates one ‘reference’ (REF) scenario plus two ‘carbon
budget’ (CB) scenarios with three variants regarding R&D assumptions (OPT, FIX and OPS), totalizing 21 scenarios. The �rst letter in each scenario
(W, M or G) indicates the model inheritance of the scenario. Table 1 summarizes the set of TIAM-ECN scenarios, their names and their main features.

Table 1 – List of scenarios produced by TIAM-ECN and their corresponding characteristics.
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Scenario: CO2 budget (Gton
CO2):

R&D Policy: Exogenous capital cost reductions in TIAM-ECN
generated by:

W_REF 0 Reference level WITCH

W_CB1460_OPT 1,460 Optimal R&D pathway WITCH

W_CB1460_FIX 1,460 Reference level WITCH

W_CB1460_OPS 1,460 Optimal R&D pathway and Perfect Knowledge
Spill-overs

WITCH

W_CB710_OPT 710 Optimal R&D pathway WITCH

W_CB710_FIX 710 Reference level WITCH

W_CB710_OPS 710 Optimal R&D pathway and Perfect Knowledge
Spill-overs

WITCH

M_REF 0 Reference level MERGE

 

M_CB1460_OPT 1,460 Optimal R&D pathway MERGE

M_CB1460_FIX 1,460 Reference level MERGE

M_CB1460_OPS 1,460 Optimal R&D pathway and Perfect Knowledge
Spill-overs

MERGE

M_CB710_OPT 710 Optimal R&D pathway MERGE

M_CB710_FIX 710 Reference level MERGE

M_CB710_OPS 710 Optimal R&D pathway and Perfect Knowledge
Spill-overs

MERGE

G_REF 0 Fixed to WITCH reference levels GEM-E3

G_CB1460_OPT 1,460 Optimal R&D pathway GEM-E3

G_CB1460_FIX 1,460 Reference level GEM-E3

G_CB1460_OPS 1,460 Optimal R&D pathway and Perfect Knowledge
Spill-overs

GEM-E3

G_CB710_OPT 710 Optimal R&D pathway GEM-E3

G_CB710_FIX 710 Reference level GEM-E3

G_CB710_OPS 710  Optimal R&D pathway and Perfect Knowledge
Spill-overs

GEM-E3

3. Results
We divide the results in two sections: �rst, we show the capital cost projections generated by the three IAMs with ITC. Next, we present global results
for all scenarios until 2050 derived from TIAM-ECN. We treat the perfect spill-over (OPS) scenarios separately, as variations of the OPT scenarios. We
focus on the expansion of the 5 key technology clusters, and we discuss the impact of different R&D and climate policy set-ups on energy system
costs.

3.1. Impact of R&D on Capital Costs

In Figure 1 we show capital cost reduction projections relative to 2020 per scenario and technology group as box plots. We present these results for
the years 2030 and 2050, for the REF and CB710_OPT scenarios, i.e. respectively the most and least conservative scenarios with regard to R&D
policy ambitions. The yellow box plots show results for fossil- and biomass-based CCS technologies (panels a to d), the blue box plots show results
for variable renewable electricity (VRE), namely onshore and offshore wind (panels e and f) and solar PV and, in the case of WITCH, CSP (panels g
and h). Red box plots show results for the remaining technology groups of advanced fuels (aggregating advanced routes for synthetic fuels and
biofuels generation, such as Fischer-Tropsch, as well as hydrogen production from advanced technologies such as biomass gasi�cation and
electrolysis, panels i and j) and batteries for passenger and, in the case of WITCH, freight EVs (panels k and l).  For the full set of results, including all
time periods and scenarios and a detailed list of technologies per technology group, see the SI. 

The size of the box plots in Figure 1 is determined by the number of energy conversion technologies representing each technology cluster, and the
number of regions where these technologies are implemented in each model, which results in different ranges of capital cost reductions. Means,
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medians, �rst and third quartiles are depicted as x’s, horizontal lines inside the boxes, lower limits and higher limits of the boxes, respectively. The
whiskers below and above the boxplots indicate the lowest and highest quartiles of each group.

Results in Figure 1 show that capital costs may vary signi�cantly depending on the model and technology group in both reported years despite the
harmonization of knowledge-related parameters. While, in general, cost reductions are expected to be more pronounced in scenarios that optimize
R&D policy (CB) than in REF, this pattern does not hold for some technology clusters for GEM-E3 and MERGE-ETL. This can be seen, for instance, in
the fossil-based CCS results from MERGE-ETL (panels a and b) and the electric vehicles results from GEM-E3 (panels k and l). In the case of MERGE-
ETL, this effect is due to R&D investments being allocated per technology component. Different components might bene�t to a different extent from
R&D-driven cost reductions, depending on the stringency of climate policies in each scenario. For CCS, for instance, R&D investments in the
gasi�cation component of coal power plants and in natural gas combined cycle turbines drive down capital costs of coal and natural gas power
plants (panels a and b) in the REF scenario. On the other hand, R&D investments are shifted to the CO2 capture component (CO2 scrubbers) in CB
scenarios, thus favouring capital cost reductions of biomass-based CCS technologies (panels c and d). In the case of GEM-E3, modest cost
reductions in CB scenarios are caused by costs other than equipment, such as increased labour. This effect illustrates that macroeconomic
implications of low carbon policies can in some cases offset the expected R&D-induced capital cost reductions related to equipment. 

Capital costs of CCS technologies have different cost reduction pro�les across models, with an average cost reduction no larger than 20% in the
case of fossil-based CCS (see W_CB710_OPT scenario results in panels a and b of Figure 1)   and a maximum of 40% average cost reduction of
biomass-based CCS (see 2050 result for W_CB710_OPT scenario, panel d). Solar-based technologies display the largest cost reductions: mean
values are around 70% in 2050 in both W_REF and W_CB710_OPT scenarios (panel f), and already between 50% and 60% in 2030 (see panel e).
Similarly, wind energy technologies show a steeper cost reduction in scenarios derived from WITCH than from the other two models (panels g and
h). Largest cost reductions, re�ected by the �rst quartile and median observed at similar levels in W_CB710_OPT in 2050, reach almost 60%,
re�ecting the steep cost reductions foreseen for offshore wind technologies, and less than 40% in other models’ results, which present more
conservative and aggregated cost reductions. 

Regarding advanced fuels, the most pronounced cost reductions are observed in CB710_OPT scenarios in 2050: median values in WITCH reach 60%
and, in GEM-E3, 30% (panel i). Besides these outcomes, capital cost reductions are modest or absent, especially in 2030, indicating that these
technologies might need a longer development time to bene�t from R&D investments. Finally, panels k and l in Figure 1 show that electric vehicles
are the least affected by R&D and climate policy packages, as they display the smallest cost reductions, with ranges in CB710_OPT scenarios that
are similar or more modest than in REF. This indicates that factors other than combined R&D and stringent climate policies drive capital cost
reductions for EVs. Moreover, no cost reductions for this technology group are observed for MERGE-ETL because this model does not include R&D
for EV batteries.

3.2. Impact of R&D on the Energy System: Technology Diffusion and Costs

With the TIAM-ECN model, we assess the impact of the different capital cost paths on the development of the global energy system up to 2050. We
present results for all scenarios in Table 1, but we treat the perfect spill-over scenarios (OPS) as a variation of the OPT scenarios, thus reporting OPS
always in comparison to OPT for each technology cluster.

In Figure 2, we show TIAM-ECN projections for global �nal energy consumption (FEC) per energy carrier. Each of the three panels corresponds to
results obtained with TIAM-ECN using capital cost reductions derived from WITCH (a), MERGE-ETL (b) and GEM-E3 (c). Each bar in the chart
corresponds to a speci�c combination of scenario and time period. Figure 2 shows that the overall trends are similar across the three panels. Total
FEC grows by about 40% between 2020 and 2050 in REF, while its growth in CB scenarios is less pronounced due to climate policies triggering the
deployment of high-e�ciency technologies. All CB scenarios have higher consumption of electricity, biomass and hydrogen hand-in-hand with lower
fossil fuel consumption compared to the corresponding REF in 2050. TIAM-ECN’s CB scenarios derived from WITCH (panel a) has the largest
electri�cation level, which relates to the steeper capital cost reduction pro�les derived from this model for CCS and VRE technologies, as shown in
Figure 1. In comparison, TIAM -ECN scenarios with MERGE-ETL’s and GEM-E3’s costs (panels b and c, respectively) present a smaller increase in
electricity consumption and a larger consumption of biomass and hydrogen. Moreover, by comparing results from OPT and FIX scenarios in Figure
2, one can note that the different R&D assumptions in these two group of scenarios do not lead to observable differences in the FEC composition
until 2050. This indicates that the energy transition is more in�uenced by the stringency of climate policy than by different R&D frameworks. 

Figure 3 shows TIAM-ECN projections for total installed capacity of power plants with CCS from fossil fuels (�rst row) and from biomass (second
row) until 2050. Scenarios derived from MERGE-ETL incorporate cost reductions from CCS in advanced fuel technologies as well, however these are
allocated in results for this speci�c technology group (see SI for an overview of CO2 removal per technology group in each scenario). Each line
represents the yearly total installed capacity in a speci�c scenario. Scenarios in which capital cost reductions are derived from WITCH, MERGE-ETL
and GEM-E3 results are presented respectively in shades of blue (panels a and b), orange (c and d) and green (e and f) – this colour convention is
consistently applied in all line-plots in this section. REF scenarios are plotted as solid lines with empty squares. Dark shaded lines with full diamonds
and light shaded lines with full circles represent, respectively, CB710 and CB1460 scenarios. Dashed lines distinguish FIX from OPT scenarios. These
results show that CCS technologies are signi�cantly deployed at similar levels in all low-carbon scenarios, indicating that CO2 mitigation policies
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play a key role in stimulating CCS deployment. On the other hand, consistent with Figure 2, there is no substantial difference between OPT and FIX
scenarios, which suggests that R&D policy only in�uences CCS technology diffusion to a limited extent. Total capacity of power plants with fossil-
based CCS in 2050 is higher in CB scenarios with costs from MERGE-ETL and GEM-E3 (panels c and e) than from WITCH (a), despite the modest
capital cost reductions from the former models in comparison to the latter. Higher relative dependence on fossil fuels in the power sector (see SI for
a detailed Figure on the evolution of the power sector) resulting from the more conservative capital cost reductions observed for competing
technologies (such as solar and wind) in MERGE-ETL and GEM-E3 may justify this difference. Regarding biomass-based CCS, CB scenarios linked to
WITCH present the highest capacity level in 2050, which is consistent with the largest capital cost reduction resulting from this model. 

Once we add perfect spill-over assumptions to the optimal implementation of R&D policies, we observe a higher in�uence of R&D on CCS diffusion.
Figure 4 shows the absolute difference, in GW, of OPS scenario results relative to OPT scenarios. No difference is observed for scenarios with costs
from MERGE-ETL because it considers perfect regional overspill-overs by default, but remarkable differences can be observed in scenarios derived
from WITCH and GEM-E3. In both W_CB1460_OPS and G_CB1460_OPS, power plants with fossil-based CCS have higher capacity than their OPT
counterparts in 2040 and in 2050. However, installed capacity is lower in the more stringent G_CB710_OPS in all years, as well as in W_CB710_OPS
in 2030. A similar trend is observed in results for biomass-based CCS, especially in scenarios derived from WITCH: installed capacity is lower relative
to OPT scenarios under both carbon budgets. This downward trend might be explained, by the higher deployment of competing technologies under
perfect spill-overs of knowledge, although CCS remains as a key technology for decarbonization due to the persistence of coal and gas in some
regions. 

Figure 5 depicts TIAM-ECN projections for installed capacity of variable renewable energy (VRE) technologies: solar PV and CSP (�rst row) and
onshore and offshore wind (second row). Long-term impacts of R&D policies are limited for both technologies, since OPT and FIX scenarios are
similar. In scenarios with capital costs derived from WITCH, a signi�cantly higher amount of solar PV is deployed (panel a) compared to the
corresponding counterparts with costs from MERGE-ETL and GEM-E3 (panels c and e, respectively). These results link directly with the higher
electricity share in FEC shown in Figure 2 (panel a). Figure 5 also shows that solar is fairly deployed already in W_REF, indicating that the cost
reduction pathway resulting from WITCH render this technology competitive even in absence of stringent climate policies. Low carbon and R&D
policy schemes enable additional cost reductions (Figure 1), but do not substantially change the diffusion of solar (Figure 5). TIAM-ECN scenarios
using capital cost reductions from MERGE-ETL (panel c) and GEM-E3 (panel e)  show a much lower deployment of solar, which kicks-off after 2040
in CB scenarios. In fact, capital cost reductions resulting from these models are more conservative, as discussed in section 3.1, which is a
consequence of R&D investments being limited to few components of a technology and of eventual offsets from macroeconomic effects. 

Wind energy capacity increases substantially in all three REF scenarios, indicating that these technologies are cost-competitive even without low
carbon policies. This is especially true for TIAM-ECN scenarios with capital costs from WITCH: capacity expands worldwide up to almost 8,000 GW
(panel b). Results for CB scenarios with costs from WITCH are only up to a 1,000 GW higher than REF level in 2050, but results for 2030 indicate that
low carbon policies accelerate diffusion, leading to around 2,000 GW more wind power capacity in the stringent policy scenario (W_CB710_OPT)
relative to W_REF. Regarding TIAM-ECN scenarios with cost reductions from MERGE-ETL and GEM-E3 (panels d and f, respectively), a larger gap in
capacity observed between CB and REF scenarios re�ect the more conservative average capital cost reduction in REF derived from these models, as
observed in Figure 1.  

We observe that R&D policies in a perfect spill-over dynamics can signi�cantly favour the expansion of VRE technologies (Figure 6). In scenarios
with costs from WITCH and GEM-E3, installed capacity is higher in OPS than in OPT scenarios: G_CB710_OPS scenario, for example, shows an
increase of 1,600 GW. In fact, the lowest capital costs observed for a region is a result from GEM-E3, which in OPS scenarios is  spread globally,
leading to a signi�cant capacity expansion. In that context, solar and wind energy technologies seem to become more competitive under perfect
spill-over assumptions, and they can even limit the expansion of CCS in the power sector.

Figure 7 shows TIAM-ECN results for FEC of electricity (�rst row), biofuels (second row) and hydrogen (third row) in scenarios with capital costs
from WITCH (panels a, b and c), MERGE-ETL (d, e and f) and GEM-E3 (g, h and i). The higher level of electri�cation in WITCH-derived scenarios,
which was observed in Figure 2, is also observed here. For each of the three models, electricity consumption levels are very similar among REF and
CB scenarios, and only a slight increase is observed CB710 scenarios in 2050. This links with results shown in Figure 1 for technologies in both
supply and end-use side (see, in special, G_CB710 results for CCS, VRE and EVs), in which, for instance, capital cost reductions for EVs in CB710 are
similar or even smaller than in REF. This illustrates how cost increases incurred from mitigation policies might offset the effects of R&D investments
 on technology diffusion.

Biofuels consumption in �nal sectors declines over time in all cases (panels b, e and h), although CB scenarios present a less pronounced decrease
due to the imposed carbon restrictions. This is an indirect effect of shifting biomass resources from �nal sectors to the power sector, which is a way
to expand biomass-based CCS technologies in CB scenarios. Regarding hydrogen consumption in �nal sectors, it increases to over 30 EJ/yr by mid-
century in all CB_710 scenarios (panels c, f, i). Consistent with previous results, the stringency of climate policy is the main differentiator among
TIAM-ECN projections, while R&D strategy and choice of IAM with ITC model used to derive the cost assumptions have a smaller impact on the
results. The slightly higher levels of hydrogen and biofuels consumption in projections based on MERGE-ETL may stem from the fact that this model
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has a very detailed set of technologies for advanced fuels production based on these two carriers, which is re�ected in the capital cost reductions
incorporated in TIAM-ECN. 

When we add the assumption of perfect spill-overs to the OPT scenario, we can observe that electricity consumption is slightly favoured:
CB1460_OPS and CB710_OPS scenarios inherited from both WITCH and GEM-E3 show a limited increase – inferior to 5% - in consumption of
electricity relative to the corresponding OPT scenarios (Figure 8, panel a). This is an effect of the higher electricity production from VRE resulting
from the perfect spill-over assumption of low solar and wind energy capital costs, which drives costs down. As consequence,  consumption of
biofuels and hydrogen is negatively affected, especially in CB710 scenarios in 2050, leading to less consumption in OPS than in OPT scenarios, as
observed in panels b and c of Figure 8.

We also look at the impact of capital cost reductions driven by R&D and climate policy on energy systems costs. The energy system contains all
energy conversion routes from resource to end-use and the corresponding energy extraction, conversion, transportation, and consumption costs.
Hence, its costs include not only technology capital costs, but also �xed and variable operational and maintenance costs, trade costs, and
commodity prices (when applicable). In Figure 9, we show the undiscounted annual energy system cost difference of CB scenarios relative to their
corresponding REF in absolute terms (billion US dollars per year). The �gure includes OPT, OPS and FIX scenarios. Scenarios derived from WITCH
have the lowest additional cost, which is consistent with the fact that this model provides the most optimistic capital cost reduction ranges among
the three IAMs with ITC. Aligned with what has been observed regarding technology diffusion, climate policies are the main driver of energy system
cost additions, resulting in similar values in both OPT and FIX scenarios.  Small negative values observed in 2030 and 2040 in CB1460 scenarios
relate to lower costs from trade. Cost additions are clearly lowered in OPS scenarios, in which perfect spill-overs are possible. This is observed in
both CB1460 and CB710 scenarios from WITCH and GEM-E3, and notably more prominent in the more stringent G_CB710_OPS scenario – around
US$ 1,000 billion difference. The steep cost reductions derived from GEM-E3, especially in technologies that are currently already well consolidated,
such as solar PV and wind energy, explain this result. 

4. Discussion And Conclusions
In this study, we have used three IAMs with a macroeconomic framework and ITC – WITCH, MERGE-ETL and GEM-E3 – to quantify the impact of
R&D investments combined with climate policy on the capital costs of �ve technology clusters: solar (PV and CSP), (on- and offshore) wind energy,
CCS, advanced fuels, and batteries for EVs. Capital cost reductions resulting from these models were incorporated in the global bottom-up
technology-rich energy system model TIAM-ECN in order to assess how they in�uence technology diffusion and energy system costs until mid-
century. By soft-linking WITCH, MERGE-ETL and GEM-E3 with TIAM-ECN,  we create a consistent framework to analyse how R&D can accelerate the
energy transition. The use of three distinct modelling frameworks enables us to reduce the uncertainty of our outcomes and strengthen our
conclusions.

Our results indicate that the stringency of climate change mitigation policy is the key factor in�uencing the diffusion of low-carbon technologies,
while R&D supports mitigation goals and impacts the relative role of key technology groups. When free regional knowledge spill-overs are possible,
this effect becomes stronger and the associated costs of the energy system are lowered. This outcome is in line with current literature that indicates
that R&D policy should serve as a complement to CO2 reduction policies and not as the main means to foster mitigation. This result also
emphasizes the urgency to remove barriers to technology diffusion, so that countries around the world can pro�t from cost savings derived from
R&D. 

Results from the IAMs with ITC display large variations in projected capital cost reduction paths. WITCH projects steeper average capital cost
reductions – especially for solar energy and CCS - than the other two IAMs with ITC. Outcomes from MERGE-ETL and GEM-E3 indicate that capital
cost reductions might be, in some cases, more conservative under stringent climate policies than in the absence of them. These variations are
caused by intrinsic differences in the models’ setup.  Some key aspects in�uencing results are, for example, the regional technology portfolios in
each IAM, the way in which competition among different technologies is modelled, and the extent to which speci�c technologies can bene�t from
knowledge developed abroad. In addition, models differ on how they distribute R&D investments among technology components, and how they
account for wider macroeconomic implications of stringent low carbon policies, such as labour costs. Our analysis shows that climate policies
might generate offsets to the bene�ts from R&D, and that different model frameworks give different weights to the mechanisms that trigger these
offsets.  By highlighting these differences, our multi-model exercise provides novel insights to policymakers interested in designing effective policy
packages that harmonize R&D efforts with climate mitigation policies under diverse macroeconomic contexts.

The results obtained with TIAM-ECN show that technology diffusion trends until 2050 are robust under the different capital cost reductions
generated by the three IAMs with ITC. High shares of CCS and VRE are observed in all scenarios with stringent climate policies, independently of the
speci�c capital cost reductions considered. As climate mitigation policies are the driving factor of low-carbon technology diffusion, results for OPT
and FIX scenarios are similar with regard to FEC, although OPT scenarios display slightly accelerated capacity additions for some technologies,
such as CCS. 

The extent to which R&D-induced cost reductions affect technology diffusion is highly dependent on the level of spill-overs across regions. As
illustrated by the OPS scenarios in our analysis, in a context of perfect regional learning spill-overs – i.e. allowing all regions to fully and equally
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bene�t from technology cost reductions - we see a stronger correlation between R&D and technology diffusion. A change in the importance of some
technology groups relative to others is clearly observed. In fact, results of our OPS scenarios show that the combination of highly stringent policies
with R&D investments and perfect knowledge spill-overs favours VRE technologies, reducing the amount of deployed CCS capacity. This indicates
that effective R&D speeds-up the expansion of already consolidated technologies, which explains the observation that additional energy system
costs with respect to REF are in general lower in OPS scenarios than in the OPT and FIX ones. From a policy perspective, this result highlights the
importance of (i) designing R&D policy packages that target technologies considered to be ‘low-hanging fruit’, which contribute cost-effectively to the
energy transition, while (ii) at the same time also providing adequate support for technologies at lower TRL levels (e.g. CCS), which still play an
essential role in decarbonizing the energy system under stringent climate policy regimes.

Our study has focussed mainly on key technologies contributing to decarbonization of energy supply options in the energy system. We acknowledge
that R&D efforts focussing on key technologies in end-use sectors can play a crucial role in the energy transition by both reducing costs on the
demand side and by reducing the energy demand itself due to the employment of energy e�cient technologies. However, the model framework
adopted in this study did not allow us to zoom in these technologies due to the lack of detailing of end-use sectors in IAMs with ICT. Further
improvements related to the representation of end-use sectors in all four models and the scoping of our methodological approach are desirable and
should be focus of further studies wishing to inspect the impacts of R&D on the low carbon energy transition under an integrated assessment
perspective.
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Figure 1

Capital cost reductions relative to 2020 for REF and CB710_OPT scenarios. Note: boxplots include costs of all available technologies and regions in
each model. They show mean as ‘x’s and median as horizontal line inside the boxes.



Page 13/20

Figure 2

TIAM-ECN projections of Final Energy Consumption in Exajoules. R&D-driven technology investment cost reductions derived from WITCH (a),
MERGE-ETL (b) and GEM-E3 (c).
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Figure 3

Total installed capacity of power plants with fossil-based (�rst row) and biomass-based (second row) CCS according to TIAM-ECN scenario
projections. Underlying cost reductions for CCS are derived from WITCH (a and b), MERGE-ETL (c and d) and GEM-E3 (e and f).
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Figure 4

Perfect spill-over effect relative to OPT scenarios for CCS technologies re�ected on the difference in total annual capacity.
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Figure 5

Installed power capacity of solar PV (�rst row) and wind (onshore and offshore, second row) in TIAM-ECN scenarios. Technology cost reductions
derived from WITCH (a and b), MERGE-ETL (c and d) and GEM-E3 (e and f).
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Figure 6

Perfect spill-over effect relative to OPT scenarios for solar and wind energy technologies re�ected on the difference in total annual capacity.
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Figure 7

Final energy consumption of electricity (�rst row), biofuels (second row) and hydrogen (third row) in TIAM-ECN. Cost reductions derived from WITCH
(a, b and c), MERGE-ETL (d, e and f) and GEM-E3 (g, h and i).
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Figure 8

Perfect spill-over effect relative to OPT scenarios for electricity, biofuels and hydrogen �nal consumption re�ected on the difference in annual �nal
energy consumption.
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Figure 9

Additional annual undiscounted energy system costs relative to corresponding REF scenarios.
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