Alberdi, A., Aizpurua, O., Gilbert, M. T. P., & Bohmann, K. Scrutinizing key steps for reliable metabarcoding of environmental samples. Meth. Ecol. Evol. 9, 134–147 (2018).
Aylagas, E., Borja, Á., & Rodriguez-Ezpeleta N. Environmental Status Assessment Using DNA Metabarcoding: Towards a Genetics Based Marine Biotic Index (gAMBI). PLoS ONE 9, e90529; doi.org/10.1371/journal.pone.0090529 (2014).
Aylagas, E., Borja, Á., Irigoien, X., & Rodriguez-Ezpeleta N. Benchmarking DNA Metabarcoding for Biodiversity-Based Monitoring and Assessment. Front. Mar. Sci. 3, Article 96; doi.org/10.3389/fmars.2016.00096 (2016).
Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., et al. & Caporaso, J. G. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37 852–857 (2019).
Boufahja, F., Semprucci, F., Beyrem, H., & Bhadury, P. Marine nematode taxonomy in Africa: promising prospects against scarcity of information. J. Nematol. 47, 198–206 (2015).
Callahan, B. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Meth. 13, 581-583 (2016).
Callahan, B. J., McMurdie, P. J., & Holmes, S. P. Perspective - Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. The ISME J. 11, 2639–2643 (2017).
Carugati, L., Corinaldesi, C., Dell'Anno, A., & Danovaro, R. Metagenetic tools for the census of marine meiofaunal biodiversity: An overview. Mar. Genom. 24, 11–20 (2015).
Clarke, K. R., Gorley, R. N., Somerfield, P. J., & Warwick, R. M. Change in marine communities: an approach to statistical analysis and interpretation. Primer-E Ltd. (2014).
Clarke, K. R., & Gorley, R. N. Getting started with PRIMER v7. PRIMER-E: Plymouth, Plymouth Marine Laboratory, 20, (2015).
Cordier, T. et al. Predicting the ecological quality status of marine environments from e-DNA metabarcoding data using supervised machine learning. Environ. Sci. Technol. 51, 9118−9126 (2017).
Danovaro R. Methods for the Study of Deep-Sea Sediments, Their functioning and Biodiversity (ed Danovaro R.). (CRC Press, Taylor and Francis Group, 2010).
Dell’Anno, A., Carugati, L., Corinaldesi, C., Riccioni, G., & Danovaro. R. Unveiling the Biodiversity of Deep-Sea Nematodes through Metabarcoding: Are We Ready to Bypass the Classical Taxonomy? PLoS ONE 1-18; DOI:10.1371/journal.pone.0144928 (2015).
Fonseca, V. G. et al. Revealing higher than expected meiofaunal diversity in Antarctic sediments: a metabarcoding approach. Sci. Rep. 7: 6094; DOI:10.1038/s41598-017-06687-x (2017).
Frøslev, T. G. et al. Algorithm for post-clustering curation of DNA amplicon data yields reliable biodiversity estimates. Nat. Comm. 8: 1188; DOI: 10.1038/s41467-017-01312-x (2017).
Gaspar J. M., & Thomas, W. K. FlowClus: efficiently filtering and denoising pyrosequenced amplicons. BMC Bioinform. 16: 105; DOI 10.1186/s12859-015-0532-1 (2015).
Giere, O. Meiobenthology - The Microscopic Motile Fauna of Aquatic Sediments. (Springer-Verlag, 2nd revised and extended edition, 2009).
Guardiola, M. et al. Spatio-temporal monitoring of deep-sea communities using metabarcoding of sediment DNA and RNA. PeerJ 4:e2807; DOI 10.7717/peerj.2807 (2016).
Guardiola, M. et al. Deep-Sea, Deep-Sequencing: Metabarcoding Extracellular DNA from Sediments of Marine Canyons. PLoS ONE 10(10): e0139633; DOI:10.1371/journal.pone.0139633 (2015).
Hadziavdic, K. et al. Characterization of the 18S rRNA gene for designing universal eukaryote specific primers. PLoS ONE 9(2): e87624; doi:10.1371/journal.pone.0087624 (2014).
Hebert, P. D. N., & Gregory T.R. The promise of DNA barcoding for taxonomy. System. Biol. 54, 852–859. (2005).
Heip, C., Vincx M., & Vranken, G. The ecology of marine nematodes. Oceanogr. Mar. Biol. Ann. Rev. 23, 399-489 (1985).
Haye, P.A., Kornfield, I., & Watling, L. Molecular insights into Cumacean family relationships (Crustacea, Cumacea). Molec. Phylogenet. Evol. 30, 798–809 (2004).
Jensen, P. Feeding ecology of free-living aquatic nematodes. Mar. Ecol. Prog. Ser. 35: 187-196. (1987).
Jumars P. A., Dorgan, K. M., & Lindsay, S. M. Diet of Worms Emended: An Update of Polychaete Feeding Guilds. Ann. Rev. Mar. Sci. 7, 497–520 (2015).
Klunder, L. et al. Diversity of Wadden Sea macrofauna and meiofauna communities highest in DNA from extractions preceded by cell lysis. J. Sea Res. 152, [101764]; 10.1016/j.seares.2019.101764 (2019).
Kumar S., Stecher G., Li M., Knyaz C., & Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molec. Biol. Evol. 35, 1547-1549 (2018).
Layton, K. K. S., Corstorphine, E. A., & Hebert, P. D. N. Exploring Canadian Echinoderm Diversity through DNA Barcodes. PLoS ONE 11(11): e0166118; DOI:10.1371/journal.pone.0166118 (2016).
Lee, M. R. et al. The identification of sympatric cryptic free- living nematode species in the Antarctic intertidal. PLoS ONE 12(10): e0186140; doi.org/10.1371/ journal.pone.0186140 (2017).
Lejzerowicz, F. et al. High-throughput sequencing and morphology perform equally well for benthic monitoring of marine ecosystems. Sci. Rep. 5:13932; DOI: 10.1038/srep13932 (2015).
Lobo, J., Shokralla, S., Costa, M. H., Hajibabaei, M., & Costa, F. O. DNA metabarcoding for high- throughput monitoring of estuarine macrobenthic communities. Sci. Rep. 7: 15618; DOI:10.1038/s41598-017-15823-6 (2017).
Macheriotou, L. et al. Metabarcoding free‐living marine nematodes using curated 18S and CO1 reference sequence databases for species‐level taxonomic assignments. Ecol. Evol. 9, 1211–1226 (2019).
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17(1), 10-12 (2011).
Mikkelsen, P. M., Bieler R., Kappner, I., & Rawlings, T. A. Phylogeny of Veneroidea (Mollusca: Bivalvia) based on morphology and molecules. Zool. J. Linnean Soc. 148, 439-521 (2006).
Miya, M. et al. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species. R. Soc. open sci. 2: 150088; dx.doi.org/10.1098/rsos.150088 (2015).
Pawlowski, J. et al. The future of biotic indices in the ecogenomic era: Integrating (e)DNA metabarcoding in biological assessment of aquatic ecosystems. Sci. Total Environ. 637–638, 1295–1310 (2018).
Rognes, T., Flouri, T., Nichols, B., Quince, C., & Mahé, F. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4:e2584; DOI10.7717/peerj.2584 (2016).
Schenk, J. et al. Nematodes as bioindicators of polluted sediments using metabarcoding and microscopic taxonomy. Environ. Int. 143: 105922; doi.org/10.1016/j.envint.2020.105922 (2020).
Schroeder, A., Pallavicini, A., Edomi P., Pansera, M., & Camatti E. Suitability of a dual COI marker for marine zooplankton DNA metabarcoding. Mar. Environ. Res. 170: 105444; doi.org/10.1016/j.marenvres.2021.105444 (2021).
Steyaert, M. et al. Advances in metabarcoding techniques bring us closer to reliable monitoring of the marine benthos. J. Appl. Ecol. 57(11), 2234–2245 (2020).
van der Loos, L. M. & Nijland R. Biases in bulk: DNA metabarcoding of marine communities and the methodology involved. Molec. Ecol. 30(13), 3270-3288 (2020).