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Abstract

The Internet of Things (IoT) application scenarios is becoming extensive
due to the quick evolution of smart devices with fifth-generation (5G) net-
work slicing technologies and hence IoT becoming significantly important
beyond fifth-generation (B5G) networks. However, communication with
IoT devices is more sensitive in disasters because the network depends
on the main power supply and devices are fragile. In this paper, we con-
sider Unmanned Aerial Vehicles (UAV) as a flying base station (BS) for
the emergency communication system with 5G mMTC Network Slicing
to improve the quality of service. The UAV-assisted mMTC creates a
base station selection method with the aim of maximizing the system
energy efficiency. Then, the system model is reduced into the stochastic
optimization based problem using Markov Decision Process (MDP) the-
ory. We propose a Dueling-Deep-Q-Networks (DDQN) based approach
based on Reinforcement Learning (RL) technique for maximization of
energy efficiency to solve the resource allocation problem. We compare
the proposed model with DQN and Q-Learning models and found that
the proposed DDQN based model performs better for resource allocation
in terms of low transmission power and maximum energy efficiency.

Keywords: UAV, 5G Network Slice, Reinforcement Learning, Markov
Decision Processes (MDP), Dueling-Deep-Q-Networks (DDQN).
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1 Introduction

The rapid innovation and evolution of the fifth generation (5G) networking
has been significant impact on standardization bodies academia and indus-
try with extensive use cases supported by the 5G Network Slicing like self
driving cars, augmented, mixed and virtual reality (AR/MR/VR), UAVs, etc
[1]. The most important technology enablers of Network slicing technique are
SDN and NFV. SDN, which decouples control plane with the data plane and
provides programmability to network applications. NFV is known to be key
technology to benefit industry virtualization by separating hardware network
functions from primary hardware appliances [2, 3]. Network slicing is virtual-
ization technique of multi-tenancy type where network functions are abstracted
from software and hardware components. Each slice of network provides the
specific functionalities covering by the core portions and RAN [4].

With the rapid development of remote mobile technology and innovation,
the Unmanned aerial vehicles (UAVs) are becoming more intelligent with
machine learning, which further broaden with the extensive UAV use cases.
In the past few years, UAVs have been used widely due to high flexibility in
traffic monitoring, aerial photography and disaster rescue [5]. The aim of the
future generation networking is to provide user coverage capacity and ensure
interconnection of everything [6]. In this perspective, since high mobility and
versatility UAV features, the integration of communication module in the wire-
less network aspects UAVs can be occupied as aerial wireless access point
for communication platforms in B5G [7]. This enables to create more flexible
network in a new way for next generation communication, like UAV-assisted
emergency communications. In disaster area using UAVs as access point for
communication is effective choice in which continuously users can communi-
cate to others in device-to-device (D2D) multi-cast manner [8]. In this at first,
the disaster area can achieve fast response in this way then, UAVs can take
advantage of line-of-sight (LoS) through air-to-ground (A2G) and ground-to-
ground (G2G) links to access backhaul and access links to communicate and
forward information [9]. Furthermore, ultra-dense networks (UDN) scenario
are adopted in order to solve massive data computing, congestion and path
loss problems and improve LoS with enhanced network capacity. The UDN is
defined as massive Internet of Things (mIoT) slice or massive Machine Type
Communication (mMTC) slice of 5G networks in which the uses as IoT devices
can communicate with UAV-assisted framework.

However, the ground communication systems may suffer from equipment
aging, human damage and natural corrosion which, affects the reliability and
stability. In case of sudden breakdown situation, the base station (BS) may act
as immobile with poor flexibility, which is not suitable for to meet the quality
of experience (QoE) requirements of emergency communication systems [10].
The BS of wireless communication is main powered like cluster head (CH) in
the D2D network. The emergency communication has been considered as the
research hotspot towards high reliability and high flexibility. UAVs are likely
to be important key component of 5G and beyond wireless communication
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networks that can support high bandwidth and facilitate with wireless broad-
cast. As compared with the fixed infrastructure communications. UAVs have
some salient attributes, such as strong LoS connection links, flexible deploy-
ment and controlled mobility with additional design degrees [11]. UAVs can be
used as wireless aerial base stations to enhance reliability, capacity, coverage
and the energy efficiency of wireless communication also, UAVs can be oper-
ated as the flying mobile terminal within a wireless mobile network [12]. The
future networks also promise massive IoT and ubiquitous coverage other than
low latency and extremely high data rates, flying UAV’s base stations could
be back-up fast to the wireless communication networks, prevent service inter-
ruption and enhance the network performance [13]. Furthermore, The study
of resource allocation, data transmission, power control and energy efficiency
for emergency communication in UAV-assisted 5G which aim to solve resource
allocation in disaster area, improve quality of user experience and enhance
quality of user communication.

As diverse application advantages such as mobility and flexible deployment,
UAVs can carry base stations that can provide temporary communication
and combined with existing cellular networks can serve ground users which
attracted a lot of attention recently [14]. In this work, trajectory optimization
problem which aim to solve transmit power allocation problem by consider-
ing the maximum transmit power and minimum user date rate. However, the
energy consumption factor and the stability should also be taken in account.
These application should also be applicable into 5G communication or next
generation 6G networks. The work [15], present UAV based 5G in emergency
communication scenario with ability of coverage uplink, downlink, scheduling,
mobility, which makes the faster response time and more flexible with compare
to traditional networks.

The heterogeneous UDN is known to be promising architecture for cop-
ing with massive data traffic in 5G and beyond networks. Resource allocation
need to address to meet quality-of-services (QoS and to ensure the service
level agreement (SLA) in 5G networks [16, 17]. In order to efficiently man-
age wireless resource in heterogeneous UDN faces challenges to reduce wireless
interference [18]. The mMTC based dense network deploys low-power and
short-range type of large number of small cells coverage to macro base stations,
and it enables flexible and high throughput services with the 5G networks [19].
The UAV-assisted future networks have accomplished interest in various appli-
cations ranging from increase in airborne flight time, robust maneuverability,
rapid deployment, payload capabilities, are highly influenced by technologies
such as machine learning, artificial intelligence, reinforcement learning, SDN
and mobile edge computing (MEC) [20]. The 5G UDN has been known as
the key solution for consequential energy consumption and sudden increase
in the mobile traffic. Further, popular content caching at the edge in mMTC
can resolve the challenges of energy and traffic [21]. However, UAV-assisted
5G mMTC networks brings new challenge for maximization of system energy
efficiency (EE) to ensure overall quality of user experience .
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To address the above mentioned challenges, we study the optimization prob-
lem of UAV-assisted resource allocation in the 5G mMTC slice system. We first
design the link selection method which solve base station selection problem.
Then, the energy efficiency maximization problem with low transmission power
is proposed which aim to optimize the resource allocation strategy. Although
the original problem is reduced into MDP concept to make it stochastic opti-
mization based problem and Deep reinforcement learning (DRL) approach is
used to solve [22]. The generated massive data can be process efficiently by
DRL in mMTC slice as compare to the traditional machine learning tech-
niques and DRL is more consistent to investigation of this study. The main
contributions of this paper are as follows.

• We investigate the UAV-assisted resource allocation problem in 5G mMTC
Slice Network system. UAVs has been used as flying base station to deal with
emergency communications in which flying base station communicate with
ground base stations so that users can continuously communicate to others
in device-to-device (D2D) multi-cast manner in order to increase quality of
experience. As compared with fixed infrastructure communications, UAVs
have some salient attributes, such as strong LoS connection links, flexible
deployment and controlled mobility with additional design degrees.

• To optimize the space-ground emergency communication system perfor-
mance, we considered the power allocation and link selection problem for
better system performance. We design the base station selection method
based on the transmission power and distance of the user with the help of
locations of UAV and base station. The user selects best base station for
the data transmission based on optimal path which can improve the overall
quality of user communication.

• We create scenario for UAV-assisted 5G mMTC slice for the feasibility of this
scheme. The problem of maximizing energy efficiency is reduced into MDP.
We propose Dueling-DQN (DDQN) based dynamic resource management
algorithm based on reinforcement learning to solve MDP problem. We also
discuss the Q-Learning and DQN models to compare with proposed DDQN
based model for comprehensive study.

• We conduct the extensive experiments to evaluate the system performance
of UAV-assisted 5G mMTC network slice scenario for emergency communi-
cation with reinforcement learning approaches. The simulation performance
determine that the resource allocation based on Dueling-DQN (DDQN)
scheme can improve the system energy efficiency than Q-Learning and DQN
model. Further, we also investigate the relationship between the users, base
stations and system energy efficiency with Q-Learning, DQN and proposed
model.
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The current section is introduction of this paper and the remaining part of this
paper is organized as follows. In the section 2, we discuss literature work which
is related work to our system. The system model is described in the session
3 which, describes channel model, network model and computational model.
The section 4 formulate the problem and transform into MDP technique which
is solved by reinforcement learning and DQN techniques. Then we present the
performance evaluation and analysis in the section 5. Finally, we conclude this
paper in section 6 with the future scope.

2 Related Work

In the literature, continuous and sincere efforts have been made towards net-
work performance improvement in response to resource allocation strategies
such as game theory and deep-Q networks. In the 5G networks, UAV assis-
tance and resource allocation have great significance that continuously got
more attention in 5G development. The UAV’s application in 5G networks
includes energy transmission and communication buffering with the aim to
improve system flexibility. For instance, the authors in [23] investigates multi-
optimization for resource management and massive access in mMTC slice
scenario by UDN environment throughput maximization problem of machine
learning based user clustering method. The paper [24] studied CPU-cycle and
stochastic task allocation for MEC system to aim for energy consumption
minimization with upper bounded task queue length and proposes stochastic
based optimization algorithm.

The paper [25] proposes MEC-UAV cooperation on task offloading with aim
to minimizing energy consumption by using reinforcement learning approach.
The authors in [26] aim to extend 5G network slicing using UAV with MEC by
proposing reinforcement learning based power optimization to maximize objec-
tive functions. In paper [27] studied cooperative MEC wireless-powered UAV
supported system, optimizing energy consumption and trajactory of UAV-
assisted system. In [28] authors investigate the scenario of UAV-alone and
UAV with fixed base stations in which aim to load balance maximization and
minimization of number of UAVs. The authors in [29] studied base station
bandwidth allocation and UAV access selection problems with game framework
in IoT communication UAV assisted network. In [30], the joint power splitting
and precoding vectors optimization technique is proposed which aim to secure
UAV-assisted NOMA networks. The paper [31] proposes a multi UAV-assisted
NOMA scheme for better spectrum and energy efficiency of uplink cellular
communication system. The work [32] jointly optimize bandwidth allocation,
power transmission and UAV route to maximization of energy efficiency to
meet difference quality-of-experience (QoE) requirements. The paper [33] pro-
poses to utilize relay node and computing node to improve use latency in
UAV-assisted MEC networks.
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In addition, considering intelligence as an main characteristic for the future
wireless communication, many work have been investigated recently. The UAV-
enabled networks in which flying object is uses as access point of given flight
period, seek to maximise the common throughput across the ground users [34–
36]. In the paper [37], to address the massive connected devices UAV has used
as air base station which aim to increase the performance by improving place-
ment and power allocation. In this paper [38], two UAVs are used, one moves
to interact with various users on the ground, while the other jams eavesdrop-
pers to safeguard the desired users’ communications. While the work based on
UAV-enabled network system model in which a UAV is used to connect and
communication with ground node while some jammers are present that aim to
optimize the trajectory of UAV and maximize energy efficiency [39]. The paper
[40] studies UAV’s line-of-sight in 3D space for air-to-ground communication
and proposes UAV-assisted data collecting strategy for gathering information
which aim to reduce the total time by optimising the UAV’s altitude, velocity,
trajectory and data linkages with ground users. The deployed UAVs are used
to collect sensor data in the work [41], in which authors aim to optimize sensor
node in 3D trajectory.

The cellular based network system with UAV-mounted base station with
numerous terrestrial based base stations is considered in the article [42], with
each base station servicing multiple customers. Further, designing the 3D
placement for the aerial base station and the transmission power allotment
for all nodes in the uplink and downlink in a probabilistic channel based envi-
ronment have been done. The problem of drone BS placement with resource
allocation in a certain hotspot area is investigated in paper [43] to ensure QoS
for users within the hotspot area. The paper [44] investigates UAV-assisted
networks in which multiple UAV has been considered as the base stations. In
this scenario UAV-BS connects with the ground BS and ground BS forward
the data between user and core networks and proposes the framework to max-
imise user overall throughput while maintaining fairness among users within
the flight-time of base stations.

These are some of the work that are close to our work, the paper [46],
authors aim to power optimization by maximizing social group utility with
user downlink and QoS being satisfied. The UAV-supported communication
can provide the better coverage in the remote areas with capability to man-
age high traffics. In case of damage of the terrestrial network UAV can be
used for the emergency communication. The authors in [48] discuss the UAV-
assisted based emergency communication model in heterogeneous IoT and
distributed NOMA scheme. The IoT has problem of spectrum resource due to
widespread and power consumption due to battery powered. In [47], authors
aim to maximize the energy efficency of UAV-assisted UDN networks. Through
the flexible deployment of the system UAV can be used as the flying base sta-
tion when any disaster occurs. The authors in paper [49], study on mMTC
based UAV-assisted optimization for energy efficiency.
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3 Preliminaries and System Model

3.1 System and Channel models

We have considered a natural disaster scenario where ground base station is
not fully functional and UAV have been used as flying base station as emer-
gency communication. As shown in the Fig. 1, the disaster can occurs suddenly
within the wireless network-zone in which the torn-down scope fall out which
is described as dotted circular region. The heterogeneous IoT has been consid-
ered in this region, where all the devices and users work with batteries and use
to communicate in the network. Moreover, we also assume that some of the
base stations and cluster heads are down due to no battery back ups as it is
main powered. In this case, an UAV-assisted BS is deployed for message trans-
mission between the disaster region devices to the workable outside-disaster
BSs. In order to deliver messages from the base station to disaster region, the
UAV’s of outside the disaster region should relay on UAV’s above. The termi-
nal UAV’s could communicate with the devices and cellular users within the
coverage area. Further, the users within the disaster region can communicate
with the other disturb region and outside users.

Fig. 1 An overview of UAV-assisted 5G based emergency communications

The links of LoS region are preferred that can be easily obtained within the
UAV coverage. The LoS link depends on θ angle that is the elevation of the
UAV’s to reach signals [27]. If the value of θ will be small then the probability
for UAV trajectory to transmitting signals with LoS links will be low. Thus,
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we define and say θTH is the threshold of LoS-based elevation angle. If suppose
the angle of signal is less than θTH then, no valid link is defined from UAV to
users on the ground. Hence, the coverage of UAV region with valid LoS links
can be find if the height and the location of UAV are known as illustrated in
Fig. 1 enclosed by the solid circles .

Fig. 2 The coexisting links with UAV-assisted communication model

In the case of emergency communication, many messages need to be urgently
delivered and exclusive spectrum allocation for devices and users is inefficient.
Hence, we accommodate to use the same spectrum between the links of D2D
outside of LoS region and between the links of UAV and the user or devices.
Fig. 2 shows the Model of the coexisting links surrounded by single UAV in
disaster region. θLoS and θcov are denoted as the maximum angle to the LoS
region and UAV coverage region from perpendicular line in order to denote
the UAV coverage and line-of-sight (LoS) region for the user. It is likely to be
that θLoS is the complementary angle of θTH .

Furthermore, it is condonable for assuming that at least one device trans-
mitter is there that has located within the UAV’s LoS coverage region.
Therefore, this transmitter is not able to allocate the spectrum to the devices
and users. Since the air-to-ground (A2G) channel is more suitable for the exist-
ing device in the LoS region of UAV, this device could be used as the sink
node of the IoT. By using of the relay in sink node, the messages from the
base station can be disseminated to the devices. As a result, suppose the unit
bandwidth in one subchannel is set as B0, while total number of subchannels
available to these devices and users for sharing is assumed to be ZT , then
the corresponding power gain of the links can be computed using equations
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(1–4). We used the notations for channel model as given in work [27]. GA2C
u,z

and GD2D
v,z are the power gains for the transmitting links from the UAV to the

user u and between the device pair v on subchannel z, respectively. The power
gains from the UAV to the receiving device and from the transmitting device
to the cellular user on subchannel are gA2D

v,z and gD2C
u,v,z.

GA2C
u,z = ρ(LoS) · d

(−α)
u,A (1)

GD2D
v,z = d(−β)

v · ‖Hz‖
2 (2)

gA2D
v,z = ρ(NLoS) · d

(−α)
v,A (3)

gD2C
u,v,z = d(−β)

u,v · ‖Hz‖
2 (4)

The distance between UAV to user is denoted by du,A, and the user and UAV
distance is marked by dv between the device pair. Further, the distance between
the UAV and the receiving station must be considered. The distance between
the receiving device and UAV is dv,A, and du,v is distance of transmitting
device u and the user v. To define the gain in LoS transmission of messages
from the UAV to cellular users and the NLoS gain of the UAV’s interference
to the ground station, on the same spectrum as the device receiver, ρ(LoS) and
ρ(NLoS) are used. Additional attenuation factors are denoted for the sake of
simplicity, ρ(LoS) is normalised to 0 dB. α and β stand for route loss factors in
A2G and G2G are two different types of channels. Based on Rayleigh distri-
bution the multipath-caused frequency channel gain is Hz on a tiny scale for
G2G transmissions on subchannel z.

3.2 Network Model

We consider the 5G mMTC system with UAV-assisted in which there are set
of base stations followed by UAV. The UAV is considered as the flying base
station within the system. A centre access point (CAP) is positioned at centre
of the system as depicted in Fig. 3 which is used to manage base stations and
UAV. The set for UAV is represented to A and there is only one element a
in A, such that A = {a}. The set of base station is defined as B such that
B = {1, 2, .., b, .., B}. The set for users in the mMTC network is represented to
U , such that U = {1, 2, .., u, .., U}. In the system, the users have been assigned
random to the base stations and UAV. Further, we represent F = A ∪ B as
total feasible set. Consider Fu as the set of feasible for the user u, which is
represent as Fu = {fa, fb}, where fa defines that the the user u select UAV a
for data transmission and fb defines that the user u select base station b for
data transmission. Further, the notation of symbols and detailed description
is provided in the Table 1.
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Table 1 Notations and description

Notation Definition

A, B, U set of UAVs, base stations, users, respectively
F , Fu a feasible policy set of all user, user u, respectively
cu users connection status

Pa, Pb, Pc location of UAV, base station, user, respectively
Ht

u,a, H
t
u,b

channel gain from UAV to user and from BS to user

rbs base station initial channel gain
ruav channel gain of UAV within 1 meter
α path loss index from user to base station
β path loss index from user to UAV

Euser maximum power received by user
Et

u,a, E
t
u,b

assigned power to user by UAV and base station

Ba,Bb bandwidth of UAV and base station
ω(u) differentiating connection coefficient for users
σ2 additive-white-gaussian noise (AWGN)

GA2C
u,z , GD2D

v,z power gains of UAV to the user and between device pair

gA2D
v,z , gD2C

u,v,z interference power gains of UAV to device and device to cellular

ρ(LoS), ρ(NLoS) attenuation factors of line-of-sight and outside

We consider the system model in which center access point can capture a
variety of environmental data within the system. The center access point then
chooses the best base station for the given user based on data-link selection
method and manages the base station’s resource allocation policy. In case
of UAV-assisted, the user directly get connected with the UAV and UAV is
connected to the nearest center access point so that user can connect with
outside and within region in order to data transmission as shown in Fig. 3.

Fig. 3 The UAV-assisted 5G mMTC slice model



UAV-assisted 5G mMTC Slicing Networks using Deep Reinforcement Learning 11

3.3 Computational Model

In order to represent communication connection status in better way, we denote
a function cu, where cu ∈ Fu which express the user u connection with base
station b or UAV u. We assume that the base station location is fixed because
of the UAV is staying in the air. Furthermore, we define the UAV location
as Pa = [xa, ya, za], where xa, ya and za is coordinate of UAV a . The base
station location is defined as Pb = [xb, yb, zb], where xb, yb and zb is coordinate
of base station a. The users can be randomly distributed all over the system
and the location of user u is defined as Pu = [xu, yu, zu], where xu, yu and zu
is the coordinate of user u. Channel gain is defined as the tight upper bound
on the rate at which information can be transmitted with high reliably over
a communication channel. The channel gain has mainly the relation between
the devices and base station. The channel gain at time slot t from base station
b to the user u is defined as

Ht
u,b = rbs‖P

t
b − P t

u‖
−α (5)

where ‖P t
b − P t

u‖ is the distance between the base station b and user u at the
time slot t, α represents the path loss index from user to base station and rbs
is the rayleigh fading factor i.e. initial channel gain. Similarly, the channel gain
at time slot t from UAV a to the user u is defined as

Ht
u,a = ruav‖P

t
a − P t

u‖
−β (6)

where ‖P t
a−P t

u‖ is the distance between the UAV a and user u at the time slot
t, β represents the path loss index from user to UAV and ruav is the channel
gain of UAV within 1 m reference distance.

Ea

Eb
· dub > dua , cu = fa

Ea

Eb
· dub < dua , cu = fb (7)

where, Ea and Eb are the power transmission of the UAV to user and base
station to user, respectively. The distance between UAV a to user u and base
station b to user u is defined as dua and dub , respectively. The distance between
UAV a to user u and the distance between base station b to user u is described
as

dua = ‖Pa − Pu‖

dub = ‖Pb − Pu‖ (8)

When the product Ea

Eb

· dub is greater than the distance from the user u to the
UAV a, then the user can access to the base station b and when the product
Ea

Eb

·dub is less than the distance from the user u to the UAV a, then the user can
access to the UAV a. Based upon the connection status of the user, we derive
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the signal-to-interference and noise ratio (SINR) for the each of the user. The
SINR in the downlink from fron UAV a to the user u at time slot t is defined as

SINRone = SINRt
u,a =

Et
u,a ·H

t
u,a

∑

v∈U,v 6=u E
t
u,a ·H

t
u,a · c{cv = cu}+ σ2

, (9)

where Et
u,a denotes the assigned power transmission by the UAV a to the user

u and Ht
u,a is the channel gain from user u to the UAV a, the user connection

status is determine by the indicator function c{cv = cu} and σ2 is the additive
white Gaussian noise (AWGN). The SINR in the downlink from fron base
station b to the user u at time slot t is defined as

SINRtwo = SINRt
u,b =

Et
u,b ·H

t
u,b

∑

v∈U,v 6=u E
t
u,b ·H

t
u,b · c{cv = cu}+ σ2

(10)

where Et
u,b denotes the assigned power transmission by the base station b to

the user u and Ht
u,b is the channel gain from user u to the base station b. In

order to calculate the channel capacity or data rate (DR) we use Shannon’s
channel capacity formula. The data rate in the downlink from user u to the
UAV a at a time slot t is defined as

DRone = DRt
u,a =

Et
u,a

Ea
max

· Ba · log2(1 + SINRone) (11)

where Ea
max is the maximum transmission power of the UAV a and Ba is the

bandwidth of the wireless channel of the UAV a. Similarly, the data rate in
the downlink from user u to the UAV a at a time slot t is defined as

DRtwo = DRt
u,b =

Et
u,b

Eb
max

· Bb · log2(1 + SINRtwo) (12)

where Eb
max is the maximum transmission power of the base station b and Bb

is the bandwidth of the wireless channel of the base station b. As a result, the
total data transmission rate of the UAV and the base station is defined as

DRtotal =
∑

u∈U

ω(u) ·DRone +
∑

u∈U

(1− ω(u)) ·DRtwo (13)

where ω(u) is the use for differentiating connection indicator. ω(u) = 0 shows
user u is connected to the UAV a. In other way, ω(u) = 1 shows user u is
connected to the base station b. The total power consumption Et

total contain
the power consumption Et

u,a to the UAV and power consumption Et
u,b of base

station. In which the power of UAV and base station can be affected by user
link mode. Therefore, at time slot t the total power consumption can be defined
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as
Etotal =

∑

u∈U

ω(u) · Et
u,a +

∑

u∈U

(1− ω(u)) · Et
u,b (14)

By using the equations (13) and (14), Energy Efficiency (η) of the system is
given as

η =
DRtotal

Etotal
(15)

The resource allocation problem in the UAV-assisted 5G mMTC network slice
systems can be given as follows, as mentioned in the study above.

max
ω(u)

η,

min

U
∑

u=1

Ev (16)

s.t.

C1 :
∑

u∈U,cu=b

Et
u,b ≤ Eb

max, ∀u ∈ U, b ∈ B

C2 :
∑

u∈U

Et
u,a ≤ Ea

max, ∀u ∈ U, a ∈ A

C3 : ω(u) =

{

0, cu = fa
1, cu = fb

, ∀u ∈ U

C4 : Et
u,a ≤ Euser, E

t
u,b ≤ Euser, ∀a ∈ A, b ∈ B

where, C1 exhibit the limit of power transmission from ground base station
to the associated user within the coverage region. The limit of transmission
power from the UAV to user within the coverage region is represented by C2.
In C3, cu = 0 indicates that user u is linked to the ground base station, while
cu = 1 indicates that the user u has been connected to the UAV a. We denote
the received maximum power capacity by the user as Euser in C4, in which the
user receive at max Euser from the UAV or from the groud base station. The
overall energy efficiency of the system should be maximize with the minimum
transmission power supplied. The UAV-assisted mMTC system ensures the
user connectivity and data transmission to achieve the overall quality of user
experience.
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Lemma 1: The path loss from UAV to the ground devices can be defined as

gu,a = Pr(LoS) · d
(−α)
u,A + Pr(NLoS) · ρ(NLoS) · d

(−α)
v,A , u ∈ U , where Pr(LoS)

and Pr(NLoS) are the probability of line-of-sight and outside connections
respectively, ρ(NLoS) is the additional attenuation factor.
Proof:

Pr(LoS) =
1

1 + S · exp(−R[θi − S])
(17)

where S and R are dependent parameters which is dependent on environ-
ments (such as urban, rural or dense urban), θi is the angle of evaluation
between user and UAV. Here, θi can be calculated as θi =

180
π tan−1( height

radiusi
),

in this radiusi =
√

d2u,A − height2 [45]. According to above equation (17),

the probability of line-of-sight (LoS) region increase when the angle of evalua-
tion increases. So, the probability of Non-line-of-sight (NLoS) region could be
represented as Pr(NLoS) = 1 − Pr(LoS). Fundamentally, the UAV altitude
defines evaluation angle and signal-propagation distance so, both NLoS and
LoS depletion jointly impact the path-loss within UAV to the ground devices
[46]. Hence,

gu,a = Pr(LoS) · d
(−α)
u,A + Pr(NLoS) · ρ(NLoS) · d

(−α)
v,A , u ∈ U. (18)

Lemma 2: The total sub-channels from UAV to the ground users and devices

can be represented as Zt
total =

Etotal·Z
T

∑
U

l=1
El

in which, the total number of available

sub-channel is assumed as ZT .
Proof: According to the channel model assigning sub-channels to users can
be simplified into assign bandwidths, which is identical to finding the needed
number of sub-channels for each of the user in the system because transmission
gain is only directly related to the path loss. As a result, maximizing the least
of DRt

u/E
t
u is the same as satisfying equation (19).

DRt
u

Et
u

=
DRt

u′

Et
u′

, u 6= u′, ∀ u, u′ (19)

As a result, if the available power is sufficient,

xt
u,z = xt

u′,z′ = xt
eq, u 6= u′, z 6= z′ ∀ u, u′, z, z′ (20)

Based on Shannon’s capacity theory, the user’s sum rate is defined as follows,

DRt
total =

ZT

∑

z=1

U
∑

u=1

[

ktu,z · B · log2(1 + xt
u,z)

]

(21)
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= B · log2(1 + xt
eq) ·

ZT

∑

z=1

U
∑

u=1

ktu,z

= Zt
total · B · log2(1 + xt

eq) (22)

where xt
eq is a SINR benchmark for all users on each sub-channel as a result,

(19) becomes,
Zt
total

Etotal
=

Zt
total′

Etotal′
(23)

To enhance data rates for all users equally, a simple and intuitive way is to
start the random sub-channel assignment with the entire sub-channel number
as the starting point, so the total sub-channels from the UAV to the users and
devices can be defined as

Zt
total =

Etotal · Z
T

∑U
l=1 El

. (24)

Lemma 3: The minimum number of subchannel for device pair can be given
as ZDD

v =
DR

B·log2(1+sinrD
v
)
,

Proof: According to the device receivers’ quality of service (QoS) restrictions

sinrDD
v,z ≥ sinrDv (25)

The sum data rate of device to device of sub-channels will be grater than or
equal to the total data rate at the users to meet the quality of experience,

ZT
∑

z=1

DRDD
v,z ≥ DRD

v (26)

Based on Shannon’s capacity theory, the user’s sum data rate is defined as
follows,

DR =

U
∑

v=1

[

xDD
v · B · log2(1 + sinrDv )

]

(27)

Hence, the number of subchannels assigned can be reduced. The minimum
number of required subchannels can be calculated using (25), (26) and (27) as

ZDD
v =

DRD
v

B · log2(1 + sinrDv )
. (28)
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4 Problem Formulation

The problem of allocating resources with UAVs goes beyond conventional
optimization techniques due to the huge number of users in 5G mMTC sys-
tems. Considering the discontinuous nature of data the traditional resource
allocation algorithms cannot quickly find an appropriate solution to allocate
spectrum and power. In order to solve resource allocation problem in our
system, first we reduce our problem to Markov-Decision Process (MDP) tech-
nique. The MDP problem can be easily solve by the reinforcement learning
algorithms. We propose a Dueling-DQN based algorithm for resource allo-
cation for the maximization of overall system energy efficiency. The DDQN
technique is the type of reinforcement learning technique which is based on
improved version to Q-Learning algorithm. We also consider the Q-Learning
and DQN models to compare with the DDQN model. The DDQN technique
of reinforcement learning does not rely on prior knowledge and it can success-
fully address the data explosion problem generated by a vast state and action
space. It can also solve the resource allocation problem to maximize energy
efficiency. Hence, we use the reinforcement learning based DDQN model in
UAV-assisted 5G mMTC system for resource allocation.

4.1 MDP Model

Considering a system model of UAV-assisted 5G mMTC, for the large action
space the reward as feedback should generate instantaneously. The character-
istics of MDP is more suitable for the state, reward and action states. The
markov property is stated as “The future is independent of past for the given
current state”. In this model the decision maker which is agent has surrounded
by the environment. The environment provides a reward on each of the next
state based on the agent’s action. Here, we define the state space, action space
and reward function below.

• State space: The space state indicates agent position in the environment
at a given time stamp t per user. Further, the updated space state t+1 is
given to the agent for further action. We have allocated different data rates
to each users since the data-transmission rate is variable. The state space
for the given time t is given as:

st =
{

DR(1), DR(2), .., DR(U), Etotal

}t

• Action space: To maximize data transfer rates for the users the base
station and UAV power allocation should in control. The action space
are the learners in the reinforcement learning and the agent interact
with the environment through the actions. The action state is given as

at =
{

E(1), X(1), E(2), X(2), .., E(N), X(N)
}t

and each action corre-
sponds to a state. where,
etu = Emin(

Emax

Emin
)m/(|D|−1)
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• Reward function: In our system the reward function has calculated based
upon the total rate of data transmission. The reward function is given as:
rt =

∑U
u=1 ω(u) ·DRt

u,a +
∑U

u=1(1− ω(u)) ·DRt
n,b.

Our aim is to solve the optimization problem of the resource allocation in
which our task is to maximize the energy efficiency with the given lower data
transmission rate.

4.2 Q-Learning

The reinforcement learning contains state, action and reward in which the
agent interact to the environment with the action state. The environment sends
the next reward and space states to the agent. The Q-Learning is based upon
off policy reinforcement learning in which agent takes best action based on
the current state. We can say that in order to receive maximum reward agent
choose best action. RL can be categorised into a variety of categories depend-
ing on the problem like model based (the environment can be understood by
the actor), model-free on-policy (same actors for interacting as well as learn-
ing), model-free off-policy (different actors for learning and interacting). The
dynamic resource allocation algorithm based on Q-Learning is given in algo-
rithm 1 in which δ is the learning rate, γ = is the discount factor, Emin is
minimum transmission power, Hu, Ha are channel gain and σ2 is environment
noise.

Algorithm 1 Dynamic Resource allocation algorithm based on Q-Learning

Require: δ, γ, Emin, σ
2, Hu, Ha

Ensure: Optimal resource allocation strategy

1: State value function and Q-learning parameter initialization;
2: Reward R initialization;
3: for episode← 1 to N do

4: for each step of episodes do

5: Initial system state selection randomly from the state space S;
6: An action at is chosen from set of possible allocations actions from

the current action space A;
7: Compute action at for observation of reward rt and next state st+1;
8: The parameter updation of Q(st, at);
9: When the expected state is reached, terminate.

10: end for

11: end for

12: The optimal resource allocation and strategy for power distribution is
obtained to get maximized of the energy efficiency of the system
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The Q table value decide the next reward to take best action by the agent. In
order to energy efficiency maximization the action state is given as
at = argmaxQt(st, at), at ∈ π
The Bellman equation is used to continually update the value of Q given by
the following equation,
Qt+1(st+1, at+1) = Qt(st, at) + δ(R+ γmaxa′

t
ǫA Qt(s

′
t, a

′
t)−Qt(st, at)).

Here, δ denotes the learning rate and γ denotes the discount factor. Q value
is Qt(st, at) for the time slot t.

4.3 DQN Model

The Deep-Q Network model is combination of deep learning and reinforcement
learning models to take more advantage of the decision making.

Algorithm 2 Dyananmic Resource allocation algorithm based on DQN

Require: δ, γ, Emin, σ
2, Hu, Ha

Ensure: Optimal resource allocation strategy

1: DQN parameters, experience buffer R and state value function Q(s, a)
initialization;

2: The Parameter of CNN θ is initialised with different weights;
3: for episode ← 1 to N do

4: initialize system state;
5: for each time from [1, T ] do

6: An action at is chosen ranomly by epsilon greedy approach
7: Compute state-action pair and observe the reward rt and

next state st+1;
8: Save the transitions (st, at, rt, st+1) in R;
9: if size of R has reached its maximum capacity then

10: Select a batch of transitions (si, ai, ri, si+1) from R at random
11: end if

12: if next state st+1 == sM then

13: change state value function and reward is observed
14: else

15: L(ω) = E[(yt −Q(st, at; θ))
2]

16: update the parameter of CNN θ after each c iteration
17: update the policy equation to be written
18: end if

19: end for

20: end for

21: The optimal power allocation strategy π∗ is obtained

RL and deep learning is combined by DRL, maximizing the advantage of RL
which includes decision-making with the perceiving benifits of deep learning.
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As a result, agents are able to notice more complicated environmental circum-
stances and develop more sophisticated action plans. We employ framework
DQN which does not depend on the DRL framework in order to solve the
MDP problem which does not require any prior knowledge.

Q(st, at)← Q(st, at) + α[rt+1 + γmaxa Q(st+1, a)−Q(st, at)]

4.4 DDQN Model

The DDQN is a type of Q-Learning that contains two streams to separate
estimator in which both streams shares common convolutional module. Dueling
DQN is an extension of DQN. It uses two CNNs in order to get better policy
evaluation in the presence of many similar-valued actions. The first network is
the primary network which is used for selecting an action. The second network,
the target network is used for generating a Q-value for the action. During
training, the target-Q values are used to compute the loss function for every
action. Target network is basically a copy of primary network and its weights
remain fixed. The weights of target network are updated after some constant
number of iterations, which is initialised as hyperparameter. During training of
the model, the benefit of experience replay is used and the tuple (st, at, rt, st+1)
is stored in it.

Algorithm 3 Dynamic Resource allocation algorithm based on DDQN

Require: δ, γ, Emin, σ
2, Hu, Ha

Ensure: Optimal resource allocation strategy

1: Initialise parameters of DDQN, state value and experience buffer R
2: for episode← 1 to N do

3: initialsie system state;
4: for each time from [1,T] do

5: an action at is chosen ranomly by epsilon greedy approach
6: execute state-action pair and and the reward rt and

next state st+1 is observed
7: (st, at, rt, st+1) is stored in experience buffer M ;
8: Get samples from the experience buffer M.
9: Calculate the target Q value using

Q(st, at) = V (st; θ, β) + [A(st, at; θ, α)−maxa′A(st, at; θ, α)]
10: Calculate the loss value by the loss function

L(θ) = E[(rt + θ ·maxaQ(st+1, at+1; θ)−Q(st, at; θ))
2]

11: Update e and parameters with Adam Optimizer.
12: end for

13: end for

14: The optimal power allocation strategy π∗ is obtained
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5 Performance Evaluation and Analysis

5.1 Simulation Environment

For simulation experiments and analysis, we used tyrone DIT400TR-48RL
workstation with 128 GB RAM which configure NVIDIA Quadro RTX 5000
GPU card on intel-C621 chipset. We perform extensive experiments in order to
give proper argument of our system model. We employ conda environment and
packages on Linux to run python to assess the performance of the proposed
model of UAV-assisted 5G mMTC resource allocation approach. Convolutional
Neural Network (CNN) is used in the model which comprises of two hidden
layers with 256 and 64 neurons in each. The memory bank’s value is determined
by its memory capacity. At any one time, the batch size refers to the amount
of samples gathered from the memory bank. Memory and batch size have an
impact on DDQN’s accuracy and training rate. We created simulation settings
that are compliant with 5G specifications and recommendations as per 3GPP
standards. The system begins with a single UAV and a large number of base
stations. The system radius has been adjusted at 500 metres in our scenario.
We have shown some important simulation parameter used in the Table 2.

Table 2 The setup of hyper-parameter for Dueling DQN, DQN and Q-network training

Parameter Value

ruav -60 dB
rbs -90 dB
α 2.5
β 2.5

UAV bandwidth 32 MHz
BS bandwidth 23 MHz

batch size 128
memory size 4096

epochs 10000
UAV maximum power 32 dBm
BS maximum power 23 dBm

number of users 15
number of base stations 4

learning rate (δ) 0.01
discount factor (γ) 0.99

5.2 Simulation results and parameter analysis

In this section, we discuss the simulation results and performance analysis
by investigating the consumption, throughput of power and the energy effi-
ciency of the systems. We have considered emergency communication scenario
in which the communication link has broken due to disaster. An UAV works as
a base station in this region to establish the communication connection with
the outside since the ground base stations are mostly power driven and might
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disturb in the disaster. The UAV-assisted 5G UDN network has been consid-
ered for the resource allocation which aim to maximize the energy efficiency.
We simulated the proposed Dueling DQN model with 10000 epochs. The learn-
ing rate and discount factor are 0.01 and 0.99, respectively. We perform the
experiments with 15 users, 4 ground base stations and 1 UAV.
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Fig. 4 The system throughput vs number of base stations

The Fig. 4 shows the system throughput with the different number of base
stations as (2 , 4 , 6 , . . , 20) in which UAV-assisted network provides a
better throughput with compare to the without UAV-assisted network. With
the increasing in number of base stations the UAV-assisted provides better
overall throughput than the normal environment.
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Fig. 5 The system energy consumption vs number of base stations

The Fig. 5 shows the energy consumption with the different number of base sta-
tions as (2 , 4 , 6 , . . , 20) in which UAV-assisted network consume more energy
than without UAV-assisted network. The plot is linear because of we provides
uniform type of UAV and base station power in the system model. The opera-
tional expenses and throughput are two significant performance indicators, as
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excessive consumption raises operating costs and insufficient throughput neg-
atively impacts the user’s experience. The energy efficiency vs different users
for different Q-learning algorithms as shown in Fig. 6. We have considered the
number of users as (10, 15, 20, 25, 30) with DDQN model and shown compar-
ison with DQN, Q-Learning and Random algorithms. The performance with
10 users is better than the other because of low dense network environment.
With the increasing the number of users the overall energy efficiency and the
DDQN model performs better in each of the case.
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Fig. 6 The system energy efficiency for different users

The different learning rate of DDQN and DQN model for energy efficiency
is shown in the Fig. 7. We consider the learning rate as (0.001, 0.01, 0.1) in
which the learning rate 0.01 performs better while learning rate 0.001 takes
more iterations for stable performance. We fix the learning rate 0.01 for the
rest of our experiments. We run for 10000 episodes for analysis but the models
DDQN and DQN both performs stable about within 1000 episodes.
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Fig. 7 The different learning rates for DDQN and DQN model



UAV-assisted 5G mMTC Slicing Networks using Deep Reinforcement Learning 23

The one of the most essential feature of reinforcement learning algorithm is
the learning rate, changing it affects the neural network’s weight and chang-
ing the depth affects the algorithm’s performance. If learning rate tends to 0,
most recent feedback function may not be acquired by the agent. It will take
a huge time to iterate, and the convergence speed will be slow. If it is close
to 1, on the other hand, the speed of convergence will be too fast to get the
ideal allocation strategy of resource, resulting in system performance decrease.
The performance of learning rate 0.1 is not good as other parameters. Hence,
we have considered 0.01 as the learning rate value for our experiments. The
overall performance of DDQN model is better than the DQN model. There-
fore, we have considered DDQN model for our experiments and the remaining
reinforcement learning technique used for comparison.
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Fig. 8 The different discount factors for DDQN and DQN model

The different discount factor of DDQN and DQN model for energy efficiency
is shown in the Fig. 8. We consider the discount factor as (0.99, 0.79, 0.59) in
which the discount factor 0.99 performs better while the discount factor 0.79
and 0.59 provides less performance. Hence, we have considered 0.99 as the
discount factor for our experiments. Also, the overall performance of DDQN
model is better than the DQN model. Therefore, we have considered DDQN
model for our experiments and the remaining reinforcement learning technique
used for comparison.

5.3 Performance comparisons

We study the UAV-assisted framework in the 5G mMTC where a lot of con-
nected IoT devices as user which is connected to the ground base stations. The
ground base stations can be compromised in the disaster due to main power
supplied. We considered the UAV-assisted base station which can connected to
the outside region for emergency communication. The UAV can have the line-
of-sight (LoS) in which it could be connected to the users. In the Fig. 9 we have
shown the UAV throughput vs different θLoS range for the given devices and
UAV power and hover-height. The UAV provides better throughput when the
hover-height is less and UAV, and devices power is more. Here, by increasing
the θLoS degree range the throughput performance of two network is increases,
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this is very interesting phenomenon because widely distributed users are close
to the NLoS region [27]. Furthermore, by increasing the distance between user
and UAV decreases the link gain, the larger θLoS decreases the interference to
the user.
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The transmission power of the UAV-assisted base station has major role which
can effect the overall wireless communication. The Fig. 10 shows the system’s
performance with power transmission and with some mentioned different users.
It is observed that with the increment in power transmission there is a decre-
ments in energy efficiency of the system. We have used the transmission power
as 3 dBm with the 15 users for our rest of the experiments.
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Fig. 10 The system energy efficiency for different power transmission rate

We simulated our system models with Dueling DQN, DQN, Q-Learning, Ran-
dom distribution algorithms for better performance comparison. In the Fig. 11
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Fig. 11 The system energy efficiency for different number of base stations

we shows the energy efficiency with different number of users. The peak distri-
bution indicates that the base station sends data at the highest transmission
power possible to the user. In which Dueling DQN provides better energy effi-
ciency as compared to the DQN and Q-Learning model. The term random
refers to the fact that the base station provides transmission power to the user
at random.
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Fig. 12 The computation time for different number of base stations

The computation time is an important parameter by which we can think
towards the scalability. We perform the computation analysis with the DDQN
algorithm as shown in the Fig. 12. The number of base stations we considered
as (2, 4, 6, 8, 10, 12, 14). The number of user can be dynamic which can be
change with interval of time, we have simulated the computation time with
numbers of users as 10, 15 and 20. The computation time is more for user 20
and for each user groups, with the increasing the number of base stations the
computation time increases.
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6 Conclusion

In this paper, we study UAV-assisted 5G mMTC slice for emergency commu-
nication in disaster scenario. We investigate resource allocation maximization
problem in our environment of UAV-assisted wireless network. We consider
UAV as a flying base station for the emergency communication system with 5G
mMTC Network Slicing to overcome communication limits induced by natural
disasters. We formulate our problem to improve overall energy efficiency and
we separate the problem of resource allocation into two modules as user link
selection strategy and power control method. Then, we reduce the problem into
stochastic optimization problem using Markov Decision Process (MDP) the-
ory. We proposed Dueling Deep Q-Network (DDQN) based algorithm based on
reinforcement learning for dynamic resource allocation. We perform extensive
experiments with proposed model, Q-Learning and DQN in order to present
better analysis. We found that the overall performance of DDQN model is
better. In the future, we will look at various deep reinforcement learning tech-
niques and other UAVs as the auxiliary equipment, such as UAVs that act as
handover and UAVs that act as the wireless charging equipments.

References

[1] Navarro-Ortiz, J., Romero-Diaz, P., Sendra, S., Ameigeiras, P., Ramos-
Munoz, J. J., Lopez-Soler, J. M. (2020). A survey on 5G usage scenarios
and traffic models. IEEE Communications Surveys Tutorials, 22(2), 905-
929.

[2] Rafique, W., Qi, L., Yaqoob, I., Imran, M., Rasool, R. U., Dou, W.
(2020). Complementing IoT services through software defined network-
ing and edge computing: A comprehensive survey. IEEE Communications
Surveys Tutorials, 22(3), 1761-1804.

[3] Gupta, R. K., Sahoo, B. (2018). Security Issues in Software-Defined
Networks. IUP Journal of Information Technology, 14(2).

[4] Bonati, L., Polese, M., D’Oro, S., Basagni, S., Melodia, T. (2020). Open,
programmable, and virtualized 5G networks: State-of-the-art and the road
ahead. Computer Networks, 182, 107516.

[5] Liu, X., Chen, M., Liu, Y., Chen, Y., Cui, S., Hanzo, L. (2020). Arti-
ficial intelligence aided next-generation networks relying on UAVs. IEEE
Wireless Communications, 28(1), 120-127.

[6] Chen, S., Liang, Y. C., Sun, S., Kang, S., Cheng, W., Peng, M. (2020).
Vision, requirements, and technology trend of 6G: How to tackle the chal-
lenges of system coverage, capacity, user data-rate and movement speed.
IEEE Wireless Communications, 27(2), 218-228.



UAV-assisted 5G mMTC Slicing Networks using Deep Reinforcement Learning 27

[7] Li, B., Fei, Z., Zhang, Y. (2018). UAV communications for 5G and beyond:
Recent advances and future trends. IEEE Internet of Things Journal, 6(2),
2241-2263.

[8] Wang, B., Sun, Y., Sun, Z., Nguyen, L. D., Duong, T. Q. (2020). UAV-
assisted emergency communications in social IoT: A dynamic hypergraph
coloring approach. IEEE Internet of Things Journal, 7(8), 7663-7677.

[9] Khawaja, W., Guvenc, I., Matolak, D. W., Fiebig, U. C., Schneckenburger,
N. (2019). A survey of air-to-ground propagation channel modeling for
unmanned aerial vehicles. IEEE Communications Surveys Tutorials, 21(3),
2361-2391.

[10] Yan, K., Ma, L., Zhang, Y. (2020, December). Research on the Appli-
cation of 5G Technology in UAV Data Link. In 2020 IEEE 9th Joint
International Information Technology and Artificial Intelligence Confer-
ence (ITAIC) (Vol. 9, pp. 1115-1118). IEEE.

[11] Li, B., Fei, Z., Zhang, Y. (2018). UAV communications for 5G and
beyond: Recent advances and future trends. IEEE Internet of Things
Journal, 6(2), 2241-2263.

[12] Mozaffari, M., Saad, W., Bennis, M., Nam, Y. H., Debbah, M. (2019). A
tutorial on UAVs for wireless networks: Applications, challenges, and open
problems. IEEE communications surveys tutorials, 21(3), 2334-2360.

[13] Xilouris, G. K., Batistatos, M. C., Athanasiadou, G. E., Tsoulos, G.,
Pervaiz, H. B., Zarakovitis, C. C. (2018, December). UAV-assisted 5G net-
work architecture with slicing and virtualization. In 2018 IEEE Globecom
Workshops (GC Wkshps) (pp. 1-7). IEEE.

[14] Li, Y., Zhang, H., Long, K., Jiang, C., Guizani, M. (2021). Joint resource
allocation and trajectory optimization with QoS in UAV-based NOMA
wireless networks. IEEE Transactions on Wireless Communications.

[15] Volk, M., Sterle, J. (2021). 5G Experimentation for Public Safety:
Technologies, Facilities and Use Cases. IEEE Access, 9, 41184-41217.

[16] SHU, Z., TALEB, T., SONG, J. (2021). Resource Allocation Modeling for
Fine-Granular Network Slicing in Beyond 5G Systems. IEICE Transactions
on Communications.

[17] Gupta, R. K., Misra, R. (2019, December). Machine learning-based slice
allocation algorithms in 5G networks. In 2019 International Conference on
Advances in Computing, Communication and Control (ICAC3) (pp. 1-4).
IEEE.



28 UAV-assisted 5G mMTC Slicing Networks using Deep Reinforcement Learning

[18] Zhang, X., Zhang, Z., Yang, L. (2021). Joint User Association and Power
Allocation in Heterogeneous Ultra Dense Network via Semi-Supervised
Representation Learning. arXiv preprint arXiv:2103.15367.

[19] Guo, H., Liu, J., Zhang, J. (2018). Computation offloading for multi-
access mobile edge computing in ultra-dense networks. IEEE Communica-
tions Magazine, 56(8), 14-19.

[20] Ullah, Z., Al-Turjman, F., Moatasim, U., Mostarda, L., Gagliardi, R.
(2020). UAVs joint optimization problems and machine learning to improve
the 5G and Beyond communication. Computer Networks, 107478.

[21] Song, J., Song, Q., Wang, Y., Lin, P. (2021). Energy-Delay Trade-
off in Adaptive Cooperative Caching for Energy-Harvesting Ultradense
Networks. IEEE Transactions on Computational Social Systems.

[22] Chen, Y., Liu, Z., Zhang, Y., Wu, Y., Chen, X., Zhao, L. (2020). Deep
Reinforcement Learning-Based Dynamic Resource Management for Mobile
Edge Computing in Industrial Internet of Things. IEEE Transactions on
Industrial Informatics, 17(7), 4925-4934.

[23] Shi, Z., Liu, J., Zhang, S., Kato, N. (2021). Multi-Agent Deep Reinforce-
ment Learning for Massive Access in 5G and Beyond Ultra-Dense NOMA
System. IEEE Transactions on Wireless Communications.

[24] Chen, Y., Zhang, N., Zhang, Y., Chen, X., Wu, W., Shen, X. S. (2019).
TOFFEE: Task offloading and frequency scaling for energy efficiency of
mobile devices in mobile edge computing. IEEE Transactions on Cloud
Computing.

[25] Faraci, G., Grasso, C., Schembra, G. (2019, April). Reinforcement-
learning for management of a 5G network slice extension with UAVs. In
IEEE INFOCOM 2019-IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS) (pp. 732-737). IEEE.

[26] Faraci, G., Grasso, C., Schembra, G. (2020). Design of a 5G network slice
extension with MEC UAVs managed with reinforcement learning. IEEE
Journal on Selected Areas in Communications, 38(10), 2356-2371.

[27] Liu, Y., Xiong, K., Ni, Q., Fan, P., Letaief, K. B. (2019). UAV-assisted
wireless powered cooperative mobile edge computing: Joint offloading, CPU
control, and trajectory optimization. IEEE Internet of Things Journal,
7(4), 2777-2790.

[28] Wang, H., Zhao, H., Wu, W., Xiong, J., Ma, D., Wei, J. (2019). Deploy-
ment algorithms of flying base stations: 5G and beyond with UAVs. IEEE
Internet of Things Journal, 6(6), 10009-10027.



UAV-assisted 5G mMTC Slicing Networks using Deep Reinforcement Learning 29

[29] Yan, S., Peng, M., Cao, X. (2018). A game theory approach for joint
access selection and resource allocation in UAV assisted IoT communica-
tion networks. IEEE Internet of Things Journal, 6(2), 1663-1674.

[30] Wang, W., Tang, J., Zhao, N., Liu, X., Zhang, X. Y., Chen, Y., Qian,
Y. (2020). Joint precoding optimization for secure SWIPT in UAV-aided
NOMA networks. IEEE Transactions on Communications, 68(8), 5028-
5040.

[31] Wang, J., Liu, M., Sun, J., Gui, G., Gacanin, H., Sari, H., Adachi, F.
(2020). Multiple Unmanned-Aerial-Vehicles Deployment and User Pair-
ing for Nonorthogonal Multiple Access Schemes. IEEE Internet of Things
Journal, 8(3), 1883-1895.

[32] Zeng, F., Hu, Z., Xiao, Z., Jiang, H., Zhou, S., Liu, W., Liu, D. (2020).
Resource allocation and trajectory optimization for QoE provisioning in
energy-efficient UAV-enabled wireless networks. IEEE Transactions on
Vehicular Technology, 69(7), 7634-7647.

[33] Zhang, L., Ansari, N. (2020). Latency-aware IoT service provisioning
in UAV-aided mobile-edge computing networks. IEEE Internet of Things
Journal, 7(10), 10573-10580.

[34] Gupta, R. K., Ranjan, A., Moid, M. A., Misra, R. (2020, July). Deep-
Learning Based Mobile-Traffic Forecasting for Resource Utilization in 5G
Network Slicing. In International Conference on Internet of Things and
Connected Technologies (pp. 410-424). Springer, Cham.

[35] Xie, L., Xu, J., Zhang, R. (2018). Throughput maximization for UAV-
enabled wireless powered communication networks. IEEE Internet of
Things Journal, 6(2), 1690-1703.

[36] Gupta, R. K., Choubey, A., Jain, S., Greeshma, R. R., Misra, R. (2020,
July). Machine Learning Based Network Slicing and Resource Allocation
for Electric Vehicles (EVs). In International Conference on Internet of
Things and Connected Technologies (pp. 333-347). Springer, Cham.

[37] Liu, X., Wang, J., Zhao, N., Chen, Y., Zhang, S., Ding, Z., Yu, F. R.
(2019). Placement and power allocation for NOMA-UAV networks. IEEE
Wireless Communications Letters, 8(3), 965-968.

[38] Cai, Y., Cui, F., Shi, Q., Zhao, M., Li, G. Y. (2018). Dual-UAV-enabled
secure communications: Joint trajectory design and user scheduling. IEEE
Journal on Selected Areas in Communications, 36(9), 1972-1985.

[39] Wu, Y., Yang, W., Guan, X., Wu, Q. (2020). Energy-efficient trajectory
design for UAV-enabled communication under malicious jamming. IEEE



30 UAV-assisted 5G mMTC Slicing Networks using Deep Reinforcement Learning

Wireless Communications Letters, 10(2), 206-210.

[40] Li, J., Zhao, H., Wang, H., Gu, F., Wei, J., Yin, H., Ren, B. (2019).
Joint optimization on trajectory, altitude, velocity, and link scheduling for
minimum mission time in UAV-aided data collection. IEEE Internet of
Things Journal, 7(2), 1464-1475.

[41] You, C., Zhang, R. (2020). Hybrid offline-online design for UAV-enabled
data harvesting in probabilistic LoS channels. IEEE Transactions on
Wireless Communications, 19(6), 3753-3768.

[42] Ali, M. A., Jamalipour, A. (2020). UAV placement and power allocation
in uplink and downlink operations of cellular network. IEEE Transactions
on Communications, 68(7), 4383-4393.

[43] Zhang, S., Ansari, N. (2020). 3D drone base station placement and
resource allocation with FSO-based backhaul in hotspots. IEEE Transac-
tions on Vehicular Technology, 69(3), 3322-3329.

[44] Qiu, C., Wei, Z., Yuan, X., Feng, Z., Zhang, P. (2020). Multiple UAV-
mounted base station placement and user association with joint fronthaul
and backhaul optimization. IEEE Transactions on Communications, 68(9),
5864-5877.

[45] Mozaffari, M., Saad, W., Bennis, M., Debbah, M. (2015, December).
Drone small cells in the clouds: Design, deployment and performance anal-
ysis. In 2015 IEEE global communications conference (GLOBECOM) (pp.
1-6). IEEE.

[46] Xue, Z., Wang, J., Ding, G., Wu, Q., Lin, Y., Tsiftsis, T. A. (2018).
Device-to-device communications underlying UAV-supported social net-
working. IEEE Access, 6, 34488-34502.

[47] Chen, X., Liu, X., Chen, Y., Jiao, L., Min, G. (2021). Deep Q-network
based resource allocation for UAV-assisted ultra-dense networks. Computer
Networks, 196, 108249.

[48] Liu, M., Yang, J., Gui, G. (2019). DSF-NOMA: UAV-assisted emergency
communication technology in a heterogeneous Internet of Things. IEEE
Internet of Things Journal, 6(3), 5508-5519.

[49] Yan, Z., Zhang, Z., Meng, Y. (2021, July). Energy Efficiency Optimiza-
tion for UAV-assisted mMTC Networks with Altitude Differences. In 2021
IEEE/CIC International Conference on Communications in China (ICCC)
(pp. 306-311). IEEE.



UAV-assisted 5G mMTC Slicing Networks using Deep Reinforcement Learning 31

Statements and Declarations

Funding

The preparation of the manuscript is not funded.

Competing Interests

There are no competing interests declared by the authors.

Author Contributions

The study, implementation and experiments were done by all of the authors.
Rohit Kumar Gupta prepared the materials, run the simulations, and con-
ducted the analysis and Saubhik Kumar helped in the simulations under
supervision of Dr Rajiv Misra. Rohit Kumar Gupta wrote the first draft of the
manuscript, and all contributors provided feedback. The final manuscript was
read and approved by all of the authors.

Data Availability

All the used codes/data in this research will be available from the correspond-
ing author on reasonable request.


	Introduction
	Related Work
	Preliminaries and System Model
	System and Channel models
	Network Model
	Computational Model

	Problem Formulation
	MDP Model
	Q-Learning
	DQN Model
	DDQN Model

	Performance Evaluation and Analysis
	Simulation Environment
	Simulation results and parameter analysis
	Performance comparisons

	Conclusion

