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ABSTRACT

Potts models and variational autoencoders (VAEs) have recently gained popularity as generative protein sequence models

(GPSMs) to explore fitness landscapes and predict the effect of mutations. Despite encouraging results, quantitative charac-

terization and comparison of GPSM-generated probability distributions is still lacking. It is currently unclear whether GPSMs

can faithfully reproduce the complex multi-residue mutation patterns observed in natural sequences arising due to epistasis.

We develop a set of sequence statistics to comparatively assess the accuracy, or “generative capacity”, of three GPSMs: a

pairwise Potts Hamiltonian, a vanilla VAE, and a site-independent model, using natural and synthetic datasets. We show

that the generative capacity of the Potts Hamiltonian model is the largest; the higher order mutational statistics generated by

the model agree with those observed for natural sequences. In contrast, we show that the vanilla VAE’s generative capacity

lies between the pairwise Potts and site-independent models. Importantly, our work measures GPSM generative capacity in

terms of higher-order sequence covariation and provides a new framework for evaluating and interpreting GPSM accuracy that

emphasizes the role of epistasis.

Introduction

Recent progress in decoding the patterns of mutations in protein multiple sequence alignments (MSAs) has

highlighted the importance of mutational covariation in determining protein function, conformation and evolution,

and has found practical applications in protein design, drug design, drug resistance prediction, and classification.1–3

These developments were sparked by the recognition that the pairwise covariation of mutations observed in large

MSAs of evolutionarily diverged sequences belonging to a common protein family can be used to fit maximum

entropy “Potts” statistical models.4–6 These contain pairwise statistical interaction parameters reflecting epistasis7

between pairs of positions. Such models have been shown to accurately predict physical contacts in protein

structure,6,8–10 and have been used to significantly improve the prediction of the fitness effect of mutations to a

sequence compared to site-independent sequence variation models which do not account for covariation.11,12

They are “generative” in the sense that they define the probability, p(S), that a protein sequence S results from

the evolutionary process. Intriguingly, the probability distribution p(S) can be used to sample unobserved, and

yet viable, artificial sequences. In practice, the model distribution p(S) depends on parameters that are found by

maximizing a suitably defined likelihood function on observations provided by the MSA of a target protein family. As

long as the model is well specified and generalizes well from the training MSA, it can then be used to generate

new sequences, and thus a new MSA whose statistics should match those of the original target protein family. We

refer to probabilistic models that create new protein sequences in this way as generative protein sequence models

(GPSMs).

The fact that Potts maximum entropy models are limited to pairwise epistatic interaction terms and have a simple

functional form for p(S) raises the possibility that their functional form is not flexible enough to describe the data,

i.e. that the model is not well specified. While a model with only pairwise interaction terms can predict complex

patterns of covariation involving three or more positions through chains of pairwise interactions, it cannot model

certain triplet and higher patterns of covariation that require a model with more than pairwise interaction terms.
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For example, a Potts model cannot predict patterns described by an XOR or boolean parity function in which the

n-th residue is determined by whether an odd number of the n− 1 previous residues have a certain value (see

Supplementary Information). While some evidence has suggested that in the case of protein sequence data the

pairwise model is sufficient and necessary to model sequence variation,13–15 some of this evidence is based on

averaged properties, and there appears to be some weak evidence for the possibility of rare “higher-order epistasis”

affecting protein evolution,7,16–18 by which we mean the possibility that subsequence frequencies of three or more

positions cannot be reproduced by a model with only pairwise interactions. Fitting maximum entropy models with

all triplet interactions is not feasible without significant algorithmic innovation, since for a protein of length 100 it

would require approximately 10B parameters and enormous MSA datasets to overcome finite sampling error (see

Supplementary Information). However, recent developments in powerful machine learning techniques applied to

images, language, and other data have shown how complex distributions p(S) can be fit with models using more

manageable parameter set sizes. Building on the demonstrated power of incorporating pairwise epistasis into

protein sequence models, this has motivated investigation of machine learning strategies for generative modelling

of protein sequence variation which can go beyond pairwise interactions, including Restricted Boltzmann Machines

(RBMs),3 variational autoencoders (VAEs),19–22 General Adversarial Networks (GANs),23 transformers,24–27 and

others.

One technique in particular, the VAE,28,29 has been cited as being well suited for modelling protein sequence

covariation, with the potential to detect higher order epistasis.19,20 The VAE also potentially gives additional

insights into the topology of protein sequence space through examination of the “latent” (hidden) parameters of

the model, which have been suggested to be related to protein sequence phylogenetic relationships.19–21,26 One

implementation of a VAE-GPSM, “DeepSequence”, found that the VAE model was better able to predict experimental

measurements of the effect of mutations in deep mutational scans than a pairwise Potts model, which was attributed

to the VAE’s ability to model higher-order epistasis.11,19 However, it has also been suggested by others that

the improvement shown by DeepSequence could be attributed to the use of biologically motivated priors and

engineering efforts, rather than because it truly captured higher-order epistasis.20 Furthermore, while VAE-GPSMs

are generative and aim to capture the protein sequence distribution p(S), to our knowledge none of these studies

have thoroughly tested what we will call the “generative capacity”30,31 of the VAE model, meaning the ability of the

model to generate new sequences drawn from the model distribution p(S), which are statistically indistinguishable

from those of a given “target” protein family. Testing the generative capacity, specifically higher-order covariation, of

a GPSM is a fundamental check of whether the model is well specified and generalizes well from the training set,

two prerequisites to capturing higher-order epistasis.

Here, we perform a series of numerical experiments that comparatively explore the generative capacity of

GPSMs. These GPSMs include a pairwise Potts Hamiltonian model with pairwise interaction terms (Mi3),32 a

vanilla variational autoencoder (vVAE), and a site-independent model which does not model covariation (Indep). We

choose the simplest, original28,29 “vanilla”33 architecture qualitatively similar to that used in previous VAE-GPSM

studies,21 as opposed to more complex VAE-GPSM architectures used by others (see Methods).19,22 We evaluate

the generative capacity of a model using four MSA statistics: pairwise covariance correlations,2,13,34,35 higher-order

marginals (r20),13 Hamming distance distributions,2,13,36,37 and statistical energy correlations.13 We compute these

statistics for MSAs generated by each GPSM, and validate the GPSMs by comparison to expectation. We also test

how each GPSM behaves as fewer training sequences are provided, and thus how well the GPSMs generalize,

using two training MSA sizes: one representing the estimated size upper bound for a Pfam protein family (10K)

(see Supplementary Information),38 and one being large enough to eliminate out-of-sample error in our generative

capacity measurements (see Results).39 We evaluate GPSM performance both for natural datasets and for synthetic

datasets in which the ground truth is known. Our comparative analysis thus consists of four intersecting variables:

three GPSMs, a suite of four generative capacity metrics, two training MSA sizes, and two dataset types.

Our results show that while the vVAE models some epistasis, it is unable to reproduce MSA statistics as well

as Mi3, but is more accurate than Indep for all metrics tested. We find that vVAE performs more similarly to Mi3

than it does to Indep according to commonly used metrics such as the Hamming distance distribution, but performs

more like the Indep model for the r20 metric, which is the metric that most directly tests the GPSM’s ability to model

higher-order sequence covariation. This result suggests r20 is a more sensitive measure of GPSM generative

capacity than the other standard metrics, representing a novel and powerful metric to discriminate between GPSMs

by averaging over higher-order covariation terms up to the 10th order. Our work consolidates several benchmark

statistics of generative capacity for GPSMs, offering a novel framework for evaluating and interpreting GPSM

accuracy in the context of higher-order covariation. By quantifying and comparing GPSM performance in our

innovative epistasis-oriented approach, we hope to better understand the challenges and limitations inherent to
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Specification Error occurs when the functional form pθ (S) of a GPSM is not flexible enough to accurately

model the target distribution p0(S) for any choice of parameters θ
Out-of-Sample Error occurs when a GPSM fit to a finite training dataset fails to correctly model unseen data,

and is a consequence of overfitting

Estimation Error occurs due to statistical error in the MSA evaluation metrics when computed from finite

evaluation and target MSAs

Training MSA drawn from p0(S), used to train or parameterize a GPSM

Target MSA drawn from p0(S) separately from the training MSA, used as a validation dataset

Evaluation MSA drawn from pθ (S) for a parameterized GPSM, used to compare to the target MSA

Table 1. Glossary of error types, and the MSA datasets we use to evaluate these errors.

generative modelling of natural protein sequence datasets, better gauge the state of the art in the field, and provide

insight for future efforts in terms of minimizing the confounding effects of data limitations.

Results

Target Distributions

Our goal is to set baseline expectations for the generative capacity of the vVAE and other GPSMs when fit to

synthetic or natural protein sequence data of varying training MSA sizes. Generative models of protein MSAs

define a distribution pθ (S) for the probability of a sequence S appearing in an MSA dataset given model parameters

θ . The model parameters are fit by either exact or approximate maximum likelihood inference of the likelihood

L = ∑S∈MSA pθ (S) over a training MSA, using regularization techniques to prevent overfitting. The sequences in the

training MSA are assumed to be identical independent samples from a “target” probability distribution p0(S), which

is generally unknown.28 For a model with high generative capacity, pθ (S) will closely approximate p0(S).20 In this

study, we test the generative capacity of three such GPSMs: a pairwise Potts model (Mi3),32 a vanilla VAE (vVAE)

(see Methods), and a site-independent model (Indep), each with a different functional form of pθ (S).
It is not possible to measure the similarity of pθ (S) and p0(S) directly because of the high dimensionality of

sequence space, since the number of sequence probabilities to compare is equal to qL, where L is the sequence

length (typically ∼ 300) and q is the alphabet size (∼ 21). Instead, we measure how well derived statistics computed

from evaluation MSAs generated by each GPSM match those of target MSAs drawn from the target distribution. We

use four statistics relevant to quantifying protein MSAs: the pairwise Hamming distance distribution, the pairwise

covariance scores, higher order marginals (r20), and, when possible, the GPSM’s ability to predict p0(S) for individual

sequences (see Methods).

GPSM Error

We divide our tests into two analysis tracks: one synthetic, in which we train the GPSMs on synthetic MSAs

generated from a known target distribution; and one natural, in which we train the GPSMs on a representative

natural protein family MSA, the kinase super family, sequestered from Uniprot/TrEMBL.40 These analysis tracks

are meant to probe and isolate two distinct forms of error which may cause pθ (S) to deviate from p0(S) (see Table

1). The first is “specification error”,41 which occurs when the functional form of pθ (S) of a model is not flexible

enough to accurately model the target probability distribution p0(S) for any choice of parameters. A key motivation

for choosing a VAE over a Potts model is its potentially lower specification error when higher-order epistasis is

present.19 Indeed, Potts models are limited to pairwise interaction terms of a particular functional form, while VAEs

are not. The second form of error is “out-of-sample error”,42 caused by a paucity of training samples, and is the

consequence of overfitting.43 Even a well-specified model could fail to generalize when fit to a small training dataset,

and may mis-predict p0(S) for test sequences, so it follows that increasing training MSA size reduces out-of-sample

error. Beyond specification and out-of-sample error, which each reflect an aspect of GPSM generalization error,

there can be “estimation error” in our MSA test statistics due to the finite MSA sizes we use to estimate their values,

which sets an upper bound on how well these statistics can match their target values, depending on the metric.44

Finally, other errors may arise due to implementation limitations of the inference methods, for instance due to finite

precision arithmetic or to finite sample effects when Monte Carlo methods are used.

The synthetic analysis allows us to isolate specification error, and minimize both out-of-sample and estimation

error, because here the target distribution is known exactly, and we can generate arbitrarily large training, target,

and evaluation datasets. It also allows us to quantify out-of-sample error by modulating the training MSA size.
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Figure 1. 5-stage analysis pipeline diagram. Stage 1: Data Sequestration. Two different MSAs are sequestered, one natural and the other synthetic, generated
by a Potts model fit to the natural MSA. Stage 2: Data Processing. Sequences are indexed and split. Non-overlapping training, target, and evaluation MSAs are
shown. Stage 3: GPSM Training. GPSMs are trained. Stage 4: Artificial Sequence Generation. Evaluation MSAs are generated from each GPSM. Stage 5:
Generative Capacity Measurements. Computation and visualization of generative capacity metrics is performed.
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We specify the synthetic target probability distribution p0(S) to be exactly the Potts model distribution we inferred

based on natural protein-kinase sequence data using Mi3 in our natural analysis (see Methods).32 The sequences

generated from this synthetic target distribution should have statistical properties similar to real, or “natural,” protein

family MSAs, albeit constrained by the fact that the Hamiltonian model used to generate the synthetic dataset is

limited to pairwise epistatic interaction terms only.6,13,45 Whereas Indep and vVAE may still fail to model this known

probability distribution in the synthetic analysis, our expectation is that Mi3 will be unaffected by specification error

in the synthetic tests, since the target MSA is sampled from the same probability distribution used to carry out the

inference. In Supplementary Information, we also perform an alternate synthetic test which does not favor Mi3 in

this way, in which the target distribution is instead specified by a vVAE model, finding that both Mi3 and a vVAE

are able to fit this target vVAE distribution accurately. In our synthetic analysis we test two synthetic training MSA

sizes: (i) 1M sequences, to minimize overfitting effects and consequently out-of-sample error, thereby isolating

GPSM specification error in this experiment; and (ii) 10K sequences, to illustrate the expected GPSM performance

on typical datasets, as most protein families in Pfam have less than 10K independent effective sequences (see

Supplementary Information).38

The natural analysis examines the performance of the models on natural sequence data, which potentially

contain higher-order correlations that require a Hamiltonian model with triplet or higher-order interaction terms to

capture. On this dataset, vVAE could potentially outperform Mi3, depending on the importance of higher-order

epistatic terms, if present.19 However, unlike in the synthetic analysis, here we do not know a priori the target

distribution and, most importantly, we have only limited datasets for both training and evaluation. In the natural tests,

the training and target MSAs each contain ∼10K non-overlapping kinase sequences from the Uniprot/TREMBL

database.

Our overall testing procedure is outlined in Fig.1 (see Methods), and the terms discussed are summarized in

Table 1. Our training datasets are either a natural protein sequence dataset obtained from Uniprot/TREMBL, or a

synthetic training dataset. We then fit the GPSMs to the training datasets, and generate evaluation MSAs from each

model. Finally, using our suite of four generative capacity metrics, we compare statistics of the evaluation MSAs to

those of “target” MSAs, which contain sequences drawn from the target distributions and therefore represent our

expectation.

Pairwise covariance correlations

We first examine the pairwise covariance scores for pairs of amino acids of an MSA defined as C
i j

αβ
= f

i j

αβ
− f i

α f
j

β
.

Here, f
i j

αβ
are the MSA bivariate marginals, meaning the frequency of amino acid combination α,β at positions i, j

in the MSA. f i
α and f

j

β
are the univariate marginals, or individual amino acid frequencies at positions i and j. Each

covariance term measures the difference between the joint frequency for pairs of amino acids and the product of

the single-site residue frequencies, i.e. the expected counts in the hypothesis of statistical independence. The

scores equal 0 if the two positions do not covary. Coevolving amino acids are an important aspect of sequence

variation in protein MSAs, and a GPSM’s ability to reproduce the pairwise covariance scores of the training dataset

has been used in the past as a fundamental, non-trivial measure of the GPSM’s ability to model protein sequence

covariation.2,13,34,35

For each GPSM, we compare pairwise covariance scores for all pairs of positions and residues Ĉ
i j

αβ
in their

respective evaluation MSA to the corresponding target pair C
i j

αβ
in the target MSA using the Pearson correlation

coefficient ρ({C
i j

αβ
},{Ĉ

i j

αβ
}) (Fig. 2, Top Row). In the synthetic tests we evaluate this statistic using 500K sequences

for both the target and evaluation MSAs, while for the natural test we compare 500K evaluation sequences to the

available 10K target sequences. Mi3 accurately reproduces the target covariance scores in all tests (ρ = 0.99 in

Fig. 2a, ρ = 0.95 in Fig. 2b, and ρ = 0.88 in Fig. 2c respectively). The somewhat lower value for Mi3 in the natural

analysis of ρ = 0.88 is accounted for entirely by increased estimation error in that test, as only 10K target sequences

are available for evaluation, and the expected ρ due only to estimation error is ρ ∼ 0.87, which is computed by

comparing the natural 10K target sequences to the natural 10K training sequences using this metric. The high

generative capacity of Mi3 is expected, because Mi3 parameters are optimized to exactly reproduce the joint

frequencies of pairs of amino acids from the target MSA. vVAE inference does not include this constraint, and we

find that even when trained on the larger (1M) dataset of synthetic sequences, the covariances computed from

vVAE’s evaluation MSA are generally smaller in magnitude than those of the target, showing smaller correlation with

the target than Mi3 (ρ = 0.9, Fig. 2a). This amount of error in ρ can primarily be attributed to vVAE specification

error, since training GPSMs on 1M sequences minimizes out-of-sample error, and the large evaluation MSAs make
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Figure 2. Pairwise covariance correlations (Top Row) and Pearson r20 correlations (Bottom Row). Mi3 (cyan), vVAE (red), and Indep (gray) are compared to
target distribution (black, where shown). GPSMs were trained on 1M synthetic (a, d,) 10K synthetic (b, e), or 10K natural (c, f) kinase sequences from the
corresponding target distribution. Top Row, These covariance correlation plots show whether the covariances of the GPSMs match those of their respective
targets at the fundamental pairwise level. Synthetic target covariances (x-axis) and GPSM-generated evaluation covariances (y-axis) were computed from
500K-sequence MSAs (a, b). In contrast, due to limited availability of natural protein sequence data, natural target covariances were computed from a
10K-sequence target MSA, whereas GPSM-generated covariances (y-axis) were computed from 500K-sequence evaluation MSAs (c). For each covariance
scatterplot, a Pearson correlation coefficient ρ was computed between the GPSM covariance set and the target covariance set. Generative capacity for Mi3 and
Indep appear insensitive to training sample size for this metric. Covariances around zero were removed for easier plotting. Bottom Row, These plots show
whether the GPSMs, on average, have higher order marginals (HOMs) that match those of their respective targets between orders of two and ten. Insets
emphasize pairwise r20. Pearson r20 correlation (r20, y-axis) is plotted as a function of HOMs (x-axis). Synthetic r20 were computed from 6M artificial
GPSM-generated evaluation sequences compared to 6M synthetic target sequences (d, e) as colored lines, and the black dotted line here in the synthetic r20

analysis denotes a generative capacity upper limit set by finite sampling of two non-overlapping target MSAs of 6M sequences each. Both Mi3 and vVAE’s
generative capacity appear sensitive to decreasing synthetic training sample size for this metric. In contrast, for the natural analysis, the black line uses triangles to
indicate a difference in how it is computed compared to the synthetic analysis (f). Here, the generative capacity upper limit is an estimate computed between
non-overlapping evaluation MSAs of 6M and 10K sequences from the artificial Mi3 distribution trained on natural sequences (f, cyan), and only orders two through
seven were plotted due to finite sampling effects at higher orders. In the natural analysis, Mi3 performs as close to the target as is measurable, within error, for this
amount of data.
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estimation error negligible. vVAE covariances are further scaled down slightly when fit to the synthetic 10K dataset

(ρ = 0.87, Fig. 2b). Indep cannot reproduce covariances by definition, so ρ is zero in all tests, as expected. The

generative capacity trends for this metric are consistent between the synthetic and natural analyses for all GPSMs,

showing the behavior is not due to artificial properties of our synthetic target model.

These results confirm that vVAE can model epistasis in protein sequence datasets, since it generates pairwise

mutational covariances which are correlated with the target values, even in the absence of explicit constraints for

reproducing these statistics. However, it scales down the strength of pairwise covariances in both the synthetic and

natural analyses and the correlation with the target is lower than 1. Mi3, in contrast, is constrained by design to fit

the covariance scores and does so nearly perfectly.

Higher order marginal statistics

A more stringent test of GPSM generative capacity is to measure the model’s ability to reproduce sequence

covariation involving more than two positions, or higher-order covariation. We characterize these higher-order

covariation patterns in the target MSA and GPSM-generated evaluation MSAs by computing the frequency of

non-contiguous amino acid n-tuples, or higher-order marginals (HOMs) corresponding to subsequences, and

compare their frequency in each MSA to corresponding values in the target MSAs. For increasing values of n

the number of possible n-tuple combinations increases rapidly, requiring increasingly large evaluation MSAs to

accurately estimate the frequency of individual n-tuples. For this reason, we limit n-tuple length to n ≤ 10 and only

compute a limited subset of all possible position sets for each n. For each n we randomly choose 3K position

sets, compute the frequencies of the top twenty most frequent n-tuples for each corresponding position set in the

target and evaluation MSAs, as these are well sampled, and for each position set compute the Pearson correlation

between these top twenty frequencies. We then average the correlation values for each n over all position sets. We

call this metric the Pearson correlation r20.13 In this test, estimation error is non-zero because of the extremely large

MSAs required to compute n-tuple frequencies, particularly for high n > 5 (see Supplementary Information). We

expect the estimation error caused by finite sampling in the evaluation MSAs by computing the r20 scores between

two non-overlapping MSAs generated by the synthetic target model, which are of the same size as our evaluation

MSAs.

In Fig. 2, Bottom Row, we plot the HOM r20 for varying n. The expected estimation error (black line) represents a

generative capacity upper bound, giving the highest measurable r20 given the evaluation MSA size of 6M for the

synthetic analysis and 10K for the natural analysis. The r20 for Mi3 fit to 1M training sequences is very close to the

validation upper-bound for all n, suggesting it has accurately fit the synthetic target distribution and its specification

error is close to zero (Fig. 2d). This is expected since the synthetic target model in this test is a Potts model. With

10K training sequences, Mi3 r20 scores are lower than the 1M result for all n (Fig. 2e), which illustrates that Mi3

is affected by out-of-sample error for typical dataset sizes, as previously described.45 Indep has much lower r20

scores than Mi3, as expected, since it does not model pairwise epistasis by design. Its r20 scores are similar across

all experiments, suggesting that it is not strongly affected by out-of-sample error. This is expected because its

parameters are optimized for reproducing single-site frequency statistics only, which can be accurately estimated

even from small training MSAs.45 The r20 score for vVAE lies between Mi3 and Indep for all training datasets and n.

With 1M training sequences, vVAE r20 decreases to 0.4 for n = 10, reflecting specification error (Fig. 2a). With 10K

synthetic training sequences, vVAE r20 decreases further for all n due to the addition of out-of-sample error (Fig. 2e).

Whereas the pairwise covariation correlations represent a preliminary indication that vVAE captures epistasis but

mispredicts its strength, the r20 results reinforce this finding and extend it into higher orders. Unlike Mi3, vVAE shows

specification error even when fit to large datasets from a model which only contains pairwise epistatic interaction

terms (Fig. 2d). Because higher-order covariation statistics are constrained by the pairwise statistics, and vVAE

mispredicts the pairwise statistics, we expect that vVAE will exhibit specification error for higher-order epistasis,

even though our synthetic test does not address this issue directly. When considered together with the r20, the

pairwise covariance correlations reveal a novel insight, which is that that when trying to gauge GPSM generative

capacity at higher orders of covariation, the pairwise statistics alone can be misleading. The relative magnitudes of

r20 between models at n = 2 are different at higher n, and the performance decrease for high n is more severe for

vVAE than Mi3 (Fig. 2, Bottom Row). We emphasize that the r20 performance decrease for Mi3 when tested against

both synthetic and natural MSA targets can be accounted for entirely by out-of-sample error.

Hamming distance distributions

The next metric we use to characterize the generative capacity of the models is the pairwise Hamming distance

distribution d(S,S′). The Hamming distance between two protein sequences is the number of amino acids that are
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different between them, and we obtain a distribution for an MSA by comparing all pairs of sequences. Because it

characterizes the amount of sequence diversity in an MSA, recapitulation of the Hamming distance distribution has

been used in the past as a measure for GPSM performance.2,13,36,37 In Fig. 3, we compare the pairwise Hamming

distance distribution for each GPSM to that of the target distribution, computed with evaluation and target MSAs of

10K sequences each. To quantify the difference between the GPSM and target distributions for this metric, we use

the total variation distance (TVD),46 which equals 1 when the distributions have no overlap and is 0 when they are

identical, defined by TVD[ f ,g] = 1/2
∫
| f (x)−g(x)|dx.

All models reproduce the mode Hamming distance of ∼ 179. For Mi3, we report the same TVD = 0.007 when

trained on either 1M (Fig. 3a) or 10K (Fig. 3b) synthetic sequences, showing no specification error, as expected.

When trained on 10K natural sequences, Mi3 TVD increases to 0.012 (Fig. 3c), for reasons discussed further

below. Indep severely underestimates the probability of both low and high Hamming distances, as observed at

the distribution tails, with TVD ∼ 0.24 across all experiments. vVAE performs in between Mi3 and Indep, but much

closer to Mi3 than Indep with respect to TVD. Performance differences across all GPSMs for this metrics appear

to indicate that out-of-sample error has a consistent and detectable, though negligible, effect on the fundamental

sequence diversity of artificial GPSM-generated MSAs. That Mi3 and vVAE are highly performant and comparable

to each other, but not Indep, corroborates our earlier findings that epistasis is relevant to accurate modelling of

protein sequence diversity (Fig. 2). However, because Indep performs much closer to Mi3 and vVAE for this metric

than on any other, and also because this metric cannot discriminate well between Mi3 and vVAE, it could mean that

reproducing the Hamming distance distribution is a much easier, and perhaps separate, hurdle for GPSMs, than is

reproducing higher-order covariation.

To emphasize the decay of the tails, we rescale all the distributions by their maxima and re-center them around

their modes to give them the same peak, and then plot them on a log-log scale (Fig. 3, Bottom Row). The relevance

of the distribution’s tails lies in their power-law behavior as they approach zero, where the function’s exponent is

related to the intrinsic dimension of the dataset and therefore to the number of informative latent factors needed to

explain the data.36,37,47 A well-specified GPSM ought to reproduce this exponent, and therefore the tail’s decay,

since it is a topological property intrinsic to the dataset and independent from the particular choice of variables

used to describe the probability density.47 The trend of slightly decreasing generative capacity as training samples

decrease, as observed in Fig. 3, Top Row, is emphasized in Fig. 3, Bottom Row. In this rendering of the Hamming

distance distribution, differences in GPSM generative capacity can be observed at both low (Left Tail) and high

(Right Tail) sequence diversity. The Mi3 distribution closely overlaps the target distribution with both 1M (Fig. 3d) and

10K (Fig. 3e) synthetic training sequences. In the 10K natural experiment, Mi3 deviates noticeably from the target

on the left tail (Fig. 3f), which represents less evolutionarily diverged sequences. This could be an artifact of the

phylogenetic relationships between sequences present in the natural dataset, which may have been incompletely

removed by our phylogenetic filtering step for this data (see Methods, Supplementary Information), or it could be

due to estimation error in measuring the target distribution, as only 10K target sequences are available to estimate

the black line in the natural analysis. As before, Indep performance is consistently low across all experiments. vVAE

performance at low sequence diversity (Fig. 3, Bottom Row, Left Tails) decreases for smaller training dataset size.

Statistical Energy Correlations

A fourth metric we use to evaluate generative capacity is statistical energy E(S) of individual sequences in the dataset,

which we express using the negative logarithm of the predicted sequence probability p(S), where E(S) =− log p(S).
E(S) can be computed analytically for Mi3 and Indep, and estimated for vVAE by importance sampling (see

Methods).

This statistic directly evaluates accuracy of the GPSM distribution values pθ (S) for a limited number of individ-

ual sequences, which has been used to validate GPSMs by comparison to corresponding experimental fitness

values.13,19,48,49 In Fig. 4, we compare artificial statistical energies from the GPSM distribution pθ (S) to those

of the target distribution p0(S) for a 1K test MSA generated from p0(S). As before, we use the 1M (Fig. 4, Left

Column) and 10K (Fig. 4, Right Column) training MSA sizes, and quantify GPSM generative capacity for this metric

by the Pearson correlation coefficient ρ({E(S)},{Ê(S)}) between target energies E(S) and GPSM energies Ê(S).
Mi3 reproduces the synthetic target distribution at both training MSA sizes. Because Mi3 should have very low

specification error on the synthetic target, as it is well specified by design, the small amount of error must be due to

remaining out-of-sample or numerical errors. As expected, Indep poorly reproduces the target values, with ρ = 0.6
for both MSA training sizes. vVAE exhibits greater specification error than Mi3 on the 1M training set with correlation

of ρ = 0.94, and exhibits further out-of-sample error on the 10K training set with ρ = 0.89.
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Figure 3. Pairwise Hamming distance distributions. These plots illustrate whether sequences generated from the GPSMs reproduce the overall sequence
diversity of their respective targets. Mi3 (cyan), vVAE (red), and Indep (gray) distributions are compared to target distribution (dotted black). GPSMs were trained
on 1M synthetic (a, d), 10K synthetic (b, e), or 10K natural (c, f) sequences from the corresponding target distribution. All Hamming distributions were computed
from 30K-sequence MSAs, except for the natural target, which was computed from a 10K-sequence target MSA due to data limitations. Top Row, Hamming
distances d (x-axis) are shown about the mode, and frequency f is normalized as a fraction of total (y-axis). Mi3 perfectly matches the target distribution, and
vVAE performs closely to Mi3. Bottom Row, Re-scaled logarithmic Hamming distance distributions better discriminate between GPSMs with respect to generative
capacity than the normal Hamming distance distribution. Before being log-scaled, the Hamming distances d are normalized by the mode dMo (x-axis), and
frequencies f are normalized by the maximum Hamming distance fmax (y-axis). This transformation highlights minute differences between distributions at low
frequencies in the tails of the distributions on the left- and right-hand sides. Only vVAE appears sensitive to training sample size for this metric at the log-log scale.
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Figure 4. Statistical energy correlations. Statistical energies E(S) of 1K synthetic test sequences from the target distribution as evaluated by Mi3 (cyan), vVAE
(red), Indep (gray). Each GPSM was trained on 1M (a, c, e) or 10K (b, d, f) sequences from the synthetic target distribution. For each scatterplot, Pearson
correlation coefficient ρ was computed between each GPSM’s statistical energy and that of the synthetic target distribution for each sequence. Only Indep is
insensitive to decreased training sample size for this metric.
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Conclusions

In this study we reveal the steep challenges, limits, and errors faced by contemporaneous GPSMs trained on either

synthetic or currently available natural sequence datasets. Recent state-of-the-art GPSM studies have benchmarked

their models by comparing pθ (S) to experimental fitness values from deep mutational scans,19,21 or by generating

artificial sequences that appear to fold into realistic structures based on in silico folding energy.24 However, these

strategies for model comparison present their own challenges. Point mutation fitness experiments in practice

may measure particular contributors to fitness, including replicative capacity, drug resistance, protein stability, and

enzymatic activity,19 and are subject to significant experimental error and other limitations, e.g. those imposed

by conservation.50 On the other hand, in silico computational chemistry approaches rely on energy functionals

that may lack the precision needed to meaningfully discriminate between highly similar sequences.51 Additionally,

neither protein function nor fitness rely exclusively on the thermodynamic stability of the static native structure,

but more so on the protein’s conformational dynamics,52–56 which are not fully described by folding energy values

alone.57 This could mean that despite generating sequences with realistic in silico folding energy, a GPSM may still

not be capturing crucial higher-order epistatic effects. Neither point mutation fitness effects, nor in silico folding

energy estimations, are directly related to mutational covariation statistics observed in an MSA, and thus they are

indirect metrics of GPSM statistical accuracy. Our comparison of higher-order covariation patterns between target

MSAs and GPSM-generated evaluation MSAs is a direct measurement of GPSM statistical accuracy, and our study

emphasizes higher-order covariation whereas previous studies rarely go beyond the pairwise level.2,13,34,35,58

Benchmarking coevolution-based protein sequence models in data rich and data poor regimes, as done here, is

an effective method for ascertaining where data-driven effects stop, and algorithmic failure begins.39 In our synthetic

analysis track, we have demonstrated the extent to which a vanilla VAE (vVAE) can capture higher-order covariation

at orders between three and ten when the target distribution is known, its statistical properties are measurable

with a high degree of certainty, and major forms of error are removed, minimized, or accounted for. When given

a large number of training and target sequences, we found vVAE’s generative capacity to be between that of a

site-independent model (Indep) and a pairwise Hamiltonian (Mi3) for all measurements. In the synthetic r20 tests,

our results show that vVAE generative capacity is well below Mi3, raising questions about whether vanilla VAEs can

capture higher-order epistasis significantly better than a pairwise Potts model. In our synthetic analysis the target

distribution is a Potts model, and therefore we expect Mi3 to fit the target distribution well by design. However, we

find Mi3 also outperforms vVAE where we do not have this expectation, such as on the natural target distribution

and on a target distribution specified by a vVAE, as shown in Supplementary Information, suggesting Mi3 generally

outperforms vVAE on protein sequence data.

The Hamming distance distributions, pairwise covariation correlations, and statistical energy correlations have

been used in the past to measure GPSM accuracy, but we find that they can be inadequate or misleading indicators

of a GPSM’s ability to capture covariation at higher orders. Taken together, our results suggest that, of the metrics

we tested, only r20 provides the granularity needed to discriminate between different GPSM’s ability to model

higher-order epistasis, and this is because r20 directly tests the model’s ability to capture higher-order covariation.

Comparative benchmarking of our r20 results between the natural and synthetic analyses has shown for the first

time how inherent limitations of natural sequence data obfuscate GPSM performance with respect to higher-order

covariation. Our results also show that there are too few sequences in typical natural datasets to accurately gauge

the generative capacity of a GPSM, without also performing a synthetic test. In our natural analysis, both the GPSM

training and evaluation processes are data-starved to the degree typical of publicly available protein sequence

datasets, allowing out-of-sample and estimation error to frustrate efforts to discriminate between model performance,

giving a glimpse into the scale of error that could be present in the results of recently published GPSM studies.

Although our results suggest VAE-GPSMs are less effective for capturing higher-order epistasis than pairwise

Potts models, they have demonstrated utility in unsupervised learning and clustering. One VAE-GPSM has

generated artificial sequences that share a “hallucinated" homology to natural proteins in the training set, which

could mean that their folded structures would perform similar functions to their hallucinated natural homologs.22

Another has shown that a VAE-GPSM’s latent space may capture phylogenetic relationships20 better than PCA59

and t-SNE.60 These VAE-GPSMs furnished a latent space that immediately allowed for function-based protein

classification, a benefit unavailable to pairwise Potts models without some effort.

Our innovative epistasis-oriented methodology focuses on measuring higher-order covariation, with the potential

for broad applicability to various sequentially ordered data. r20-like measurements become possible when the data

are sufficient in number, and the correlation structures between elements, both within and across samples, are

statistically detectable and meaningful in some context, be it visual, biophysical, or linguistic. The convergence

between data categories such as images, proteins, and language with respect to generative modelling evaluation
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offers the exciting opportunity of a wider, interdisciplinary audience for the work proposed here. Conversely, further

development of sophisticated, data-intensive, and direct generative capacity metrics of GPSMs could reveal nuances

of the correlation structure of protein sequence datasets that distinguish them from other datasets, helping to explain

why r20-like metrics can detect higher-order covariation in artificial MSAs, whereas other metrics cannot. Our work

represents not only a revision of currently prevailing paradigms of GPSM benchmarking, but also a challenge to

generative modelling more broadly, to consider how higher-order covariation metrics and epistasis can inform their

models and results.

Methods

Sequence dataset preparation

For the natural analysis, we use an MSA of the kinase protein superfamily which we have previously curated using

sequences from the Uniprot/TREMBL database.40 This MSA is composed of ∼20K sequences of length 232,

obtained by filtering a larger set of ∼291K sequences to remove any sequences with more than 50% sequence

identity to another (see Supplementary Information).

For the synthetic analysis, synthetic sequences are generated from an “original” Potts Hamiltonian model trained

on the natural protein-kinase MSA, as detailed below and shown in Fig.1, Stage 1. This synthetic MSA is considered

to be the target for the synthetic analysis. To clarify, our focus in this work is to quantify model generative capacity

against the target distribution, and not the training distribution itself. Therefore, we have ensured that our synthetic

training and target sequences are non-overlapping sets, even though they come from the same target model.

The statistical differences between the two sets are nontrivial, and have been detected experimentally by our

measurements (see Results).

In Stage 2, we process the sequences into a train-validation-test split. The processed MSAs are then one-hot

encoded and fed into the GPSMs in Stage 3, where training occurs. In Stage 4, we generate evaluation MSAs from

each model, and in Stage 5 we perform our generative capacity measurements by comparing the artificial MSAs to

the appropriate target MSA.

Mi3
The Mi3 model is a pairwise Potts Hamiltonian model fit to sequence data using the “Mi3-GPU” software we

have developed previously,32 which performs “inverse Ising inference” to infer parameters of Potts models using a

Markov-Chain Monte-Carlo (MCMC) algorithm which entails very few approximations. This software allows us to fit

statistically accurate Potts models to MSA data. We have examined Mi3’s generative capacity and out-of-sample

error in earlier work,32,45 which we summarize here.

A Potts model is the maximum entropy model for p(S) constrained to reproduce the bivariate marginals f
i j

αβ
of an

MSA, i.e. the frequency of amino acid combination α,β ,at positions i, j. The probability distribution pθ (S) for the

Potts model takes the form

pθ (S) =
e−E(S)

Z
with E(S) =

L

∑
i

hi
si
+∑

i< j

Ji j
sis j

(1)

where Z is a normalization constant, Z = ∑S e−E(S), and “coupling” J
i j

αβ
and “field” hi

α parameters are compactly

denoted by the vector θ = {hi
α ,J

i j

αβ
}. The number of free parameters of the model (non-independent couplings and

fields) is equal to the number of non-independent bivariate marginals, which can be shown to be
L(L−1)

2
(q−1)2 +

L(q−1) for q amino acids,15 which is 10.7M parameters for our model. This implies that the Potts model is well

specified to reproduce the bivariate marginals when generating sequences from pθ (S).
The Mi3 model inference procedure maximizes the log-likelihood with regularization. Maximizing the Potts

log-likelihood can be shown to be equivalent to minimizing the difference between the dataset MSA bivariate

marginals f
i j

αβ
and the model bivariate marginals of sequences generated from p(S). To account for finite sampling

error in the estimate of f
i j

αβ
for an MSA of N sequences we add a small pseudocount of size 1/N, as described

previously.45 We also add a regularization penalty to the likelihood affecting the coupling parameters J
i j

αβ
to bias

them towards 0, of form λ ∑SCAD(Ji j

αβ
,λ ,α) using the SCAD function which behaves like λ |Ji j

αβ
| for small J

i j

αβ
but

gives no bias for large J
i j

αβ
61 , using a small regularization strength of λ = 0.001 for all inferences which causes little

model bias.
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To generate synthetic MSAs from the Potts model we use MCMC over the trial distribution pθ (S) until the Markov-

Chains reach equilibrium, as described previously.32 We can directly evaluate E(S) the negative log-probability of

any sequences for the Mi3 model using equation 1 up to a constant Z, and this constant can be dropped without

affecting our results.

Indep

The Indep model is the maximum entropy model for p(S) constrained to reproduce the univariate marginals of

an MSA, and is commonly called a “site-independent” model because the sequence variations at each site are

independent of the variation at other sites. Because it does not fit the bivariate marginals, it cannot model covariation

between positions. It takes the form

pθ (S) =
e−E(S)

Z
with E(S) =

L

∑
i

hi
si

(2)

where Z is a normalization constant, Z = ∑S e−E(S), and “field” parameters hi
α for all positions i and amino acids α are

compactly referred to by the vector θ = {hi
α}. The fields of the Indep model generally have different values from the

fields of the Potts model. Unlike for the Potts model, maximum likelihood parameters can be determined analytically

to be hi
α =− log f i

α where f i
α are the univariate marginals of the dataset MSA. When fitting the Indep model to a

dataset MSA of N sequences, we add a pseudocount of 1/N to the univariate marginals to give model marginals

f̂ i
α , to account for finite sample error in the univariate marginal estimates. The model distribution simplifies to a

product over positions, as pθ (S) = ∑ f̂ i
si

. The number of independent field parameters is L(q−1) which equals 4.6K

parameters for our model.

To generate sequences from the independent model we independently generate the residues at each position i

by a weighted random sample from the marginals f i
α , and we directly evaluate the log probability of each sequence

E(S) from equation 2.

vVAE

The vanilla variational autoencoder (vVAE) is a deep, symmetrical, and undercomplete autoencoder neural network

composed of a separate encoder qφ (Z|S) and decoder pθ (S|Z),
62 which map input sequences S to regions within a

low-dimensional latent space Z and back. The probability distribution for the vVAE is defined as

pθ (S) =
∫

pθ (S|Z)p(Z)dZ (3)

where the latent space distribution is a unit Normal distribution, p(Z) = N [0,1](Z). Training of a VAE can be

understood as maximization of the dataset log-likelihood with the addition of a Kullback-Leibler regularization term

DKL[qφ (Z|S), pθ (Z|S)], where pθ (Z|S) is the posterior of the decoder.28,29

Our VAE architecture is intentionally “vanilla”,33 and our encoder and decoder use a simple architecture unlike

more sophisticated VAE implementations which use convolutional layers,19 multi-stage training,63 disentanglement

learning,33 Riemannian Brownian motion priors,64 and more. It reflects a simple VAE architecture that has been

implemented as a VAE-GPSM in prior work.21 This allows us to directly interrogate the assumptions and performance

of vanilla variational autoencoding with respect to the training and evaluation of GPSMs in this work.

Our encoder and decoder have 3 layers each and employ minimal standard normalization and regularization

strategies.65,66 vVAE’s latent bottleneck layer has 7 nodes, and the model in total has 2.7M inferred parameters.

The input layer of the encoder accepts a one-hot encoded sequence and the decoder’s output layer values can be

interpreted as a Bernoulli distribution of the same dimensions as a one-hot encoded sequence. We have tested

various vanilla VAE architectures and hyperparameters with our datasets, as well as DeepSequence,19 and found

qualitatively similar generative capacity results.

To generate a sequence from vVAE, we generate a random sample in latent space from the latent distribution

p(Z) pass this value to the decoder to obtain a Bernoulli distribution, from which we sample once. To evaluate the

negative log-probability of a sequence E(S) we use importance sampling, averaging over 1K samples from the latent

distribution qφ (Z|S).
20 Other publications use the Evidence Lower Bound (ELBO) estimate as an approximation

of the negative log-probability,19 and we have verified that the ELBO and the negative log-probability are nearly

identical in our tests and have equal computational complexity.
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Figures

Figure 1

5-stage analysis pipeline diagram. Stage 1: Data Sequestration. Two different MSAs are sequestered, one
natural and the other synthetic, generated by a Potts model �t to the natural MSA. Stage 2: Data
Processing. Sequences are indexed and split. Non-overlapping training, target, and evaluation MSAs are
shown. Stage 3: GPSM Training. GPSMs are trained. Stage 4: Arti�cial Sequence Generation. Evaluation
MSAs are generated from each GPSM. Stage 5: Generative Capacity Measurements. Computation and
visualization of generative capacity metrics is performed.



Figure 2

Pairwise covariance correlations (Top Row) and Pearson r20 correlations (Bottom Row). Mi3 (cyan), vVAE
(red), and Indep (gray) are compared to target distribution (black, where shown). GPSMs were trained on
1M synthetic (a, d,) 10K synthetic (b, e), or 10K natural (c, f) kinase sequences from the corresponding
target distribution. Top Row, These covariance correlation plots show whether the covariances of the
GPSMs match those of their respective targets at the fundamental pairwise level. Synthetic target
covariances (x-axis) and GPSM-generated evaluation covariances (y-axis) were computed from 500K-
sequence MSAs (a, b). In contrast, due to limited availability of natural protein sequence data, natural
target covariances were computed from a 10K-sequence target MSA, whereas GPSM-generated
covariances (y-axis) were computed from 500K-sequence evaluation MSAs (c). For each covariance
scatterplot, a Pearson correlation coe�cient r was computed between the GPSM covariance set and the
target covariance set. Generative capacity for Mi3 and Indep appear insensitive to training sample size
for this metric. Covariances around zero were removed for easier plotting. Bottom Row, These plots show
whether the GPSMs, on average, have higher order marginals (HOMs) that match those of their respective
targets between orders of two and ten. Insets emphasize pairwise r20. Pearson r20 correlation (r20, y-
axis) is plotted as a function of HOMs (x-axis). Synthetic r20 were computed from 6M arti�cial GPSM-



generated evaluation sequences compared to 6M synthetic target sequences (d, e) as colored lines, and
the black dotted line here in the synthetic r20 analysis denotes a generative capacity upper limit set by
�nite sampling of two non-overlapping target MSAs of 6M sequences each. Both Mi3 and vVAE’s
generative capacity appear sensitive to decreasing synthetic training sample size for this metric. In
contrast, for the natural analysis, the black line uses triangles to indicate a difference in how it is
computed compared to the synthetic analysis (f). Here, the generative capacity upper limit is an estimate
computed between non-overlapping evaluation MSAs of 6M and 10K sequences from the arti�cial Mi3
distribution trained on natural sequences (f, cyan), and only orders two through seven were plotted due to
�nite sampling effects at higher orders. In the natural analysis, Mi3 performs as close to the target as is
measurable, within error, for this amount of data.

Figure 3

Pairwise Hamming distance distributions. These plots illustrate whether sequences generated from the
GPSMs reproduce the overall sequence diversity of their respective targets. Mi3 (cyan), vVAE (red), and
Indep (gray) distributions are compared to target distribution (dotted black). GPSMs were trained on 1M
synthetic (a, d), 10K synthetic (b, e), or 10K natural (c, f) sequences from the corresponding target
distribution. All Hamming distributions were computed from 30K-sequence MSAs, except for the natural



target, which was computed from a 10K-sequence target MSA due to data limitations. Top Row,
Hamming distances d (x-axis) are shown about the mode, and frequency f is normalized as a fraction of
total (y-axis). Mi3 perfectly matches the target distribution, and vVAE performs closely to Mi3. Bottom
Row, Re-scaled logarithmic Hamming distance distributions better discriminate between GPSMs with
respect to generative capacity than the normal Hamming distance distribution. Before being log-scaled,
the Hamming distances d are normalized by the mode dMo (x-axis), and frequencies f are normalized by
the maximum Hamming distance fmax (y-axis). This transformation highlights minute differences
between distributions at low frequencies in the tails of the distributions on the left- and right-hand sides.
Only vVAE appears sensitive to training sample size for this metric at the log-log scale.



Figure 4

Statistical energy correlations. Statistical energies E(S) of 1K synthetic test sequences from the target
distribution as evaluated by Mi3 (cyan), vVAE (red), Indep (gray). Each GPSM was trained on 1M (a, c, e)
or 10K (b, d, f) sequences from the synthetic target distribution. For each scatterplot, Pearson correlation
coe�cient r was computed between each GPSM’s statistical energy and that of the synthetic target
distribution for each sequence. Only Indep is insensitive to decreased training sample size for this metric.
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