
Analysis of the in�uence of piston-cylinder friction
on the torsional vibration characteristics of
compressor crankshaft system
Tao Li  (  2849110868@qq.com )

Southwest Petroleum University https://orcid.org/0000-0002-7047-6974
Huang Zhiqiang 

Southwest Petroleum University https://orcid.org/0000-0001-7809-3241
Zhen Chen 

Southwest Petroleum University
Kehai Zhang 

Southwest Petroleum University
Jie Wang 

Southwest Petroleum University

Research Article

Keywords: Shale Gas Compressors, Crankshaft system, Variable inertia, Nonlinear vibration, Torsional
vibration characteristics

Posted Date: March 23rd, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1464003/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.  
Read Full License

https://doi.org/10.21203/rs.3.rs-1464003/v1
mailto:2849110868@qq.com
https://orcid.org/0000-0002-7047-6974
https://orcid.org/0000-0001-7809-3241
https://doi.org/10.21203/rs.3.rs-1464003/v1
https://creativecommons.org/licenses/by/4.0/


 

 

Analysis of the influence of piston-cylinder friction on the torsional 

vibration characteristics of compressor crankshaft system1
 

Tao Li . Zhen Chen . Kehai Zhang . Jie 
Wang. Zhiqiang Huang 

Abstract：With the development of compressors 

towards high speed and multiple columns, the torsional 
vibration phenomenon has become a major factor 
affecting the service life and reliability of the shaft 
system. Therefore, this paper considers the influence of 
friction between piston and cylinder on the instantaneous 
inertia of the crank connecting rod mechanism, 
establishes a nonlinear torsional vibration mechanics 
model of shale gas compressor shaft system, solves the 
natural frequency of the shaft system under undamped 
and damped conditions using the eigenvector method, 
and investigates the influence of the friction coefficient 
between piston and cylinder and the operating speed on 
the torsional vibration response of the shaft system under 
the self-excitation of the shaft system and the action of 
and excitation moment by the Runge-Kutta methods. 
The results show that after considering the friction 
between the piston and the cylinder, the 2nd order natural 
frequency of the shaft system shows a "high-low-high" 
fluctuation pattern; As the friction coefficient increases, 
the amplitude of the shaft system and the peak vibration 
speed show a rising trend; Meanwhile, when the speed 
increases, the vibration of the shaft system changes from 
chaotic \ period to the proposed periodic state, but the 
amplitude shows a decreasing trend. The research in this 
paper aims to improve the theory of nonlinear dynamics 
of compressor shaft systems, and the determined 
nonlinear parameters can be used to guide the operation 
and maintenance of compressors in engineering. 
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1 Introduction 

Due to the process of shale gas development, the 
pressure decay is fast, resulting in variable compressor 
boosting conditions, coupled with the current 
development of the compressor in the direction of high-
speed multiple columns [1], making the compressor 
shaft system torsional vibration phenomenon is 
increasingly prominent, which seriously affects the 
delivery efficiency and service life of the compressor. 
For this reason, many scholars have carried out research 
on the torsional vibration response law of the shaft 
system. Initially, the torsional vibration mechanics 
model only considered the influence of linear factors of 
the shaft system. For example, Feng et al. [2] solved the 
natural frequency of the shaft system based on the 
eigenvector method and avoided the torsional vibration 
of the shaft system by adding additional masses. Liu et 
al. [3] solved the torsional vibration response of the shaft 
system based on the MSM method and modified the 
structural parameters of the shaft system based on the SA 
method. Karimaei et al. [4] considered the effect of linear 
damping on the torsional vibration response of the 
system and proposed the selection of suitable dampers to 
reduce the torsional vibration amplitude of the shaft 
system. However, the above studies neglected the effects 
of variable inertia of the crank connecting rod, damping 
nonlinearity, and nonlinearity of friction between the 
piston and the cylinder on the torsional vibration of the 
shaft system when modeling the lumped mass of the 
shaft system, resulting in the inability to accurately 
predict the torsional vibration response of the shaft 



 

 

system [5,6]. 
For this reason, some scholars take into account the 

nonlinear factors of the shaft system when establishing 
the lumped mass model, such as Zhao 7 carried out the 
law of the influence of the nonlinear stiffness of the 
coupling on the torsional vibration response of the shaft 
system, pointing out that the larger the hard nonlinear 
stiffness, the larger the peak angular displacement. 
Babagiray et al. 8 carried out a study on the effect of 
system dry friction on crankshaft speed fluctuation. 
Karabulutd et al. 19 explored the effect of combined 
crank and flywheel moments of inertia on crankshaft 
speed fluctuation pattern. Zhang et al. 9 considered the 
distributed torsional flexibility of the crankshaft and 
pointed out that the flexibility of the crankshaft has a 
significant effect on the mechanical behavior of the 
system. Some scholars have also carried out research on 
the influence law of flywheel rotational inertia 10, main 
bearing structural parameters 11 and oil supply pressure 
12 on the torsion angle of the shaft system. 

Meanwhile, many scholars pointed out that 
neglecting the variable inertia characteristics of the 
crank-link mechanism would significantly reduce the 
calculation accuracy of the torsional vibration response 
of the shaft system1314. Therefore, Pasricha 15, Wang 
16 and Chen et al. 17 established a single-cylinder 
torsional vibration mechanics model considering the 
effect of variable inertia and discussed the stable 
torsional vibration states corresponding to different 
parameters. And Han 18 further improved the single-
cylinder model by considering the effect of the 
connecting rod ratio on the variable inertia on this basis. 
However, there are still large errors in the nonlinear 
equations between the single-cylinder model and the 
actual multi-cylinder model. Therefore, Metallidis et al. 
19 developed a multi-cylinder torsional vibration 
mechanics model based on a single-cylinder model and 
discussed the effects of shaft system stiffness and 
damping on velocity fluctuations. Xiang et al. 20 solved 
the natural frequency of the system through a multi-
cylinder dynamics model to determine whether there is a 
risk of torsional vibration in the shaft system. Zhu et al. 

21 then refined the multi-cylinder dynamics model by 
introducing factors such as variable rotational inertia and 
nonlinear friction between the piston and the cylinder. 
Guzzomi et al.2223 pointed out that the friction before 
the piston and cylinder causes the variable inertia 
characteristic of the shaft system, which leads to the 
change of the intrinsic frequency of the shaft system, and 
experimentally verified this theory in a subsequent study, 
but Guzzomi did not carry out a follow-up study because 
the relationship between the two was too complicated. 

Based on the shortcomings of the above study, this 
paper considers the influence of piston and cylinder 
friction on the characteristic of variable inertia of the 
shaft system, and reasonably simplifies the relationship 
between them to establish a multi-cylinder torsional 
vibration mechanics model. The free vibration analysis 
of the shaft system under undamped/undamped 
conditions was carried out, and the model results were 
compared with the finite element results to verify the 
reasonableness of the model. Finally, using the Runge-
Kutta methods, the variation law of shaft system 
torsional vibration response with friction coefficient and 
operating speed under the action of self-excitation and 
external torque is analyzed, which provides some 
theoretical reference to improve the establishment of 
shaft system multi-cylinder torsional vibration model. 

2 Dynamics modeling of crankshaft 

system  
2.1 Torsional vibration concentrated mass of 
crankshaft system Modeling 

In this paper, the crankshaft system of DTY500 shale gas 
compressor is taken as the research object, and its three-
dimensional model is shown in Fig. 1. The crankshaft 
system dynamics model is established based on the 
lumped mass method, which mainly consists of 
crankshaft, coupling and motor, and considers the 
piston-cylinder friction and internal damping between 
the shaft segments. The model has 15 degrees of freedom, 
as shown in Fig. 2., where I0-I3 denotes the motor, I4-I5 
denotes the coupling and I6-I14 denotes the crankshaft. 

 

 



 

 

 

Fig. 1 DTY500 compressor crankshaft system three-dimensional model 

 

Fig. 2 Crankshaft system torsional vibration lumped mass model 

In Fig. 2., Ji (i=0, 1, ...14) is the rotational inertia of 
each crankshaft segment; Kj，j+1 (j=0, 1, ...13) is the 
torsional stiffness between the crankshaft segments; Cm, 

m+1 (m=0, 1, ...13) is the internal damping factor; Dn (n=0, 
1, …14) is the external damping factor; The damping 
factor can be determined by Eq. (1) 2423. 
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where,   is the angular frequency of crankshaft. 
2.2 Derivation of single cylinder instantaneous 
inertia expression 

The crankshfat revolves along its axis, and the piston 
reciprocates motion through the connecting rod. Here it 
is assumed that the piston center is co-linear with the 
crankshaft rotation center, so the single-cylinder crank 
connecting rod can be simplified to a crank-slider 
mechanism, as shown in Fig. 3. O, G, A, and B denote 
the rotation center of the crank, the mass center of the 
crank, center of big end of connecting rod and the center 
of the crosshead pin, respectively; k denotes the ratio of 
AG' to AB; r denotes the radius of the crank, and l denotes 
the length of the connecting rod. ,  denotes the crank 
rotation angle and connecting rod swing angle, 
respectively. 

 

Fig. 3 Crank-slider mechanism diagram 

Without considering the effect of piston-cylinder 
friction, the instantaneous kinetic energy of a single 
crank-connecting rod mechanism is expressed as follows 
25： 

 
2 2

2

1 2

1 1

2 2
k c p

E J m r m m x     
g g

  (2) 

where, mc is the crank mass; ml is the connecting rod 
mass; m1 connecting rod large head mass; m2 connecting 
rod small head mass; mp piston assembly mass; Jc crank 

rotational inertia; px
g

is the instantaneous velocity of the 
piston;  

According to the geometric relationship of the 
crank-connecting rod, it is known that sin sinr l  , 

r l   ,    1 cos 1 cos
p

x l r      . Based on the 
above relationship, we obtain. 

sin 2
sin

2 cos
x r

  


 
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 

g g

 (3) 

The total mass of the connecting rod remains the 
same before and after the transformation, and the 
position of the center of mass remains the same, so that 

 1 1
l

m k m  , 2 l
m km . 

Based on the instantaneous kinetic energy 
equivalence method, the equivalent inertia  E

J   of the 
single-cylinder crank-connecting rod mechanism is 



 

 

found as follows: 
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  (4) 

Table 1 presents the structural parameters of the crank-
connecting rod mechanism.  
Table 1 the structural parameters of the crank-connecting rod 

mechanism 

Parameter Value 

Mass of piston assembly mp /kg 25.71 

Mass of connecting rod mass ml /kg 8.66 

Inertia of crank Jc /(kg.m2) 0.0377 

Crank radius r /mm 44.45 

Length ratio of AG to AB k 0.33 

Length ratio of crank radius to 
connecting rod   

0.21 

Guzzomi 2322 points out that the friction between 
the piston and the cylinder affects the effective inertia of 
the crank-connecting rod, so this paper introduces the 

 G    function, which is related to the speed of the 
piston and the direction of the lateral force FN, as shown 
in Eq. (5), and the equivalent inertia of the crank linkage 
mechanism is modified as follows： 
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  (5) 

However, the calculation of FN is lengthy 23, which 
makes the modified equivalent inertia very complicated 
and not conducive to the subsequent establishment of the 
torsional vibration mechanics model of the crankshaft 
system, so this paper makes a simplification of the 
 G  function so that the value of the  G   function 

is not affected by x
g

 and FN. Figure 4 shows the variation 

law of the  G  function with the crank angle after the 

simplification: 

 

Fig. 4 the variation law of the  G  function with the crank angle 

As can be seen from Fig. 4, the smaller the value of 
  , the smaller the difference between the 
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2

3 2 2

cos tan sin

1 tan
G

   
 





 function and the original 

function, the piston ring material studied in this paper is 
PTFE and the cylinder liner material is cast iron, when 
under lubricated conditions 0.35 ~ 0.5   , so the 
simplified  3G   function can describe the change law 



 

 

of the original function. 
The equivalent inertia after correction is： 
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where, 2 2cos 1 sin    . 
For a counter-centered crank-link piston 

mechanism, we obtain 

 
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h
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
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Since 1 5 1 3    ,  h   = cos    and ignoring 
the high-level multinomial, Eq. (7) is transformed as 
follows： 
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  (8) 

Let  3 *1
cos

G
k

 



   , the effect of different 

values of *
k on E

J  is explored, as shown in Fig. 5： 

 

Fig. 5 Effect of different k* values on the instantaneous rotational inertia of the crank-link mechanism 

As can be seen from Fig. 5, when k* is taken as 
appropriate, the correlation coefficient between the 
simplified function and the original function can be 
made greater than 0.98, and the maximum error is less 
than 2.0%, and it can be analyzed that there is a linear 
relationship between k* and   , that is, 

 2* 14 17.94 7.542k       , so Eq. (8) can be 

simplified as follows: 
 

   
 

2

2 2 21

1

s4 17.94 4 n2 i7.5

E c l

p l

J J m r k

m km r 



 

  

   
  (9) 
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The above equation is simply given by: 



 

 

   0 1 cos2
E

J J      (11) 

According to Ref. 25, under the condition that the 
friction between piston ring and cylinder liner is not 
considered, the traditional equivalent inertia of a single 
cylinder is given by: 

   
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2 21
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2 8
E l p l c

J km m r k m r J
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  (12) 

Taking cylinder #1 as an example, the average 
rotational inertia obtained using Eq. (12) is 0.0777 
Kg.m2. When   =0.35, 0.4, 0.45, 0.5, the average 

rotational inertia of the cylinder obtained using Eq. (11) 
is 0.0785, 0.0785, 0.0783, 0.0783, respectively, and the 
maximum error of the calculated result with Eq. (12) is 
0.8%. It is further verified that the simplification of 
 G   function and cylinder rotational inertia equation 

is reasonable. 
2.3 Torsional vibration dynamic modeling of the 
crankshaft system 

The dynamic model of the crankshaft system is 
established based on the Lagrange equation. The 
Lagrange equation corresponding to the four-cylinder 
crankshaft system is as follows: 

0,1, ,14
i

i i i
i

d T T U D
Q i
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g
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where the kinetic energy is 
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and the potential energy is 
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and the dissipative energy is 
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  (16) 

where Ji, Ki, Di represent the inertia, torsional stiffness 
and damping of the mass. i

  is the torsion angle. i is the 
mass number. 

Since i i i
t       , i i   

g g

 , i i 
gg gg

 ,taking 

the compression cylinder as an example, the compressed 
gas produces an excitation torque, expressed as 

i ri
Q M , and its dynamics equation is as follows: 
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Compared with the constant inertia equation, 

 
2

iE iJ  
g g

 represents the effect of introducing crank 
linkage variable inertia on the torsional vibration 
response of the shaft system2626。 

Introducing the parameter = t   , and for a small 
torsion angle   , we obtain cos 1, sin     . 
Substituting Eq. (17), the single cylinder vibration 
differential equation can be obtained as follows: 
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In the literature 1617, the linearized approach to 
Eq.(18) does not accurately reflect the effect of variable 
inertia on the shaft system torsional vibration, so this 

paper retains the   as well as i
g

quadratic terms. 
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i
   represents the phase difference between the 

cylinders. Here it is specified that 7 8 0    ,

12 13 2     . the non-dimensional conversions are 
expressed as follows: 
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where, 2i i i
p h r  , 2i i i

q r  , 2
1i i

s r  , 2i i i nih D J   , 

, 1 2i i i i niC J  , 
i nir   , 

1,ni i i iK J   

2.4 Analysis of crankshaft system excitation torque 

The externally excited torque of the crankshaft system 
consists of the torque Mc generated by the compressed 
gas, the torque Mj generated by the reciprocating inertia 
force, and the internally excited torque Mi caused by the 
non-constant mass. The expression for the internal 
excitation torque is given by： 

2

0 sin 2
i

M J      (21) 

The external excitation moment is expressed as 
follows： 

 

   

   

2 22

2 2

sin

4 4 cos

sin
cos cos 2

cos

r c j

c c H

j j

j p l

M M M

D dD
M P P r

M m r

m m km

  


 
   



 


  
  
   

 
  


  

  (22) 

where Mr is the external excitation torque; D is the piston 
diameter; d is the piston rod diameter; PC and PH are the 
cover-side pressure and shaft-side pressure respectively, 
which can be obtained by professional thermodynamic 
software; mj is the reciprocating motion mass. 

Applying the Fourier series expansion to Mr yields 
the following equation: 
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where M0 is the average and harmonic component of the 
excitation torque; n denote the harmonic orders. 

Taking cylinder 1 as an example, the Fourier series 
expansion of Mr is carried out at different harmonic 
orders, here n=5,10,15, and the errors corresponding to 
different harmonic orders are compared, as shown in Fig. 
6. 

 

Fig. 6 The fitting function corresponding to different harmonic 

order 

From Fig. 6, it can be seen that there is a certain 
deviation between the fitted function and the actual 
excitation moment Mr when n=5, while the RMSE value 
of the system is less than 25 for n=10 or 15, which 
indicates that the fitted function can better reflect the 
change trend of Mr. Meanwhile, since the contribution of 
higher order harmonics to the torsional amplitude of the 
shaft system is not significant, the unfolding harmonic 
order n is set to 10 in this paper. 

3 Free vibration analysis of 

crankshaft system  
3.1 Shaft system with undamped natural frequency 
solution 

We assume that the damping coefficient has little effect 
on the natural frequency of the crankshaft system, thus 
the mathematical model of free vibration is simplified to 

 J θ Kθ 0
gg

  (24) 

The eigenvalue method 2 0  J K   is used to 



 

 

solve the natural frequency of the crankshaft system, and 
Ref [27]. points out that the lumped mass method can 
only accurately solve the anterior 1/3 order mode of the 
corresponding model, so the first 2 order modes of the 
crankshaft system are extracted in this paper. Table 2 
presents the dynamic parameters of the lumped mass 

model, where the inertia parameters are provided by the 
manufacturer, the stiffness parameters are obtained by 
the finite element software, and the damping parameters 
are derived from Eq. (1). 
Table 2 Dynamic parameters of the lumped mass model 

 

Parameter 
Node position 

0 1 2 3 4 5 6 7 8 9 

Inertia 
Ji/(kg.m2) 0.7651 1.7831 16.9752 0.5175 0.3329 0.5622 0.0240 0.0777 0.0777 0.0170 

Stiffness Ki, i+1/ 
(MN.m.rad-1) 8.9183 20.2981 10.1142 5.1049 31.277 9.4116 3.2727 3.5379 2.4465 3.5465 

 

Parameter 
Node position 

10 11 12 13 14 

 
Inertia 
Ji/(kg.m2) 0.0231 0.0170 0.0777 0.0777 0.0277 

Stiffness Ki/ 
(MN.m.rad-1) 2.7354 3.5465 2.4465 3.5379 0 

  
(a) The variation law of the 1st order natural frequency 

 
(b) The variation law of the 2nd order natural frequency 

Fig. 7 the variation law of the first 2 orders of the crankshaft 

system natural frequency with angle  

As can be seen from Fig.7, the 1st and 2nd order 
natural frequencies of the shaft system show a sinusoidal 
trend. For the same order natural frequency, the value of 
 does not affect its change law, but the 2nd order natural 

frequency will have a "high-low-high" fluctuation region 
near 180°. The Ref 26Error! Reference source not 
found. shows that when 0  , the instantaneous inertia 

change of the crank-link mechanism only affects the 
shaft system fluctuation amplitude, and there will not be 
a secondary fluctuation region of the intrinsic frequency. 
Therefore, after considering the influence of friction 
between the piston ring and cylinder liner, it will lead to 
the complicated variation law of the high order natural 
frequency of the shaft system, and the torsional vibration 
behavior of the shaft system cannot be accurately 
calculated. 
3.2 Shaft system with damped natural frequency 
solution 

Since the shaft system damping matrix has small non-
diagonal elements in canonical coordinates, the shaft 
system modal damping ratio is calculated as follows： 

2

i

i

i

cp



  (25) 

where cpi is the damping matrix in canonical coordinates; 

i
  is the angular frequency.  

Using the relationship between the undamped and 



 

 

damped natural frequencies, i.e., 1
di ni i

     , the 
values of the damped natural frequencies of the shaft 

system are obtained, and Table 3 is used to show the 
natural frequencies of the shaft system for the three 
models. 

Table 3 Comparison of the natural frequency of the first two orders in the different models 

Order 
Non-constant 
inertia model (damped and average value) Finite element 

model 
=0  =0.35   =0.4  =0.45  =0.5  

1 164.5 164.5 164.5 164.5 164.5 166.1 

2 317.2 317.2 317.2 317.2 317.2 354.5 

From Table 3, it can be seen that the   value has 

less influence on the average value of the 1st and 2nd 
order natural frequencies of the shaft system, and the 
maximum error between the calculation results of the 
lumped mass model and the finite element model is 10.5% 
after considering the influence of damping. Since the 
lumped mass takes into account the influence of variable 
inertia of the crank-link mechanism, the obtained results 
are smaller than the finite element model, but the 
maximum error is still in an acceptable range, which 
proves that the parameter values in Table 2 are 
reasonable. 

4 Forced vibration analysis of 

crankshaft system 
The theoretical basis indicates that the torsional behavior 
of the shaft system is influenced by the piston-cylinder 
friction coefficient   , the crankshaft angular velocity 
  , and the excitation moment M. In this paper, the 
numerical results are used to discuss the effects of these 
three parameters on the torsional behavior of the shaft 
system in order to better control the amplitude of the 
shaft system torsional vibration. The numerical results 
include the torsional response of the shaft system in the 
time domains, the phase plane, and the Poincare surface. 
4.1 Effect of piston-cylinder friction coefficient on 
torsional vibration 

The study of the free vibration of the shaft system shows 
that with the increase of the piston-cylinder friction 
coefficient   , the variation law of the higher-order 

natural frequency of the shaft system is more 
complicated, so this paper firstly explores the variation 
law of the torsional vibration response of the shaft 
system with the value of    under the self-excitation 

state, as shown in Fig. 8: 

 
(a) =0.35   

 

(b) =0.4   



 

 

 

(c) =0.4   

 

(d) =0.5   
Fig. 8 The variation law of torsional vibration response of shaft 
system corresponding to different   values 

From Figure 8, it can be seen that： 

（1）When the value of    increases, the time 
domain waveform of the shaft system always shows an 
exponentially decreasing trend, which indicates that the 
vibration of the shaft system is stable and there is no 
jump phenomenon; 

（2）When the value of   increases, partial time 
domain waveforms show a similar pattern of change, but 
the maximum amplitude increases slightly, indicating 
that the value of torsional amplitude of the shaft system 
can be reduced by improving the lubrication between the 
piston ring and the cylinder liner. 

（3）When the value of    increases, the phase 
diagram and the Poincare surface of section are basically 
similar, the trajectories are multiple circular 
superimposed but do not overlap, but as the value of   

increases, the phase trajectory will show a right shift 

phenomenon, which indicates that the vibration of the 
shaft system is the proposed periodic motion when the 
value of   changes in a small range, but the amplitude 

will increase slightly. 
4.2 Effect of rotational speed change on torsional 
vibration 

When the friction coefficient of piston ring and cylinder 
liner is constant, the torsional vibration response of the 
shaft system is analyzed by changing the operating speed 
of the shaft system. This paper focuses on the effect of 
four commonly used operating speeds (500r/min, 
1000r/min, 1500r/min and 2000r/min) on the torsional 
vibration response of the shaft system. Fig. 9 shows the 
variation pattern of the self-excitation response of the 
shaft system at different speeds: 

 

(a) 500 minn r   

 

(b) 1000 minn r   
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(c) 1500 minn r   

 

(d) 2000 minn r   
Fig. 9 The variation law of torsional vibration response of 

shaft system corresponding to different n values  

For the time domain waveforms corresponding to 
different rotational speeds, we can roughly divide them 
into three regions, i.e., region I: Fluctuation state; region 
II: Convergence state; region III: Stability state. The 
conclusions drawn are mainly as follows: 

(1) When the speed of the shaft system gradually 
increases, the time when the shaft system is in the 
fluctuation region will increase. This is because the 
lower the speed, the greater the internal damping of the 
shaft system, which makes the shaft system dissipate 
more energy, so it can transition to the stable stage faster, 
but when the shaft system is in the stable stage, the lower 
the speed, the greater the vibration amplitude. 

（2）For the convergence stage, when the shaft 
system speed n=500r/min, the phase diagram of the shaft 
system shows up-and-down fluctuation and does not 
form a circular orbit, which indicates that the motion of 
the shaft system is in a chaotic state; when the shaft 

system speed n=1000r/min, the phase diagram of the 
shaft system is a "jagged" circular orbit, which indicates 
that the motion of the shaft system is in an unstable 
cyclic state; when the shaft system speed n=1500r/min 
and 2000r/min, the phase diagram of the shaft system is 
a superimposed and non-repeating circle, which 
indicates that the motion of the shaft system is in a cyclic 
state. 

In summary, try to ensure that the speed of the shaft 
system is above 1500r/min, which can not only ensure 
the reduction of the vibration amplitude of the shaft 
system in stable operation, but also the vibration state of 
the shaft system in all three stages can be predicted, 
which is conducive to the control of shaft system 
torsional vibration. 
4.3 Torsional vibration response analysis of shaft 
system for excitation moment  
The effect of different friction coefficients and rotational 
speeds on the torsional vibration response of the shaft 
system under self-excitation is discussed above, while 
this section focuses on the torsional vibration response 
of the shaft system under the action of the excitation 
moment. Meanwhile, in order to discuss the influence of 
various parameter interactions on the shaft system 
torsional vibration, four parameter combinations 
( 0.35, 500 / minn r    , 0.5, 500 / minn r    ,

0.35, 2000 / minn r    , 0.5, 2000 / minn r    ) 
were chosen as the boundary conditions for the 
numerical analysis, and the variation law of the shaft 
system torsional vibration response was obtained, as 
shown in Fig. 10: 

 

(a) 0.35, 500 / minn r    



 

 

 

(b) 0.5, 500 / minn r    

 

(c) 0.35, 2000 / minn r    

 

(d) 0.5, 2000 / minn r    

Figure 10 Torsional vibration response of shaft system under 

the action of excitation moment 

From Figure 10, it can be seen that： 

(1) The vibration of the shaft system never appears 
chaotic under the action of the excitation moment. 
However, as the speed of the shaft system increases, the 

vibration state of the shaft system changes from a 
periodic motion to a proposed periodic motion, 
indicating that the higher the operating speed, the closer 
the vibration of the shaft system is to the chaotic state. 
Meanwhile, when the working speed is 500r/min, the 
maximum vibration amplitude is 2.0°, and when the 
working speed is 2000r/min, the maximum amplitude is 
1.06°, which is reduced by 47%, so in the actual project, 
ensure that the compressor working speed is medium and 
high speed. 

(2) When the shaft system is in low-speed motion 
(500r/min), the phase diagram is a closed circle, 
indicating that the shaft system vibration is periodic 
motion. However, the circular trajectory is not smooth 
and shows a trend of "sawtooth decay", and the sawtooth 
density decreases with the increase of friction coefficient 
  . This indicates that small changes in the initial 

conditions can lead to changes in the vibration state of 
the shaft system. 

(3) When the shaft system is in medium and high 
speed motion (2000r/min), the phase diagram is a 
superposition of multiple closed circles and does not 
overlap, indicating that the shaft system vibration is a 
proposed periodic motion. With the increase of friction 
coefficient   , the phase diagram appeared upward 

phenomenon, which shows that in the high speed 
operation, the greater the friction coefficient shaft 
system speed fluctuations, so should ensure that the 
piston ring and cylinder liner lubrication conditions 
between good. 

5 Conclusion 

(1) In this paper, the equations for calculating the 
rotational inertia of the crank-link mechanism are 
simplified, and the average error in calculating the 
rotational inertia between the simplified equations and 
the actual measurement is 1.4%. Therefore, the 
simplified equation can reasonably reflect the variation 
law of rotational inertia of the crank linkage mechanism 
with angle, and facilitate the establishment of the 
subsequent torsional vibration mechanics model. 

(2) After considering the effect of the friction 
coefficient between the piston ring and the cylinder 
block, a "high-low-high" fluctuation in the 2nd order 
natural frequency of the shaft system was observed 



 

 

under undamped conditions, indicating that the 
introduction of the friction coefficient may lead to 
inaccurate prediction of the torsional vibration behavior 
of the shaft system. Under the condition of damping, the 
error of the natural frequency obtained from the torsional 
vibration mechanics model and the finite element model 
is 10.5%, which verifies the reasonableness of the 
parameters of the torsional vibration mechanics model. 

（3）In the self-excited state of the shaft system, 
the vibration state of the shaft system does not change 
with the change of the friction coefficient, all are the 
state of the proposed periodic motion, but the larger the 
friction coefficient, the vibration amplitude of the shaft 
system will show a tendency to increase; At the same 
time, as the working speed increases, the vibration state 
of the shaft system transforms from chaotic state to the 
proposed periodic state, and the amplitude gradually 
decreases. 

（4）Under the action of excitation torque, with 
the increase of working speed, the vibration state of the 
shaft system is transformed from periodic motion to the 
proposed periodic state, but the vibration amplitude 
gradually decreases. When the working speed is the 
same, with the increase of friction coefficient, the 
vibration speed of the shaft system shows an increasing 
trend. Therefore, in the actual project should ensure that 
the compressor is in high speed operation and the piston 
ring with the cylinder liner between the lubrication state 
is good. 
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