
Niche partitioning and individual specialisation in
resources and space use of sympatric fur seals at
their range margin
Marcus Salton  (  marcussalton@gmail.com )

Macquarie University https://orcid.org/0000-0001-5647-406X
Vincent Raoult 

University of Newcastle
Ian D Jonsen 

Macquarie University
Robert Harcourt 

Macquarie University

Research Article

Keywords: competition, stable isotopes, foraging ecology, marine predator, recovery

Posted Date: July 14th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1475466/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.  
Read Full License

https://doi.org/10.21203/rs.3.rs-1475466/v1
mailto:marcussalton@gmail.com
https://orcid.org/0000-0001-5647-406X
https://doi.org/10.21203/rs.3.rs-1475466/v1
https://creativecommons.org/licenses/by/4.0/


All authors agree with the content and consent to submission of the manuscript to Oecologia. The 
responsible authorities have also given their consent for this work to be published. 
 
Authors Contributions: MS, VR, IJ and RH conceived and designed the study. MS and RH sourced 
the resources and permits, and collected the data with support of field teams. MS, RV and IJ processed 
the data. MS analysed the data with feedback from VR, IJ and RH. MS wrote and prepared the 
manuscript, and VR, IJ and RH provided critical revisions of the manuscript. 

Title: Niche partitioning and individual specialisation in resources and space use of sympatric fur seals 

at their range margin 

Author Names: Marcus Salton1,3, Vincent Raoult1,2, Ian Jonsen1, Robert Harcourt1 

Affiliations: 

1School of Natural Sciences, Macquarie University, North Ryde, New South Wales 2109, Australia 

2School of Environmental and Life Sciences, University of Newcastle, Ourimbah 2258, Australia 

3Present address: Australian Antarctic Division, Department of Agriculture, Water and Environment, 

Kingston, Tasmania 7050, Australia 

Corresponding author email: marcussalton@gmail.com  

Journal: Oecologia 

 

 

 

 

  

 

mailto:marcussalton@gmail.com


 

2 

  

ABSTRACT 1 

Ecological theory predicts niche partitioning between high level predators living in sympatry as a 2 

strategy to minimise the selective pressure of competition. Accordingly, male Australian fur seals 3 

Arctocephalus pusillus doriferus and New Zealand fur seals A. forsteri that live in sympatry should 4 

partition their broad niches (in habitat and trophic dimensions) in order to coexist. However, at the 5 

northern end of their distributions in Australia both are recolonising their historic range after a long 6 

absence due to over-exploitation, and their small population sizes suggest competition should be weak 7 

and allow overlap in niche space. We found some niche overlap, yet clear partitioning in diet trophic 8 

level (δ15N values from vibrissae), movement space (horizontal and vertical telemetry data) and 9 

circadian activity patterns (timing of dives) between males of each species, suggesting competition 10 

remained an active driver of niche partitioning among individuals in these small, peripheral 11 

populations. Consistent with individual specialisation theory, broad niches of populations were 12 

associated with high levels of individual specialisation for both species, despite putative low 13 

competition. Specialists in isotopic space were not necessarily specialists in movement space, further 14 

emphasising their diverse individual strategies for niche partitioning. Males of each species displayed 15 

distinct foraging modes, with Australian fur seals primarily benthic and New Zealand fur seals 16 

primarily epipelagic, though unexpectedly high individual specialisation for New Zealand fur seals 17 

might suggest marginal populations provide exceptions to the pattern generally observed among other 18 

fur seals. 19 

Key Words: competition, stable isotopes, foraging ecology, marine predator, recovery  20 
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INTRODUCTION 21 

Understanding the factors that limit species’ distributions is a key theme in ecology. An important 22 

factor that limits the distribution of many plants and animals is interrelations among species which 23 

determine food supply, threat of predation, disease and competition (Krebs 2001). In the case of 24 

competition, two species living in a community can compete for resources to a point where one 25 

species compromises the fitness of another, but can coexist by partitioning resources or risk 26 

competitive exclusion (MacArthur & Levins 1967; Pacala & Roughgarden 1982; Luiselli 2006). 27 

Interspecific competition is ubiquitous in plants and animals, though particularly prevalent at higher 28 

trophic levels and/or among larger animals where available resources may be more limited (Connell 29 

1983; Schoener 1983). Many populations of large carnivores are currently recovering and expanding 30 

their range due to persistent conservation efforts (Wabakken et al. 2001; Chapron et al. 2014; 31 

Gompper et al. 2015; Martinez Cano et al. 2016). During such recoveries, the interrelations with 32 

species in the existing community and with other recovering carnivores are often unknown, but can 33 

involve interspecies competition with detrimental impacts to some species, including human conflict 34 

(Gompper 2002; Thornton et al. 2004; Kilgo et al. 2010; Reddy et al. 2019; Engebretsen et al. 2021; 35 

Franchini et al. 2021). Therefore, determining factors that mitigate competition and mechanisms for 36 

coexistence remain important in ecology and will support conservation management. 37 

Niche theory suggests it is possible for competing species to coexist if they occupy different niches 38 

(Hardin 1960; MacArthur & Levins 1967). Within a species, similar individuals manage to coexist by 39 

partitioning resources, with individuals that have contrasting morphology, physiological capacity, 40 

energy requirements or social status typically adopting different strategies to exploit available 41 

resources (Svanbäck & Bolnick 2007). Individuals can also use a subset of the population’s resources 42 

for reasons unrelated to sex, age and morphological variation, i.e. inter-individual variation (Bolnick et 43 

al. 2003; Araújo et al. 2011), with more specialised individuals using a smaller subset and more 44 

generalised individuals using a larger subset of the population resources. The level of inter-individual 45 

variation can be positively related to population density – a proxy for intraspecies competition 46 

(Svanbäck & Persson 2004; Svanbäck & Bolnick 2005, 2007; Araújo et al. 2008; Tinker et al. 2012; 47 

Newsome et al. 2015). At the edge of a species’ geographic range, population size is small and thereby 48 
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intraspecies competition tends to be low, reducing selection pressures associated with population 49 

density, but here interspecies competition can be an important factor setting range limits (Hersteinsson 50 

& Macdonald 1992; Case & Taper 2000; Case et al. 2005; Pigot & Tobias 2013).  51 

By progressing the study of how species coexist, particularly at a species’ expanding margin of their 52 

range, we can better assess and predict the interrelations between species as they recover and move 53 

into new communities. There are now well-established methods for quantifying ecological niche size 54 

and partitioning, including variance and ellipse-based metrics, and spatial, resource and temporal 55 

dimensions (Pielou 1972; Petraitis 1979; Bearhop et al. 2004; Peres-Neto et al. 2006; Jackson et al. 56 

2011; Swanson et al. 2015; Frey et al. 2017), which have been used to demonstrate that individuals 57 

can coexist by partitioning parts of their niche space, resources and time (Luiselli 2006; Navarro et al. 58 

2013; Dehnhard et al. 2020). These niche dimensions have often been assessed in isolation, but with 59 

the proliferation of stable isotope analyses and telemetry devices more studies are demonstrating the 60 

importance of a multifaceted approach to understanding niche partition (Kleynhans et al. 2011; Matich 61 

& Heithaus 2014; Baylis et al. 2015; Giménez et al. 2018; Riverón et al. 2021; Schwarz et al. 2021). 62 

There have also been advances in measuring intra and interspecific variability in resource and space 63 

use (Bolnick et al. 2002; Araújo et al. 2007; Zaccarelli et al. 2013; Carneiro et al. 2017; Bonnet-64 

Lebrun et al. 2018) that require serial sampling individuals to determine individual specialisation 65 

(Newsome et al. 2010; Eerkens et al. 2016). Animals can be monitored over long periods of time by 66 

using telemetry devices and sampling tissues that accumulate isotopes, with both approaches capable 67 

of quantifying individual specialisation (Bearhop et al. 2006; Newsome et al. 2009; Elorriaga-68 

Verplancken et al. 2013; Kernaléguen et al. 2016; Bonnet-Lebrun et al. 2018). Commonly analysed 69 

isotopes include nitrogen, as an indicator of trophic position of prey, and carbon, as an indicator of 70 

geographic origin of prey (Kelly 2000; McCutchan Jr et al. 2003). In marine systems, carbon isotopes 71 

can reflect nearshore vs. offshore foraging and prey originating from benthic vs. epipelagic 72 

environments (Michener & Kaufman 2007; Newsome et al. 2010). Therefore, the tools are now 73 

available to provide detailed assessments of how large predators coexist as they recover and expand 74 

their range.  75 
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Otariids, fur seals and sea lions, were ubiquitously overharvested for their fur from the eighteenth to 76 

twentieth century, with extinction of many populations and dramatic range reductions (Bonner 1989; 77 

Gerber & Hilborn 2001). With persistent conservation efforts, many species have been recovering in 78 

recent decades and reoccupying parts of their historic range (Wickens & York 1997; Gerber & Hilborn 79 

2001; Kirkman et al. 2013; Crespo 2021; Salton et al. 2021). There are many incidences of two otariid 80 

species living in sympatry during such recoveries (Majluf & Trillmich 1981; Lyons et al. 2000; Wege 81 

et al. 2016; Elorriaga-Verplancken et al. 2021), and while this seems to be possible by partitioning 82 

their niche (Robinson 2002; Franco-Trecu et al. 2012; Páez-Rosas et al. 2012; Jeglinski et al. 2013; 83 

Pablo‐Rodríguez et al. 2016; Hoskins et al. 2017) different levels of individual specialisations in diet 84 

and foraging among species may also play a role (Franco-Trecu 2014; Kernaléguen et al. 2015a; 85 

Kernaléguen et al. 2015b; Riverón et al. 2021). Some sympatric species display disparate population 86 

growth rates and range expansion, which could be attributed to interrelations between the similar 87 

species (Wickens & York 1997; Villegas-Amtmann et al. 2013; Franco-Trecu 2014; Elorriaga-88 

Verplancken et al. 2021).  89 

Here, we investigate how two otariids, the Australian fur seal, Arctocephalus pusillus doriferus, and 90 

the New Zealand fur seal, A. forsteri (also known as long-nosed fur seal, Shaughnessy & Goldsworthy 91 

2015), coexist in sympatry at an expanding margin of both species’ range. These species have recently 92 

reestablished seasonal occupation of their north-eastern range margin (Warneke 1975; Irvine et al. 93 

1997; Shaughnessy et al. 2001; Burleigh et al. 2008; Salton et al. 2021) following broader population 94 

recovery and range expansion (Arnould et al. 2003; Shaughnessy et al. 2015; McIntosh et al. 2018). 95 

Their populations at this margin remain small and predominantly consists of juveniles and sub-adult 96 

males (Burleigh et al. 2008), though both breed on Montague Island, NSW (36° 14’ S, 150° 13’ E), in 97 

small numbers (McIntosh et al. 2018). The two species are typically considered ‘generalists’ due to 98 

their broad diets (Page et al. 2005a; Kliska 2016), but in some areas Australian fur seals do exhibit 99 

individual specialisations in diet and foraging (Kernaléguen et al. 2012; Kernaléguen et al. 2016; Knox 100 

et al. 2018). The two species have apparently distinct foraging modes, with Australian fur seals 101 

primarily foraging during benthic dives over the continental shelf (Knox et al. 2017; Salton et al. 102 

2019) and New Zealand fur seals foraging during pelagic dives on and off the continental shelf (Page 103 

et al. 2005b; Page et al. 2006; Salton et al. 2021). There is some evidence that the two species have 104 
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different diets and foraging behaviour in this part of their range (Hardy et al. 2017; Salton et al. 2021), 105 

though the mechanisms for coexistence remains unclear. Given the small population sizes of both 106 

species, we expect intraspecies competition to be low and, accordingly, interspecies interactions to 107 

drive niche partitioning. To understand the mechanisms for coexistence in a situation with purported 108 

low intraspecies competition we aim to 1) estimate niche sizes, in isotopic and movement space, and 109 

the degree of partitioning between species at a population level, and 2) the degree of individual 110 

specialization at the intra-population level and how it relates to their population niche size. Then, 3) 111 

we assess the relationship between individual specialisation in isotopic space and individual 112 

specialisation in movement space, and the importance of intrinsic differences in body size. 113 



 

7 

  

METHODS 114 

Ethics statement 115 

All research protocols were conducted under Office of Environment and Heritage Animal Ethics 116 

Committee Approval (100322/03) and Macquarie University Ethics Committee Approval 2011/054. 117 

Capture and handling methods are outlined in Salton et al. (2019). While sedated, standard body 118 

length was measured using standard methods (± 1 cm, Kirkwood et al. 2006), and the telemetry device 119 

was glued to the dorsal midline of each seal with a quick-setting epoxy (Araldite® K-268, Huntsman 120 

Advanced Materials; Quick Set Epoxy Resin 850-940, RS components, Australia). Devices remained 121 

on the seals until they fell off, once their fur weakened towards the annual moult. Access to the study 122 

site at Jervis Bay was under the guidance and support of the Australian Navy, New South Wales 123 

National Parks and Wildlife Service, Jervis Bay Marine Park and the Beecroft Ranger Station. Access 124 

to the study site at Montague Island was under the guidance and support of New South Wales National 125 

Parks and Wildlife Service.  126 

Study species, study site and data collection 127 

The data were collected during the male’s inter-breeding period between 25-May and 22-Aug in 2011 128 

to 2014, inclusive, when they are free of immediate reproductive constraints and thereby no 129 

requirement to attend a specific terrestrial site and can range widely. The breeding period for male 130 

Australian fur seals is between late October and late December and for male New Zealand fur seals 131 

between early November and early January (Crawley & Wilson 1976; Warneke & Shaughnessy 1985). 132 

Males move away from their inter-breeding areas towards breeding colonies at the approach of 133 

breeding seasons, and it is assumed the reverse occurs at the end of breeding, consistent with the 134 

seasonal pattern of attendance at these inter-breeding areas (Shaughnessy et al. 2001; Burleigh et al. 135 

2008) and resighted seals marked with flipper tags at colonies (Warneke 1975). Male fur seals were 136 

captured at two study sites, Jervis Bay (35° 3’ S, 150° 50’ E) and Montague Island (36° 14’ S, 150° 137 

13’ E) on the southeast coast of Australia (Fig. 1). This coastline has a narrow continental shelf (17-72 138 

km width) with the shelf break between 130 and 170 m (Geoscience Australia, data.gov.au, 2017-06-139 

24). The populations of both fur seal species have recently been growing in this north-eastern region 140 
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of both species’ range after near extirpation from over harvesting, and at the time of this study the 141 

populations remained small (Warneke 1975; McIntosh et al. 2018). 142 

 143 

The movement of males were recorded with Mk10-AF Fastloc-GPS devices (Wildlife Computers; 105 144 

× 60 × 20 mm, 240 g) at Jervis Bay and CTD-SRDL-9000 (Conductivity-Temperature-Depth Satellite 145 

Relay Data Logger, Sea Mammal Research Unit, St Andrews, UK; 120 x 72 x 60 mm, 545 g) at 146 

Montague Island. Both devices collected Argos satellite-derived locations (collected at irregular time 147 

intervals, with a median fix rate of 1 fix per 1.1 h), and Mk10 devices also recorded GPS locations 148 

(collected at 2 min intervals, with a median fix rate of 1 fix per 1.5 h), both of which were transmitted 149 

via the Argos satellite network (Collecte Localisation Satellites, Saint-Agne, France). Dive data were 150 

collected with both devices (but not Mk10-AF in 2011), with depth (± 0.5 m) sampled every 5 s when 151 

the device was wet. Single dives were defined by a minimum depth of 5 m and minimum duration of 152 

10 s, then the maximum depth per dive was extracted.  153 

To account for potential inter-annual variability in resource use (Rodríguez-Malagón et al. 2021), we 154 

sampled individual vibrissae from both species across each year of the study. The longest whisker was 155 

sampled (plucked) from each seal while a tracking device was being attached. One whisker was 156 

sampled from a dead seal incidentally in 21 November 2012. In the laboratory, vibrissae were hand-157 

washed in 100% ethanol and cleaned in an ultrasonic bath of distilled water for 5 minutes. Vibrissae 158 

were then dried, measured and cut into 3 mm-long consecutive sections starting from the proximal 159 

(facial) end, following Cherel et al. (2009). The first 10 sections were sampled from all individuals. 160 

Vibrissae growth rate estimates for Australian fur seal males are 0.17 ± 0.04 mm d-1 (Kernaléguen et 161 

al. 2015b), and while they are not known for male New Zealand fur seals we assume it is similar based 162 

on growth rate estimates of other male fur seals; Arctocephalus australis 0.13 mm d-1, Arctocephalus 163 

gazelle 0.14 ± 0.02 mm d-1, Arctocephalus tropicalis 0.14 ± 0.04 mm d-1, (Kernaléguen et al. 2012; 164 

Vales et al. 2015). Hence, a 3mm section corresponds to approximately 18 days (Kernaléguen et al. 165 

2015b). The δ13C and δ15N values of each whisker section were determined by a PDZ Europa ANCA-166 

GSL elemental analyser interfaced to a PDZ Europa 20-20 isotope ratio mass spectrometer (Sercon, 167 

Cheshire, UK) at the University of California Davis (UC-Davis) Stable Isotope Facility. Results are 168 

presented in the conventional δ notation relative to Vienna PeeDee Belemnite marine fossil limestone 169 
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and atmospheric N2 for δ13C and δ15N, respectively. Replicate measurements of internal laboratory 170 

standards indicate measurement errors of < 0.58%0 and < 0.20%0 for δ13C and δ15N values, 171 

respectively. 172 

Vibrissae were sampled for carbon and nitrogen isotope analysis from 9 male Australian fur seals 173 

(AuFS) and 35 male New Zealand fur seals (NZFS). Location and dive recording devices were 174 

deployed on 10 male AuFS and 38 male NZFS. Location and dive data were recorded for 15-259 days 175 

(mean ± SE 131.9 ± 15.5 days and 101.4 ± 10.7 days per individual, respectively), which was 176 

equivalent to 15 ± 1.2 weeks with location and dive data, 635 ± 53 locations (from SSM, at 3hr 177 

interval) and 1151 ± 221 dives per individual. Based on body length of the seals, male AuFS were 178 

larger than male NZFS (body length mean ± SE 192 ± 7.9 cm, N = 9 individual, vs. 137 ± 5.7, N = 39 179 

individuals, respectively; Wilcoxon rank sum test W=339, P < 0.001). 180 

Data processing  181 

All data processing, analysis and figure development were conducted in R v4.1.1 (R Core Team 182 

2020). 183 

Locations were subjected to standard quality-control checks, including removal of erroneous and 184 

duplicated locations, removal of locations after a tag fell off a seal, and reclassification of Argos Z-185 

class locations to B-class (n = 86/ 56978 locations). Then a continuous-time correlated random walk 186 

state-space model (Jonsen et al. 2020) was fitted to the quality-controlled locations using 187 

the ‘fit_ssm’ function in the ‘foieGras’ R package (Jonsen & Patterson 2020). This approach 188 

accounted for observation errors in the Argos location data, and provided location estimates with 189 

standard errors at regular 3 hr time intervals along each individual’s track (Jonsen et al. 190 

2013). Foraging ‘distance to land’ was used as an index of horizontal movement behaviour. To 191 

calculate this index, SSM-estimated locations were projected using Albers equal-area based on the 192 

extent of the seal’s movements, determined using https://projectionwizard.org/, then distance to the 193 

Australian coastline (GEODATA Coast 100K 2004, Geosciences Australia) was calculated using the 194 

‘gDistance’ function in the ‘rgeos’ R package (Bivand & Rundel 2021). Locations within 100 m of 195 

land were assumed to be indicative of the seal being on land or not foraging and removed. 196 

To best represent the foraging behaviour of animals at the expanding range margin, we analysed only 197 

the 10 most recent whisker sections to represent an individual’s isotopic niche and the first 10 weeks 198 



 

10 

  

of tracking data to represent their movement niche. This avoids details of their seasonal migrations 199 

that may influence the stable isotope values preceding the period at the range margin (Online 200 

Resource, Fig. S1; Kernaléguen et al. 2015b; Salton et al. 2021). Based on the whisker growth rate 201 

estimates (presented above), the isotope data corresponds to diet approximately 180 days prior to 202 

sampling (i.e. approximately the first six months of the year). Each whisker section represented a 203 

unique sample of δ13C and δ15N values per individual. For movement data, distance to land and 204 

maximum dive depth were averaged per week for each individual, and these weekly averaged values 205 

represented individual samples of movement behaviour. 206 

Niche partitioning and Individual specialisation 207 

Species differences in the two isotope variables (δ13C and δ15N) and two movement variables (distance 208 

to land and dive depth) were tested using linear mixed models. For each of the four variables, a linear 209 

mixed model was fitted with species a fixed categorical effect and sample nested in individual identity 210 

as a random effect, using the ‘lme’ function in the ‘nlme’ R package (Pinheiro et al. 2021). All models 211 

included a temporal autocorrelation (corAR1 of form ~1|ID) to account for serial sampling of 212 

individuals. When there were model convergence issues (i.e. δ15N), these were corrected by removing 213 

the nested sample component of the random effect. Akaike Information Criterion (AIC) and analysis 214 

of variance tests were used to compare the model with fixed effects to the null model, with P < 0.05 215 

indicative of a significant difference from the null model; following the protocol outlined by Zuur et 216 

al. (2009). Distance to land and dive depth were log transformed to account for these indexes being 217 

highly positively skewed, and the model estimates are presented back-transformed with their 218 

confidence interval (alternatively, isotope estimates are presented with their modelled standard error). 219 

The 95% and 50% spatial utilisation distribution (UD) probabilities were calculated for the inter-220 

breeding period. Smoothing parameters for the UD were calculated using the plug-in bandwidth 221 

selector function ‘Hpi’ and associated ‘kde’ function in the ‘ks’ R package (Duong 2021), and the 222 

Australian coastline was used as a habitat grid to ensure realistic UD probabilities over water. UDs 223 

were calculated for each individual and then standardised to produce a population level 95% and 50% 224 

UD for AuFS and NZFS. Percentage UD overlap was calculated using the equation [(areaab/UDa) × 225 

(areaab/UDb)]0.5, where areaab is the area of overlap in the home ranges of species a and b, and UDa and 226 

UDb refer to the UD of species a and b, respectively (Atwood & Weeks 2003; Hoskins et al. 2017). 227 
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To test for partitioning in the circadian pattern of dive behaviour, we assessed whether dive frequency 228 

and dive depth differed with three diel periods; day, twilight and night. Solar position was calculated 229 

using solar azimuth and elevation based on location, local date and time (Australian eastern standard 230 

time: UTC +10 h), using the ‘solarpos’ function in the ‘maptools’ R package (Bivand & Lewin-Koh 231 

2021). From solar position, a categorical variable for diel period was defined with three levels: 232 

positive values of solar elevation angle identified ‘day’; values between zero and -12 deg below the 233 

horizon identified nautical ‘twilight’; and values below -12 deg identified ‘night’. Generalized linear 234 

mixed models were fitted to assess whether dive frequency was explained by diel period, for each 235 

species separately, using the ‘lmer’ function in the ‘lme4’ R package (Bates et al. 2015) with a random 236 

effect for individual (intercept only, to elevate convergence issues with the models) and a Poisson 237 

error distribution with a log link function. Linear mixed models were fitted to assess whether dive 238 

depth (log transformed) was explained by diel period, for each species separately, using the ‘lmer’ 239 

function in the ‘lme4’ R package (Bates et al. 2015) with a random effect for individual (intercept 240 

only, to elevate convergence issues with the models). AIC and analysis of variance were again used to 241 

compare the model with fixed effects to the null model, with P < 0.05 indicative of a significant 242 

difference from the null model.  243 

Isotopic and movement niche size and partitioning between species were estimated using Bayesian 244 

ellipse-based metrics calculated in the ‘SIBER’ R package (Jackson et al. 2011). SIBER applies a 245 

‘typical’ individual approach to calculate the core niche of a population, and incorporates uncertainties 246 

relating to sampling biases and small sample sizes (Jackson et al. 2011; Syväranta et al. 2013). We 247 

used the 40% Bayesian standard ellipse area (SEAb) to represent the most reliable population-level 248 

niche, with the variance estimated through 104 posteriori draws, and a 95% SEAb to capture individual 249 

variation and enable more accurate cross-study comparisons. Repeated sample measurements per 250 

individual were not independent, yet the small sample size of individual Australian fur seals produced 251 

highly variable niche estimates for that population, albeit consistent niche size compared to the whole 252 

dataset (Sup 1). Independent sampling is a required assumption for use of Bayesian SEAb (Jackson et 253 

al. 2011), but incorporating a large number of individuals as in this case was preferable to other 254 

methods of assessing isotope niche. SEAb results should nevertheless be interpreted in combination 255 

with results from mixed effect models. Overlap of isotopic and movement niches was calculated per 256 
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species based on the posterior distributions of the fitted ellipses using the ‘baysianOverlap’ function (n 257 

= 360, draws = 50). 258 

The degree of individual specialisation in male AuFS and NZFS for each of the four niche parameters 259 

were measured and compared using Roughgarden’s WIC/TNW index for continuous data (Bolnick et 260 

al. 2002). The approach considers the total niche width (TNW), or variance in total niche parameter 261 

for all individuals, to be a sum of the within-individual component (WIC) and the between-individual 262 

component (BIC). The WIC is the average of individual niche widths, for example the variance in 263 

isotopes within each individual’s whisker, and the BIC is the variance in mean parameter estimates 264 

(e.g. isotope values) among individuals. The ‘WTcMC’ function in the ‘RInSp’ R package (Zaccarelli 265 

et al. 2013) was used to calculate the specialisation index (SI) for each population, weighting each 266 

individual equally to account for slight variances in the number of samples per individual. The SI 267 

varied between 0 (specialist) and 1 (generalist), and we apply Monte Carlo resampling (using 1000 268 

replicates) to test the null hypothesis that all individuals sample equally from a generalist population. 269 

Relationships between the SI for the four niche parameters and with individual body length were 270 

tested using linear models, separately for each species, with t-statistics used to assess the fitted linear 271 

model, with P < 0.05 indicative of a significant relationship. A lack of relationship between the SI of 272 

each niche parameter and body size ensured the measure of individual specialisation aligned with the 273 

definition by Bolnick et al. (2002).  274 

Online Resource, Figure S1. Isotopic biplots for each of the four niche parameters for each individual 275 

male Australian fur seals (A. pusillus doriferus, red) and New Zealand fur seals (A. forsteri, yellow) 276 

calculated with three different datasets (one per row).   277 
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RESULTS 278 

Isotopic and movement niche 279 

The two species had broad, overlapping isotopic niches of similar size. Bayesian estimation of the 280 

isotopic niche space of the two species shows similar sized isotopic niches, based on the 40% SEAb 281 

and 95% SEAb, yet Australian fur seals had a narrower range of δ15N values (trophic levels) and wider 282 

range of δ13C (nutritional sources) compared to New Zealand fur seals (Fig. 2; Table 1). Bayesian 283 

trophic niche (40% SEAb) overlap was negligible at ~5%, suggesting strong resource partitioning 284 

between the two pinniped populations. There were significant differences in δ15N and δ13C values 285 

between male AuFS and NZFS, with AuFS having higher δ15N values and higher but ecologically 286 

similar δ13C values (models were significantly different to the null model, δ15N ΔAIC = 17.65 Chisq = 287 

19.65 P < 0.001; δ13C ΔAIC = 3.16 Chisq = 5.16 P = 0.023; Table 1). Based on the 40% SEAb, 288 

partitioning of their iso-niche space was primarily in δ15N values that relate to trophic level (Fig. 2, 289 

Table 1). 290 

Male AuFS remained close to the coast over the continental shelf while NZFS travelled across the 291 

continental shelf and off the shelf over deep water. Consequently, male NZFS had a much larger 95% 292 

utilisation distribution than AuFS (Table 1), and the percentage overlap or 95% UD shared with the 293 

other species was ~80% for AuFS and ~10% for NZFS. However, the 50% UD for both species was 294 

predominantly over the continental shelf, of similar size, and showed approximately 50% species 295 

overlap (Fig. 1; Table 1). Accordingly, the mean distance that an individual travelled from land per 296 

week was highly positively skewed for male AuFS and NZFS, and not significantly different between 297 

the two species (distance to land not significantly different to the null model, ΔAIC = 1.6 Chisq = 0.32 298 

P = 0.574; Table 1). The two species also shared vertical movement space, but on average male AuFS 299 

dived deeper than NZFS (dive depth significantly different to the null model, ΔAIC = 7.9 Chisq = 9.89 300 

P = 0.002; Fig. 1; Table 1). The movement behaviour of AuFS (i.e. predominantly deep dives over the 301 

continental shelf) was consistent with a benthic foraging mode, and the movement behaviour of NZFS 302 

(shallow dives over the shelf and deep water) was consistent with epipelagic foraging mode. However, 303 

four male NZFS with weekly average maximum depth >100 m also remained close to land (<20 km) 304 
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during those weeks, suggesting benthic foraging; this was the case for all weeks recorded for one of 305 

these four NZFS, suggesting it only used a benthic foraging mode during its inter-breeding period. 306 

With the horizontal and vertical movements combined, NZFS had a much larger movement niche 307 

space (40% and 95% SEAb; Table 1), due to a wider range in horizontal movement (distance to land) 308 

yet similar range in vertical movement (dive depth) among individuals of each species. Based on the 309 

40% SEAb, the two species overlapped in movement niche space (though AuFS share more of their 310 

movement niche space with NZFS, and NZFS have more space that is segregated from AuFS space). 311 

The divergence in movement niche was primarily due to segregation in dive depth (Fig. 2). 312 

The two species also had different circadian patterns in dive frequency, with NZFS diving 313 

significantly more at night and AuFS diving similarly between night and day, but significantly less 314 

during twilight (Online Resource; Fig. S2, S3). Neither species had a diel pattern in dive depth (Online 315 

Resource; Fig. S2, S3).  316 



 

 

  

Table 1 Population-level isotope niche space statistics (δ13C and δ15N) and movement niche 317 

space statistics (distance to land and dive depth), including Bayesian Standard Ellipse Area 318 

(SEAb), of male Australian fur seals (A. pusillus doriferus) and New Zealand fur seals (A. 319 

forsteri). Isotopic space calculated from 3 mm segments from one vibrissae per individual. 320 

Movement space calculated from weekly mean statistics per individual.  321 

 Population-level statistics A. pusillus doriferus A. forsteri 

Isotope niche space (n =9) (n=35) 

δ15N (‰)a 16.4 ± 0.2 15.2 ± 0.2 

δ13C (‰)a -15.4 ± 0.1 -15.7 ± 0.1 

SEAb 40% area (‰2)a, d 
SEAb 95% area (‰2)a, e 

1.0 ± 0.11 
5.8 

1.0 ± 0.04 
6.1 

SEAb 40% overlap (%)a, d 5.8 ± 1.04 5.7 ± 4.12 

SEAb 95% width δ13C (‰)b 
SEAb 95% width δ15N (‰)b 
 

-16.2; -14.7 
15.6; 17.4  

-16.3; -15.2 
14.1; 16.2  

Movement niche space (n=10) (n=35) 

Maximum dive depth (m) 58.1 (35.5 to 85.5) 25.3 (9.0 to 68.1) 

SEAb 40% area (‰2)a, d 
SEAb 95% area (‰2)a, e 

1.4 ± 0.2 
8.2 

3.5 ± 0.2 
20.9 

SEAb 40% overlap (%)a, d 48.3 ± 10.0 19.6 ± 4.4 

SEAb 95% width Distance to land (km)b 
SEAb  95% width Dive depth (m)b 

2.3; 23.5 
17.4; 164.4 

1.0; 53.1 
9.2; 67.3 

Movement niche space, horizontal only (n=10) (n=39) 

Distance to land (km)c 6.3 (3.4 to 11.0) 6.3 (1.4 to 20.6) 

Area of 95% UD (km2)  
Overlap of 95% UD (%)  

17,478 
71 

72,375 
17 

Area of 50% UD (km2)  
Overlap of 50% UD (%)  

1577 
52 

1109 
73 

a Mean ± SE and range are calculated at the individual level (i.e. mean of each individual’s 322 

average value across its whisker segments or weekly movement data) 323 

b Range of values 324 

c Movement space parameters were log-transformed, and subsequently their back-transformed 325 

estimates of means are accompanied by 95% confidence intervals. 326 

d, e A sample of 50 SEAb were used to calculate 40% areas and overlap, and one sample of 1 327 

SEAb was used to calculate 95% areas and widths   328 



 

 

  

Fig. 1 Utilisation distributions (a) 95% (b) 50% and box-whisker plots of movement niche 329 

parameters for male Australian fur seals (A. pusillus doriferus; AuFS, red) and New Zealand 330 

fur seals (A. forsteri; NZFS, yellow) from Jervis Bay and Montague Island (sites combined). 331 

Continental shelf (<500 m depth) is light blue. Inset map in panel a) shows approximate range 332 

of each species. In panels c) and d), boxes represent 1st and 3rd quartiles and median as a thick 333 

line, and whiskers are 1.5x inter quartile range. Panel c) is cropped between 100 - 200 km for 334 

clarity (16 points for NZFS not visible). Notches in the boxes indicate 95% confidence 335 

interval around the median and overlap in notches between groups suggests the medians are 336 

not significantly different.  337 

Fig. 2 Isotopic and movement niche bi-plots (left) and posterior density plots (right) from 338 

Bayesian standard ellipse area (SEAb; solid lines 40%, dashed line 95%; density plots are of 339 

40% SEAb) of male Australian fur seals (Arctocephalus pusillus doriferus; red) and New 340 

Zealand fur seals (A. forsteri; yellow). In isotope bi-plot, points represent isotope values from 341 

the ten most recent whisker samples from each individual. For clarity, a sample of 50 342 

modelled ellipses (40% SEAb) per species are shown. Bi-plots represent the size and overlap 343 

of the niche space, and density plots compare size (similar niche size have more overlap) and 344 

variance among 40% SEAb estimates (height-width of density plot). 345 

Fig. 3 Density plot of specialisation index (SI) in δ13C and δ15N values for each individual 346 

male Australian fur seals (, red) and New Zealand fur seals (A. forsteri, red). Vertical dotted 347 

lines show the population-level SI (from Table 1).  348 

Online resource, Fig. S2 Different circadian patterns in dive frequency and but not dive depth between 349 

male Australian fur seals (A. pusillus doriferus, red) and New Zealand fur seals (A. forsteri, yellow). 350 

Online resource, Fig. S3 Model results for diel pattern in dive frequency and dive depth (using means 351 

per week for each individual) of male Australian fur seals (A. pusillus doriferus) and New Zealand fur 352 

seals (A. forsteri), including models tested (top) and modelled fixed effects (bottom). 353 

Online resource, Fig. S4 Linear model results comparing individual specialisation indices of male 354 

Australian fur seals (AuFS) and New Zealand fur seals (NZFS) in isotopic space (δ13C and δ15N) and 355 

movement space (Dive depth and Distance to land), and compared to their body size (Length).  356 
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Individual Specialisation 365 

The individual specialisation index (SI) of δ13C values, δ15N values and dive depth for AuFS and 366 

NZFS indicated these male fur seals were specialists in each of these niche dimensions (P < 0.001; 367 

Table 2). However, there was high variability in the SI among individuals for each species (Fig. 3), 368 

with some individuals tending towards the generalist end of the spectrum but most individuals at the 369 

specialist end of the spectrum. For distance to land, AuFS were generalists and NZFS were specialists, 370 

though both species had high variability in the SI among individuals with their values spread across 371 

the SI spectrum (Fig. 3). There were a relatively large number of highly specialised male NZFS for 372 

‘distance to land’; 12 individuals with SI values < 0.05. These individuals include some who travelled 373 

off the continental shelf into deep water during each week, and other individuals who only moved 374 

between islands and the coastline (i.e. remained very close to land). 375 

There were no correlations between an individual’s SI in any dimension and its body length (Online 376 

Resource; Fig. S4); all P > 0.05. An individual’s SI in one dimension (e.g. δ13C) was not related to its 377 

SI in another dimension (e.g. δ15N).  378 
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DISCUSSION 379 

Our results indicate that male Australian and New Zealand fur seals that are reoccupying the north-380 

eastern extent of their respective ranges share broad ecological niche space but have significant 381 

partitioning in isotopic and movement dimensions of their niche, despite expectations of low drivers of 382 

competition. Given their broad niches, it was not surprising that males of both species showed high 383 

levels of individual specialisation in isotopic and movement space, particularly given their increased 384 

intraspecies competition over recent decades. Highly specialised individuals in isotopic space were not 385 

necessarily highly specialised in movement space, further emphasising their diverse strategies for 386 

niche partitioning. There was support for a link between foraging mode and individual specialisation, 387 

as for other fur seals, though unexpected high specialisation for epipelagic NZFS males suggests 388 

exceptions be apparent among marginal populations of a species’ distribution.  389 

Niche partitioning  390 

As populations increase in size so can intraspecies competition for the most valuable food resources, 391 

which should drive individuals to broaden their niche (diet and/or foraging behaviour) to maintain 392 

optimal foraging (MacArthur & Pianka 1966; Roughgarden 1972; Bolnick 2001; Svanbäck & Bolnick 393 

2007). Among marine predators, increased intraspecies competition has been associated with broader 394 

dietary niche and foraging niche attributed to the need to access different prey, prey at deeper depths 395 

and greater distances from their colony (Lewis et al. 2001; Kuhn et al. 2014; Ratcliffe et al. 2018). 396 

Along the same lines, subantarctic fur seals in a large population that has reached carry capacity had a 397 

wider niche than those from a smaller population that is still increasing (Kernaléguen et al. 2015a). In 398 

contrast, at their range margin where population sizes are still small, these male fur seals continued to 399 

display a broad dietary niche (δ15N values) and movement niche (horizontal and vertical behaviour), 400 

and this is consistent with an earlier dietary analysis of fur seal scats (Hardy et al. 2017). Alternatively 401 

to enhanced intraspecies competition, individuals may expand their foraging niche in response to 402 

interspecific competition or decreased availability of most valuable food resources (Chiaradia et al. 403 

2003; Moleón et al. 2009; Prati et al. 2021) and both these alternatives typically characterise a species’ 404 

range margins (MacArthur 1984; Case et al. 2005; Guo et al. 2005). Therefore, individuals may need 405 

to maintain a broad niche when moving between their range core and margins to mitigate different 406 
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types of competition (intra and interspecies) and variable abundance of favourable prey throughout a 407 

species’ distribution.  408 

Interspecific competition was expected at this range margin, where two congeneric species live in 409 

sympatry. However, their populations are small so interspecific competition should be low thereby 410 

allowing these species to share the most profitable resources and overlap niche space. These male fur 411 

seals did indeed overlap in the prey source of primary productivity (δ13C values), trophic level of their 412 

prey (δ15N values; Kelly 2000; Davenport & Bax 2002) and horizontal and vertical niche space, 413 

consistent with males of both species being high order predators that frequently return to land to rest 414 

and digest, and have foraging habitat at a range of depths (Page et al. 2005a; Hardy et al. 2017; Knox 415 

et al. 2017; Salton et al. 2021). Although the two species had overlapping niches, they had clear 416 

partitioning in their dietary niche and dive behaviour, with AuFS typically feeding on higher trophic 417 

level prey than NZFS (based on δ15N values; Davenport & Bax 2002) and generally diving deeper than 418 

NZFS. Similar means of niche partitioning (different dietary composition and foraging behaviour) 419 

were found between sympatric female AuFS and NZFS at a breeding colony (Hoskins et al. 2017) and 420 

between sympatric male AuFS and NZFS at a New Zealand fur seal breeding colony (Page et al. 421 

2005a). However, at breeding colonies this partitioning is expected because the larger populations 422 

suggest that absolute competition (intra and interspecific competition combine) should be higher 423 

compared to the small populations at this range margin (Shaughnessy et al. 2015; McIntosh et al. 424 

2018). It is possible that competition in the core of their range drove niche partitioning ancestrally, and 425 

neither species is plastic enough in foraging to relax their constraints when seasonally present at the 426 

range margin, even in the absence of resource limitations. 427 

Individual specialisation 428 

Niche expansion can occur when all individuals of a population exploit a wider niche or via increased 429 

between-individual variation. The latter is termed the Niche Variation Hypothesis (Van Valen 1965), 430 

and has supporting quantitative evidence from numerous taxa (Bolnick et al. 2007). Consistent with 431 

this hypothesis, fur seal populations that feed only on a fewer prey species are often made up of 432 

generalist individuals and populations with a broad dietary niche often have high levels of individual 433 

specialisation (Kernaléguen et al. 2015a; Riverón et al. 2021), including Australian fur seals 434 

(Kernaléguen et al. 2015b; this study) and New Zealand fur seals (this study). In addition to the Niche 435 
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Variation Hypothesis , the level of individual specialisation in a population can be positively related to 436 

population density (Svanbäck & Persson 2004; Svanbäck & Bolnick 2005, 2007; Tinker et al. 2008), 437 

presumably because smaller populations have less intraspecies competition driving niche expansion, 438 

which appears to be the case for some fur seals (Franco-Trecu 2014; Kernaléguen et al. 2015a). 439 

Therefore, individuals at range margins, within small populations, may have lower individual 440 

specialisation than conspecifics at the range core. Contrary to this, the level of individual 441 

specialisation in δ13C values and δ15N values among male AuFS at this range margin (0.40 and 0.36, 442 

respectively) was higher (more specialised) compared to male AuFS in the core of the species’ range 443 

(0.93 and 0.56, respectively; Kernaléguen et al. 2015b). Some of this disparity could be associated 444 

with the shorter temporal scale used to measure individual specialisation in our study (10 whisker 445 

segments, rather than whole vibrissae), which often exaggerates the apparent level of individual 446 

specialisation (Araújo et al. 2007; Novak & Tinker 2015; Kernaléguen et al. 2016); though niche size 447 

and overlap were similar for the 10 segment and whole whisker datasets (Online Resource; Fig. S1). 448 

Alternatively, it could provide further support for behavioural differences between dispersers and 449 

residents, with dispersers having high heterogeneity in behaviour that supports population expansion 450 

into novel environments (Cote et al. 2010).  451 

The level of specialisation in a niche dimension varied among individuals, suggesting disproportionate 452 

effects of the drivers of specialisation on individuals. Accordingly, we tested whether the level of 453 

individual specialisation in one niche dimension was linearly related to the specialisation in other 454 

niche dimensions, and found this was not the case for any of the four niche dimensions. Therefore, a 455 

seal may have a highly specialise dietary niche (δ15N values) but forage across a range of habitats to 456 

access their prey (less specialised movement niche). Alternatively, a seal may principally forage 457 

epipelagically in inshore habitat (specialised movement niche) on a broad range of prey (less 458 

specialised dietary niche). This suggests that individuals respond to the drivers of specialisation in 459 

different ways, potentially specialising in various niche dimensions but not necessarily all of them. 460 

This emphasis the behavioural plasticity of individuals to selection pressures and highlights the 461 

importance of considering multiple niche dimensions when assessing ecological drivers and 462 

consequences of individual specialisation.  463 
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While species-specific foraging modes were apparent (i.e. benthic verses pelagic), both species were 464 

specialists in isotopic and movement space based on Monte Carlo resampling tests for a null, 465 

generalist population. Benthic environments typically have a high diversity of prey, with each prey 466 

species having relatively low abundance, compared to the low diversity of pelagic species that are 467 

highly abundant (Gray 1997). Therefore, the benthic environment offers greater opportunity and 468 

motivation (e.g. to alleviate competition for limited resources) for predators to specialise on particular 469 

prey, whereas the pelagic environment has less potential and perhaps motivation for individuals to 470 

diverge from the average population diet. Empirical evidence shows pelagic foraging fur seals using 471 

offshore habitats have narrow isotopic niche, with generalist individuals and low specialisation, while 472 

benthic foraging fur seals using inshore habitats have a broader population isotopic niche with 473 

specialist individuals (Riverón et al. 2021). In our study, male AuFS were consistent with that 474 

predicted from elsewhere, displaying benthic inshore foraging and consisting of a population of 475 

individual specialists. However, male NZFS movement behaviour was typical of epipelagic foraging, 476 

and they also had high individual specialisation. These male NZFS exploited predominantly inshore 477 

but also offshore habitats, and some male NZFS remained close to the coast displaying an apparent 478 

benthic foraging mode. Ecological diversification often occurs in marine mammals that foraging in 479 

inshore areas (Wolf et al. 2008; Chilvers & Wilkinson 2009; Aurioles-Gamboa et al. 2013), perhaps 480 

due to the greater diversity of isotopic pathways in coastal environments (Ray 1991) and greater 481 

habitat complexity (Sequeira et al. 2018). Given these populations are small, perhaps there is some 482 

interspecies competition release that creates space for some male NZFS to exploit the benthic and 483 

inshore habitats, thereby increasing potential for inter-individual diversification. This may change as 484 

populations increase, and male AuFS come to dominate the inshore environment and NZFS forage 485 

more epipelagically further from the coast (Page et al. 2006).   486 

Ecological Implications  487 

As species expand their range into new habitat they must compete for resources with the native 488 

community, which already compete among themselves. The size of a community can influence the 489 

level of niche overlap, with increasing number of species associated with less overlap (Pianka 1974), 490 

and if the community is sufficiently large it can prevent newly introduced species from becoming 491 

established (Case 1990). This has implications for the success of biological invasions (MacArthur 492 
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1984; Freed & Cann 2014), and potentially the recovery and range expansion associated with 493 

conservation efforts of a native species. Given the smaller populations of both species at this 494 

expanding range margin, there was potential for high niche overlap associated with competition 495 

release. Somewhat contradictory, the niche overlap and individual specialisation between and within 496 

these male fur seals suggests there is available niche for each of these species and potential for further 497 

mitigation of inter and intraspecies competition, and therefore potential for population growth and 498 

range expansion. Indeed, prior to this study both populations of fur seals in Australia had positive 499 

population trajectories (Shaughnessy et al. 2015; McIntosh et al. 2018). Ongoing assessments of niche 500 

partitioning and individual specialisation within and between these sympatric and congeneric species 501 

at this range margin will further develop ecological understanding of the mechanisms for successful 502 

population growth and range expansion, and should consider the role of a rapidly warming 503 

environment. 504 

Individual specialisation and behavioural plasticity provide opportunities for a population to adapt to 505 

environmental change (Brent 1978; Bolnick et al. 2003; Tuomainen & Candolin 2011; Edelaar & 506 

Bolnick 2019). Accordingly, the high individual specialisation amongst these male fur seals may 507 

contribute to their successful re-occupation of this margin of their range amidst extreme rate of ocean 508 

warming (Ridgway 2007) and a dense human population. However, species have physiological limits, 509 

for example otariids in temperate regions are sensitive to high temperatures (Gentry 1973), and 510 

thermal energetic costs are often higher for pups and juveniles (Liwanag 2010). Species are also 511 

limited by habitat needs, in this case particular terrestrial features at haul-out and breeding sites (Ryan 512 

et al. 1997; Stevens & Boness 2003), and several of their haul-out sites at this margin of their range 513 

are currently not zoned as protected areas (Salton et al. 2021). Therefore, while males have reoccupied 514 

this part of the species’ range, these additional limitations could influence the successful 515 

reestablishment of a breeding population and future occupation by males. Furthermore, ocean 516 

warming is altering prey distribution and abundance and thereby the habitat uses of marine predators 517 

(Amador‐Capitanachi et al. 2020; Evans et al. 2020; Niella et al. 2020; d'Entremont et al. 2021; Florko 518 

et al. 2021; Niella et al. 2021). There have been recent losses of habitat and habitat-forming species at 519 

this margin of the seals’ range (Wernberg et al. 2011). Thus, while these predators demonstrate 520 

capability to exploit a dynamic environment and a high level of adaptiveness to change, a rapidly 521 
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warming environment presents several risks that could limit population growth and expansion at this 522 

margin of their range. These risks would compromise the success of current conservation efforts that 523 

have seen these species reoccupy parts of their historic range. To mitigate such compromises, we 524 

encourage actions that support species to adapt to climate change (Hobday et al. 2016; Roberts et al. 525 

2017; Miller et al. 2018; Wilson et al. 2020). 526 
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