1. Tsuru, T., & Hwang, S.-T. Production of high-purity oxygen by continuous membrane column combined with PSA oxygen generator. Ind. Eng. Chem. Res. 33, 311-316 (1994).
2. Hejazi, S. A. H. et al. Dynamic column breakthrough and process studies of high-purity oxygen production using silver-exchanged titanosilicates. Ind. Eng. Chem. Res. 55, 5993-6005 (2016).
3. Oxygen (Oxygenium). The International Pharmacopoeia (ed. 10, 2020), pp. 1-5.
4. Usher, A. D. Medical oxygen crisis: a belated COVID-19 response. The Lancet 397, 868-869 (2021).
5. Hayashi, S., Kawai, & M., Kaneko, T. Dynamics of high purity oxygen PSA. Gas. Sep.Purif. 10, 19-23 (1996).
6. Santos, J. C. et al. High-purity oxygen production by pressure swing adsorption. Ind. Eng. Chem. Res. 46, 591 (2007).
7. Technical specifications for oxygen concentrators, WHO medical device technical series. World Health Organization (2015).
8. Technical specifications for Pressure Swing Adsorption (PSA) Oxygen Plants: Interim guidance. World Health Organization (2020).
9. Ackley, M. W. Medical oxygen concentrators: a review of progress in air separation technology. Adsorption 25,1437-1474 (2019).
10. Giddey, S., Ciacchi, F. T., Badwal, & S. P. S High purity oxygen production with a polymer electrolyte membrane electrolyser. J. Membrane Sci. 346, 227-232 (2010).
11. Langer S. H., & Haldeman, R. G. Electrolytic Separation and Purification of Oxygen from a Gas Mixture. J. Phys. Chem. 68, 962-963 (1964).
12. Goldstein J. R., & Tseung, A. C. C. Kinetics of Oxygen Reduction on Graphite|Cobalt-Iron Oxide Electrodes with Coupled Heterogeneous Chemical Decomposition of H2O2. J. Phys. Chem. 7, 3646-4656 (1972).
13. Tseung, A. C. C., & Jasem, S. M. An integrated electrochemical-chemical method for the extraction of O2 from air. J. Appl. Electrochem. 11, 209-215 (1981).
14. Yuko, F. et al. An electrochemical oxygen separator using an ion-exchange membrane as the electrolyte. J. Appl. Electrochem. 16, 935-940 (1986).
15. Brillas, E., Maestro, A., & Moratalla, M. Electrochemical extraction of oxygen from air via hydroperoxide ion. J. Appl. Electrochem. 27, 83-92 (1997).
16. Shao, M. et al. Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 116, 3594-3657 (2016).
17. Kulkarni, A. et al. Understanding catalytic activity trends in the oxygen reduction reaction. Chem. Rev. 118, 2302-2312 (2018).
18. Wu, K.-H. et al. Highly selective hydrogen peroxide electrosynthesis on carbon: in situ interface engineering with surfactants. Chem 6, 1443-1458 (2020).
19. Lu, Z. et al. High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nat. Catal. 1, 156-162 (2018).
20. Tan, X., Tahini, H. A. & Smith, S. C. Understanding the high activity of mildly reduced graphene oxide electrocatalysts in oxygen reduction to hydrogen peroxide. Mater. Horiz. 6, 1409-1415 (2019).
21. Melchionna, M., Fornasiero, P. & Prato, M. The rise of hydrogen peroxide as the main product by metal‐free catalysis in oxygen reductions. Adv. Mater. 31, 1802920 (2019).
22. Nørskov, J. K. et al. Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. J. Phys. Chem. B 108, 17886-17892 (2004).
23. Wang, X. et al. Ta-doping triggered electronic structural engineering and strain effect in NiFe LDH for enhanced water oxidation. Chem. Eng. J. 403, 126297 (2021).
24. Fan, K. et al. Nickel–vanadium monolayer double hydroxide for efficient electrochemical water oxidation. Nat. Commun. 7, 11981 (2016).
25. Xiao, H., Shin, H. & Goddard, W. A. Synergy between Fe and Ni in the optimal performance of (Ni,Fe)OOH catalysts for the oxygen evolution reaction. PNAS 115, 5872-5877 (2018).
26. Liu, Z. et al. CO2 electrolysis to CO and O2 at high selectivity, stability and efficiency using sustainion membranes. J. Electrochem. Soc. 165, J3371-J3377 (2018).
27. Z. Yin et al., An alkaline polymer electrolyte CO2 electrolyzer operated with pure water. Energy Environ. Sci. 12, 2455-2462 (2019).
28. Zhao, C. et al. In Situ Topotactic Transformation of an Interstitial Alloy for CO Electroreduction. Adv. Mater. 32, 2002382 (2020).