1 Huang, Y. L. et al. Bandgap tunability at single-layer molybdenum disulphide grain boundaries. Nature Communications 6, 6298, doi:10.1038/ncomms7298 (2015).
2 Zhao, W., Ribeiro, R. M. & Eda, G. Electronic Structure and Optical Signatures of Semiconducting Transition Metal Dichalcogenide Nanosheets. Accounts of Chemical Research 48, 91-99, doi:10.1021/ar500303m (2015).
3 Zhang, C., Johnson, A., Hsu, C.-L., Li, L.-J. & Shih, C.-K. Direct Imaging of Band Profile in Single Layer MoS2 on Graphite: Quasiparticle Energy Gap, Metallic Edge States, and Edge Band Bending. Nano Letters 14, 2443-2447, doi:10.1021/nl501133c (2014).
4 Bian, K. et al. Scanning probe microscopy. Nature Reviews Methods Primers 1, 36, doi:10.1038/s43586-021-00033-2 (2021).
5 Feenstra, R. M. Scanning tunneling spectroscopy. Surface Science 299-300, 965-979, doi:10.1016/0039-6028(94)90710-2 (1994).
6 Hamers, R. J., Tromp, R. M. & Demuth, J. E. Surface Electronic Structure of Si (111)-(7×7) Resolved in Real Space. Physical Review Letters 56, 1972-1975, doi:10.1103/PhysRevLett.56.1972 (1986).
7 Hess, H. F., Robinson, R. B., Dynes, R. C., Valles, J. M. & Waszczak, J. V. Scanning-Tunneling-Microscope Observation of the Abrikosov Flux Lattice and the Density of States near and inside a Fluxoid. Physical Review Letters 62, 214-216, doi:10.1103/PhysRevLett.62.214 (1989).
8 Chen, C. J. Theory of scanning tunneling spectroscopy. Journal of Vacuum Science & Technology A 6, 319-322, doi:10.1116/1.575444 (1988).
9 Binnig, G., Rohrer, H., Gerber, C. & Weibel, E. Surface Studies by Scanning Tunneling Microscopy. Physical Review Letters 49, 57-61, doi:10.1103/PhysRevLett.49.57 (1982).
10 Xu, S. & Arnsdorf, M. F. Electrostatic force microscope for probing surface charges in aqueous solutions. Proceedings of the National Academy of Sciences 92, 10384-10388, doi:10.1073/pnas.92.22.10384 (1995).
11 Saint Jean, M., Hudlet, S., Guthmann, C. & Berger, J. Van der Waals and capacitive forces in atomic force microscopies. Journal of Applied Physics 86, 5245-5248, doi:10.1063/1.371506 (1999).
12 Hudlet, S., Saint Jean, M., Guthmann, C. & Berger, J. Evaluation of the capacitive force between an atomic force microscopy tip and a metallic surface. The European Physical Journal B - Condensed Matter and Complex Systems 2, 5-10, doi:10.1007/s100510050219 (1998).
13 Cui, X. D. et al. Bias-induced forces in conducting atomic force microscopy and contact charging of organic monolayers. Ultramicroscopy 92, 67-76, doi:10.1016/S0304-3991(02)00069-4 (2002).
14 Nonnenmacher, M., O’Boyle, M. P. & Wickramasinghe, H. K. Kelvin probe force microscopy. Applied Physics Letters 58, 2921-2923, doi:10.1063/1.105227 (1991).
15 Hill, H. M., Rigosi, A. F., Rim, K. T., Flynn, G. W. & Heinz, T. F. Band Alignment in MoS2/WS2 Transition Metal Dichalcogenide Heterostructures Probed by Scanning Tunneling Microscopy and Spectroscopy. Nano Letters 16, 4831-4837, doi:10.1021/acs.nanolett.6b01007 (2016).
16 Park, S. et al. Direct determination of monolayer MoS2 and WSe2 exciton binding energies on insulating and metallic substrates. 2D Materials 5, 025003, doi:10.1088/2053-1583/aaa4ca (2018).
17 Rigosi, A. F., Hill, H. M., Rim, K. T., Flynn, G. W. & Heinz, T. F. Electronic band gaps and exciton binding energies in monolayer MoxW1-xS2 transition metal dichalcogenide alloys probed by scanning tunneling and optical spectroscopy. Physical Review B 94, 075440, doi:10.1103/PhysRevB.94.075440 (2016).
18 Beal, A. R. & Hughes, H. P. Kramers-Kronig analysis of the reflectivity spectra of 2H-MoS2, 2H-MoSe2 and 2H-MoTe2. Journal of Physics C: Solid State Physics 12, 881-890, doi:10.1088/0022-3719/12/5/017 (1979).
19 Bradley, A. J. et al. Probing the Role of Interlayer Coupling and Coulomb Interactions on Electronic Structure in Few-Layer MoSe2 Nanostructures. Nano Letters 15, 2594-2599, doi:10.1021/acs.nanolett.5b00160 (2015).
20 Zhang, Q. et al. Bandgap renormalization and work function tuning in MoSe2/hBN/Ru(0001) heterostructures. Nature Communications 7, 13843, doi:10.1038/ncomms13843 (2016).
21 Ugeda, M. M. et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nature Materials 13, 1091-1095, doi:10.1038/nmat4061 (2014).
22 Barja, S. et al. Charge density wave order in 1D mirror twin boundaries of single-layer MoSe2. Nature Physics 12, 751-756, doi:10.1038/nphys3730 (2016).
23 Liu, H. J. et al. Molecular-beam epitaxy of monolayer and bilayer WSe2 : a scanning tunneling microscopy/spectroscopy study and deduction of exciton binding energy. 2D Materials 2, 034004, doi:10.1088/2053-1583/2/3/034004 (2015).
24 Jo, S., Ubrig, N., Berger, H., Kuzmenko, A. B. & Morpurgo, A. F. Mono- and Bilayer WS2 Light-Emitting Transistors. Nano Letters 14, 2019-2025, doi:10.1021/nl500171v (2014).
25 Zhu, B., Chen, X. & Cui, X. Exciton Binding Energy of Monolayer WS2. Scientific Reports 5, 9218, doi:10.1038/srep09218 (2015).
26 Chernikov, A. et al. Exciton Binding Energy and Nonhydrogenic Rydberg Series in Monolayer WS2. Physical Review Letters 113, 076802, doi:10.1103/PhysRevLett.113.076802 (2014).
27 Kobayashi, Y. et al. Modulation of electrical potential and conductivity in an atomic-layer semiconductor heterojunction. Scientific Reports 6, 31223, doi:10.1038/srep31223 (2016).
28 Braga, D., Gutiérrez Lezama, I., Berger, H. & Morpurgo, A. F. Quantitative Determination of the Band Gap of WS2 with Ambipolar Ionic Liquid-Gated Transistors. Nano Letters 12, 5218-5223, doi:10.1021/nl302389d (2012).
29 Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically Thin MoS2: A New Direct-Gap Semiconductor. Physical Review Letters 105, 136805, doi:10.1103/PhysRevLett.105.136805 (2010).
30 Hill, H. M. et al. Observation of Excitonic Rydberg States in Monolayer MoS2 and WS2 by Photoluminescence Excitation Spectroscopy. Nano Letters 15, 2992-2997, doi:10.1021/nl504868p (2015).
31 Klots, A. R. et al. Probing excitonic states in suspended two-dimensional semiconductors by photocurrent spectroscopy. Scientific Reports 4, 6608, doi:10.1038/srep06608 (2014).
32 Newaz, A. K. M. et al. Electrical control of optical properties of monolayer MoS2. Solid State Communications 155, 49-52, doi:10.1016/j.ssc.2012.11.010 (2013).
33 Tongay, S. et al. Thermally Driven Crossover from Indirect toward Direct Bandgap in 2D Semiconductors: MoSe2 versus MoS2. Nano Letters 12, 5576-5580, doi:10.1021/nl302584w (2012).
34 Tonndorf, P. et al. Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2. Opt. Express 21, 4908-4916, doi:10.1364/OE.21.004908 (2013).
35 Ye, Z. et al. in Frontiers in Optics 2014. LW2I.4 (Optica Publishing Group).
36 Zhu, B., Zeng, H., Dai, J., Gong, Z. & Cui, X. Anomalously robust valley polarization and valley coherence in bilayer WS2. Proceedings of the National Academy of Sciences 111, 11606-11611, doi:10.1073/pnas.1406960111 (2014).
37 He, K. et al. Tightly Bound Excitons in Monolayer WSe2. Physical Review Letters 113, 026803, doi:10.1103/PhysRevLett.113.026803 (2014).
38 Wang, G. et al. Giant Enhancement of the Optical Second-Harmonic Emission of WSe2 Monolayers by Laser Excitation at Exciton Resonances. Physical Review Letters 114, 097403, doi:10.1103/PhysRevLett.114.097403 (2015).
39 Rivera, P. et al. Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures. Nature Communications 6, 6242, doi:10.1038/ncomms7242 (2015).
40 Rigosi, A. F., Hill, H. M., Li, Y., Chernikov, A. & Heinz, T. F. Probing Interlayer Interactions in Transition Metal Dichalcogenide Heterostructures by Optical Spectroscopy: MoS2/WS2 and MoSe2/WSe2. Nano Letters 15, 5033-5038, doi:10.1021/acs.nanolett.5b01055 (2015).
41 Calman, E. V. et al. Indirect Excitons and Trions in MoSe2/WSe2 van der Waals Heterostructures. Nano Letters 20, 1869-1875, doi:10.1021/acs.nanolett.9b05086 (2020).
42 Wang, Z. et al. Phonon-Mediated Interlayer Charge Separation and Recombination in a MoSe2/WSe2 Heterostructure. Nano Letters 21, 2165-2173, doi:10.1021/acs.nanolett.0c04955 (2021).