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Highlights 28 

● Characterization of prostate cancer by combined scRNA-seq and spatial transcriptomic analysis 29 

● Primary prostate cancer establishes a suppressive immune microenvironment 30 

● The prostate tumor microenvironment exhibits a high angiogenic gene expression pattern  31 

● A new computational analysis pipeline to deconvolute context-specific differential gene 32 

expression 33 

 34 
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Summary 39 

The treatment of primary prostate cancer delicately balances an active surveillance approach for low-40 

risk disease with multimodal treatment including surgery, radiation therapy, and hormonal therapy for 41 

high-risk disease. Recurrence and development of metastatic disease remains a clinical problem, 42 

without a clear understanding of what drives immune escape and tumor progression. Here, we sought 43 

to comprehensively describe the tumor microenvironment of localized prostate cancer contrasting this 44 

with adjacent normal samples and healthy controls. We performed single-cell RNA sequencing and 45 

high-resolution spatial transcriptomic analysis. This revealed tumor context dependent changes in gene 46 

expression. Our data point towards an immune suppressive tumor microenvironment associated with 47 

suppressive myeloid populations and exhausted T-cells, in addition to high stromal angiogenic activity. 48 

We inferred cell-to-cell relationships at an unprecedented scale for ligand-receptor interactions within 49 

undissociated tissue sections. Our work provides a highly detailed and comprehensive resource of the 50 

prostate tumor microenvironment as well as tumor-stromal cell interactions. 51 

Keywords: Prostate cancer, Single-cell RNA sequencing, Tumor microenvironment, Immune 52 

microenvironment, immunosuppressive myeloid cells, T-cell exhaustion, Tumor angiogenesis, Slide-53 

seqV2, Spatial transcriptomic analysis, Context-specific differential expression analysis 54 
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Introduction 56 

Localized prostate cancer is a clinically heterogeneous disease. Some patients present with indolent 57 

low-risk prostate tumors that can safely be observed, while others have aggressive high-risk disease 58 

that carries a substantial relapse risk even following state-of-the-art treatment. Despite efforts aimed at 59 

early detection and improving our current curative-intent therapies, many patients unfortunately 60 

experience recurrence and disease progression (1). There remains a significant need to further our 61 

understanding of prostate cancer, where biological insights of the prostate tumor microenvironment 62 

(TME) may help to identify novel therapeutic targets. We examined the supportive cellular states and 63 

molecular relationships within the prostate TME to identify changes that drive tumor growth.  64 

Single-cell gene expression technologies have made it possible to assess thousands of cells within a 65 

single sample, revealing subtleties in tumor cell heterogeneity as well as a complex TME (2–4). 66 

Examinations of normal adult human prostate gland (5) and prostate cancer have provided detailed 67 

descriptions of the epithelial and tumor cells as well as cell states in both prostate adenocarcinoma (6–68 

9) and neuroendocrine tumors (10). However, the immune cells within the prostate microenvironment 69 

have not been rigorously characterized at the single-cell level. The prostate TME typically contains few 70 

immune cells, and it is hypothesized that this feature may explain the generally poor response of 71 

prostate cancer to immunotherapy (11,12). We therefore processed fresh prostate and tumor samples 72 

using a method that enriched and preserved immune cell populations so to characterize the immune 73 

microenvironment at high-resolution. 74 

To validate our single-cell findings, we used a parallel spatial transcriptomic technique (Slide-seqV2), 75 

where the tissue architecture and cell-cell proximity relationships are preserved (13,14). We thus also 76 

characterized the spatial organization of tumors from patients with low-risk and high-risk prostate 77 

cancer. In addition, we developed a new computational means of data analysis to examine the 78 

transcriptional impact of tumor cells on neighboring stromal cells, including fibroblasts, pericytes and 79 

endothelial cells. 80 
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Together, this work provides a compendium of the prostate TME with a particular focus on immune 81 

populations. We further reveal the transcriptional state of stromal cells based on their spatial localization 82 

within the tumor. In sum, our data reveal a highly immune suppressive TME and describe tumor-induced 83 

alterations of neighboring cells that promote tumorigenesis and progression.  84 

Results 85 

The prostate TME characterized by single-cell and spatial transcriptomic analysis 86 

Fresh prostate cancer samples were collected from 19 treatment-naïve patients diagnosed with prostate 87 

adenocarcinoma and undergoing radical prostatectomy. In 14 of the 19 patients, matched ‘normal’ 88 

benign prostate gland tissue adjacent to the tumor was also sampled. As controls, samples from 89 

prostate tissue not harboring cancer were collected from 4 patients (undergoing cystoprostatectomy for 90 

bladder cancer), and one healthy prostate was collected as part of a rapid autopsy from a patient with 91 

metastatic non-small cell lung cancer (Figure 1A). 92 

The cellular composition of the prostate TME was examined across a spectrum of primary tumor grades 93 

and stages (pathologic T-stage 2a to 3b; Gleason score 6-10). Samples were divided into low-grade 94 

(LG, Gleason 6 and 7, 12 cases) and high-grade (HG, Gleason 8-10, 7 cases) (Table S1). Live, non-95 

erythroid cells (DAPIneg/CD235neg) were collected by fluorescence-activated cell sorting (FACS) from 96 

healthy prostate tissues (n=5), prostate tumor tissues (n=12 LG and n=7 HG) and adjacent non-tumor 97 

involved prostate tissues (n=11 LG and n=4 HG, hereafter ‘adjacent-normal’). From 14 patients we 98 

collected paired tumor tissue and adjacent-normal tissue samples (n=10 LG and n=4 HG) (Table S1). 99 

All patients had standard pathologic evaluation to confirm their diagnosis (Figure S1A).  100 

The transcriptomes of 179,359 single cells were analyzed (average of 4,721 cells per sample and 101 

50,416 transcripts per cell, Table S2). Conos (15) (Clustering On Network Of Samples) aligned the 102 

samples, and the analysis of the resulting joint cell clusters revealed a rich repertoire of immune cells 103 

and non-immune stromal cells (Figure 1B). Cell types were annotated based on cell type-specific gene 104 

markers, forming 16 major clusters (Figure 1C, S1B, Table S3). 105 
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Of note, our dissociation protocol was optimized to enrich for immune cells. This was an intentional 106 

choice to focus on the prostate immune TME with the goal of understanding why prostate cancers are 107 

considered poorly immunogenic and so rarely respond to immunotherapy (16). In comparing our tissue 108 

processing method (Collagenases+Dispase) to a published protocol of a single-cell prostate study 109 

(Rocky) (5), the Collagenases+Dispase released a higher proportion of immune cells (Figure 1D, S1C). 110 

Reassuringly, cells liberated by both dissociation protocols showed similar transcriptome profiles 111 

(Figure S1D). 112 

In terms of the abundance of major cell populations, significant but small absolute differences were 113 

observed at the global level in plasma cells, macrophages, and endothelial cells when comparing the 114 

tumor sample to the adjacent-normal sample (Figure 1E). Stratifying low-grade (LG) and high-grade 115 

(HG) cases, there were similar small but significant changes in plasma cells (adj-normal vs tumor, LG), 116 

macrophages (adj-normal vs tumor, LG) and endothelial cells (Healthy vs. adj-N LG) (Figure S1E). The 117 

few significant differences in cell abundance were likely due to high patient-to-patient variability even 118 

within patients who had the same Gleason score (Figure S1F).  119 

The overall similarity of the transcriptional state between samples was examined using a weighted 120 

expression distance, revealing a significant increase in the inter-patient variability among the tumor 121 

fraction, compared to the adj-normal and healthy fractions (Figure 1F). This suggests divergent 122 

trajectories of the cellular states in the tumor region among different patients.  123 

To validate single-cell findings with a dissociation-free approach that preserves tissue architecture, we 124 

performed spatial transcriptomics using Slide-seqV2 (13,14). This provided the opportunity to examine 125 

tumor organization at high spatial resolution. Fresh-frozen 10-micron sections were sampled from a 126 

healthy prostate sample and two prostate tumor samples (one low grade and one high grade) as well 127 

as their corresponding adjacent-normal tissues (Figure 1G).  128 

Robust Cell Type Decomposition (RCTD) was used to assign cell type annotations based on scRNA-129 

seq reference data (see Methods) (17). Hallmark genes denoting different cell populations were used 130 

to verify the RCTD annotation (Figure S1G). As expected, Slide-seqV2 measurements showed more 131 
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pronounced differences in cell proportions as compared to the scRNA-seq data, with greatly expanded 132 

epithelial and fibroblast populations and a significantly smaller fraction of immune cells (Figure 1D).  133 

The cellular architecture viewed through the lens of Slide-seqV2 was reassuringly consistent with what 134 

one would expect from standard H&E staining. The highly detailed spatial configuration of the healthy 135 

prostate tissue demonstrated well-organized prostate epithelial glands surrounded by immune and non-136 

immune stromal cells including fibroblasts, pericytes, mast cells, and endothelial cells (Figure 1G, 137 

panel 1). This architecture was notably disrupted in the cancerous prostate (Figure 1G, panels 3 and 138 

4). Differences in tissue organization were quantified by spatial autocorrelation using Moran’s I score, 139 

which evaluates the extent to which the cells are clustered (high score) or dispersed (low score) (18). 140 

The Moran’s I score for fibroblasts, endothelial cells, and pericytes significantly decreased in tumor as 141 

compared to healthy tissues (Figure 1H).  142 

 143 

A Prostate Tumor Gene Signature distinguishes normal and malignant luminal epithelial cells 144 

Unsupervised clustering revealed four epithelial subpopulations: basal, luminal, club, and hillock 145 

(Figure 2A) as denoted by key marker gene expression (Figure S2A). Hillock and club cells were 146 

identified as transitional cells in a cellular atlas of the mouse lung (19). These cells have also been 147 

reported in human prostate tissue (5,20) and in benign human prostate organoids (7), but their role in 148 

prostate tumorigenesis remains unclear.  149 

We used RNA velocity to infer the likely trajectories of epithelial cell differentiation (21,22). One 150 

trajectory suggested that club cells act as luminal cell progenitors, an observation previously reported 151 

in prostate cancer (23). A second distinct trajectory showed consistent directional flow suggesting that 152 

hillock cells may be acting as progenitors for basal cells (Figure 2B). Differential gene expression 153 

comparing healthy and tumor-associated hillock and club cells showed enrichment in genes involved in 154 

urogenital system development and epithelial tubes morphogenesis, respectively (Figure S2B) and 155 

these cells are known to be enriched in urethra and peri-urethral prostate zones (5). 156 
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Malignant cells did not cluster separately from the non-malignant epithelial populations from which they 157 

originated. To distinguish malignant cells from normal epithelial cells within the prostate tumor samples, 158 

we applied inferCNV (3,24,25) on the four epithelial subpopulations, taking their corresponding 159 

subpopulation from healthy samples as a reference. Only cells within the luminal subpopulation showed 160 

clear chromosomal aberrations, indicating that the malignant cells are of luminal origin, consistent with 161 

previous studies (26) (Figure S2C).  162 

Chromosomal aberrations and inferCNV analysis allowed us to separate malignant luminal cells (with 163 

genomic aberrations) from normal luminal cells within the tumor. DEG analysis was used to identify an 164 

expression signature for the malignant cells, leading to a signature composed of eight genes, which we 165 

termed the “Prostate Tumor Gene Signature” (Figure 2C). We applied this gene signature to published 166 

bulk RNA-seq of prostate tissues, demonstrating a consistent ability to distinguish tumor samples from 167 

adjacent normal samples across four independent datasets (Figure S2D) (27–30). 168 

Since we were able to distinguish malignant cells from normal epithelial cells within tumor samples, we 169 

assessed for heterogeneity. Independent component analysis (ICA) of malignant cells revealed three 170 

major aspects of malignant clusters (Figure S3A). Gene Ontology (GO) pathway analysis showed an 171 

enrichment in cell growth and epithelial cell migration related genes in malignant cluster 1 (C1) 172 

(Figure S3B). Cluster 1 also showed high expression of EGR1, IER2 and KLF6 genes (Figure S3A) 173 

suggesting roles in prostate cancer progression, motility, and metastasis (31,32). 174 

Epithelial-mesenchymal transition (EMT) plays an important role in prostate cancer progression and 175 

metastasis (33). Malignant cells showed significantly higher EMT gene signature (34,35) (Table S4) as 176 

compared to non-malignant luminal cells from the three different sample types (healthy, adj-normal and 177 

tumor) (Figure 2D, Figure S3C).  178 

Spatially, the healthy prostate demonstrated an organized glandular epithelium with a well-structured 179 

bilayer of basal and luminal cells (Figure 2E). The adj-normal sample differed with an expansion of the 180 

luminal epithelial population, and loss of the well-organized glands (Figure S1A, Figure 2E). Epithelial 181 

subpopulations were annotated using RCTD and validated using epithelial cell-type specific marker 182 
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genes (Figure 2E and F). The normal clusters of club and hillock cells were disrupted in the tumor and 183 

adj-normal samples as demonstrated by spatial autocorrelation (Figure S3D).  184 

The “Prostate Tumor Gene Signature” obtained from the single cell experiments was applied to the 185 

Slide-seqV2 results. This eight-gene tumor signature successfully identified tumor cells collected from 186 

the HG case (Figure 2G). Almost no such cells were annotated in the healthy and adj-normal samples 187 

(Figure 2G), speaking to the accuracy of this “Prostate Tumor Gene Signature”.  188 

 189 

Context-dependent differential expression with linear admixture correction 190 

The edge, or boundary, of the expanding tumor was particularly evident in the HG sample, which could 191 

be segmented into two distinct spatial contexts. The tumor context was dominated by dense 192 

accumulation of tumor cells, while the tumor-adjacent context was composed primarily of non-malignant 193 

epithelial cells (Figure S3E). The small fraction of tumor cells detected within the adj-normal sample 194 

likely represents real infiltration of tumor cells. Slide-seqV2 allows one to examine the differences in 195 

cellular state associated with precise spatial contexts. Annotation tools such as RCTD (17) estimate the 196 

fractions of cell types contributing to each bead and identify relatively pure beads that can be confidently 197 

assigned to a specific cell type. However, even “pure” beads can carry admixture of transcriptomes 198 

from the neighboring cells (Figure 2H).  199 

As composition of the cellular neighborhoods varies between different tissue contexts, such admixture 200 

will heavily bias transcriptional comparisons of cellular state between contexts. To overcome this 201 

admixture effect, we developed a new computational approach which regressed out context-dependent 202 

differences that could be attributed to admixture from other cell types, focusing on the residual 203 

differences that likely reflect the context-dependent change in the transcriptional state of the target cell-204 

type (Supplementary Note 1). In subsequent sections, we apply this approach to contrast the state of 205 

the stromal populations between tumor and tumor-adjacent contexts.  206 

 207 
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The prostate tumor microenvironment exhibits high endothelial angiogenic activity 208 

The non-immune stroma includes fibroblasts, endothelial cells and pericytes, representing important 209 

components of the TME whose function and abundance varies significantly between cancer types (36). 210 

We identified five stromal subpopulations including two endothelial, two pericyte, and one fibroblast 211 

subpopulation (Figure 3A) annotated based on key marker gene expression (37–41) (Figure S4A and 212 

Table S3). 213 

Endothelial-1 cells showed high expression of SELE/SELP/CLU/PLVAP, characteristic of sinusoidal 214 

endothelial cells whereas Endothelial-2 cells expressed common arterial genes (HEY1/IGFBP3/FBLN5) 215 

(42–46) (Figure S4A). Gene Ontology (GO) analysis of Endothelial-2 cells pointed to pathways involved 216 

in blood vessel development and angiogenesis (Figure 3B). An angiogenesis gene signature (35) 217 

(Table S4), demonstrated that the tumor-associated Endothelial-2 cells scored highest when compared 218 

to the other stroma populations and when comparing healthy and tumor across almost all populations 219 

(Figure 3C). The angiogenesis scores of different stromal subpopulations did not differ between LG 220 

and HG tumor samples.  221 

Transcriptomic changes of the Endothelial-2 cells were examined within the Slide-seqV2 spatial 222 

transcriptomic platform (Figure 3D) comparing the ‘tumor’ and ‘tumor-adjacent’ contexts (Figure S3B), 223 

Pathway enrichment analysis was consistent with the single-cell data of the tumor, showing 224 

upregulation of sprouting angiogenesis and vascular endothelial growth factor pathways (Figure 3E 225 

and S4C). 226 

Endothelial-2 cells in the tumor context also showed upregulation of cell migration and proliferation 227 

pathways. This is consistent with the dispersed organization of the Endothelial-2 cells within the tumor 228 

tissue in contrast to well-organized structures of the adj-normal and healthy samples (Figure 3F), and 229 

this was quantified by spatial autocorrelation analysis (Figure 3G). Overall, this highlights the relevance 230 

of endothelial cells to tumor vascularization and migration, which correlates with prostate cancer 231 

disease progression (47). 232 
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Perivascular pericytes are another component of the vascular system. These cells exhibit mesenchymal 233 

features with multipotency (48), and their role in vasculature development is established while their role 234 

in cancer progression is unclear. We identified two pericyte subpopulations (Figure 3A). The expression 235 

pattern in Pericyte-1 cells was enriched for pathways involved in extracellular structure organization 236 

and connective tissue development, while Pericyte-2 cells demonstrated gene signatures enriched for 237 

muscle contraction consistent with vascular smooth muscle cells (VSMCs) (Figure 3B). In addition, 238 

there was a significant increase in the angiogenic gene signature of both pericyte subpopulations in 239 

samples collected from cancerous prostate as compared to healthy prostate (Figure 3C). Spatially, 240 

Pericyte-1 cells were dispersed in the tumor samples when compared to healthy and adj-normal 241 

samples (Figure 3F and 3G). Taken together, these data suggest a role for pericytes in angiogenesis 242 

and in remodeling the tumor stroma during prostate cancer progression. 243 

Cancer-associated fibroblasts (CAFs) play a critical role in shaping the TME by promoting tumor 244 

proliferation and metastasis (49), enhancing angiogenesis (50), and mediating immunosuppression 245 

(51). CAFs are associated with poor prognosis in many cancer types (52–54). In prostate cancer, CAFs 246 

play a causal role in cancer development at early disease stages, contributing to therapy resistance 247 

and to metastatic progression (55). Fibroblast gene expression patterns showed an enrichment for 248 

collagen fibril organization, extracellular structure organization and connective tissue development 249 

pathways (Figure 3B). These same pathways were also identified within the Slide-seq differential gene 250 

analysis, comparing the tumor to the tumor-adjacent context (Figure S4D). These data suggest a role 251 

for fibroblasts in inducing extracellular matrix remodeling in prostate TME, which in turn is important for 252 

tumor progression.  253 

 254 

Coordination between tumor cells and stromal compartment in tumor context 255 

We utilized Slide-seqV2 spatial information to examine potential channels of communication between 256 

cells within the tumor ecosystem. While the importance of cell-to-cell signaling is appreciated, it is 257 

challenging to infer which cells communicate with each other and via which channels (56). Prediction 258 
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of possible relationships is based on the expression of ligand and cognate receptor pairs and typically 259 

results in many potential interactions; additional filters are needed to distinguish functionally relevant 260 

channels. We reasoned that spatial proximity might be one such filter to identify relevant interactions.  261 

We asked whether the corresponding ligand and receptor genes exhibited cooperative upregulation in 262 

cells positioned directly next to each. Slide-seqV2 data was used to graph physically adjacent cells, 263 

which permitted testing whether a ligand-receptor (LR) score, defined as a product of the two 264 

corresponding expression levels, was significantly higher in physically adjacent cells as compared to 265 

spatially distant cells (Figure 4A). From a reference list of ~1200 ligand-receptor interactions, our 266 

analysis revealed 405 statistically significant potential communication channels (Figure 4B, Table S5).  267 

With a focus on tumor-stroma communication, we investigated for communication channels when 268 

considering tumor cells as a source of ligands and stromal cells as expressing receptors (Figure 4C). 269 

Tumor cells express vascular endothelial growth factor (VEGFA and VEGFB), which can stimulate the 270 

Endothelial-2 cells through the VEGF receptor, FLT1 (57) and beta-1 integrin (58,59). These channels 271 

could potentially explain the pro-angiogenic shift in the state of the tumor-associated Endothelial-2 272 

subpopulations (Figure 3E). We also observed potential interactions between tumor cells and 273 

fibroblasts (COL9A2-ITGA1) and tumor cells with Pericytes-2 cells (COL12A1-ITGA1), pathways that 274 

are both involved in extracellular matrix remodeling and cell migration (60–62).  275 

Analysis of reverse interactions (i.e., stromal cells expressing ligand to a tumor receptor), revealed a 276 

potential interaction mediated by fibroblast Insulin-like Growth Factor (IGF1) stimulating tumor cell IGF1 277 

receptor (Figure 4D). The IGF pathway is known to promote tumor growth and survival through 278 

suppression of apoptosis and activation of cell cycle (63). Slide-seqV2 analysis of the IGF1-IGF1R 279 

interaction confirmed the co-localization of tumor cells expressing IGF1R and fibroblasts expressing 280 

IGF1 (Figure 4E).  281 

 282 
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Prostate tumors are enriched in immunosuppressive myeloid cells 283 

Myeloid cells support tumor progression in several cancer types, and these cells are considered one of 284 

the most clinically relevant populations to target for immune therapeutic purposes (64,65). 285 

Unsupervised clustering revealed 7 myeloid subpopulations including 3 monocyte, 3 macrophage and 286 

1 myeloid DC (mDC) (Figure 5A). Annotation was performed based on key marker genes (Figure 5B, 287 

Figure S5A) and validated using published monocyte and macrophage gene signatures (Table S4, 288 

Figure 5C, panels 1 and 2).  289 

Monocyte subpopulations were characterized as CD16hi (CD16hi Mo) which are known as 290 

non-classical monocytes, and tumor inflammatory monocytes (TIMo) which had high expression of 291 

CD14 (Figure 5B, a classical monocyte marker) as well as the highest expression of an inflammatory 292 

gene signature (Table S4, Figure 5C). The third subpopulation was annotated as Monocyte-293 

Macrophage (Mo-MΦ) as it showed a gradual shift in their gene expression from genes highly 294 

expressed in monocytes (e.g., S100A9) to genes expressed in macrophages (e.g., C1QA) (Figure 5A 295 

and S5B), suggesting a transitional cell state from monocytes toward macrophages. 296 

Both tumor and stromal cells produce chemokines involved in the myeloid differentiation process, as 297 

well as in the recruitment of monocytes to the tumor (66). We observed high expression of CXCL12 in 298 

fibroblasts, CCL2 in pericytes and CCL3,4, and 5 in epithelial and tumor cells (Figure S5C), suggesting 299 

a potential role of fibroblasts and pericytes in recruiting monocytes to the prostate tumor.  300 

Patients with prostate cancer have an ineffective immune response against the tumor and an 301 

immunosuppressive TME associated with the accumulation of myeloid derived suppressor cells 302 

(MDSCs) (67,68). TIMo cells scored highest for an MDSC gene signature (69) (Table S4, Figure 5C, 303 

panel 5), and the gene signature was significantly higher in cells collected from cancerous prostate 304 

(tumor and adj-normal) compared to healthy prostate tissues (Figure 5D). This suggests a role for the 305 

TIMo subpopulation in prostate tumor growth through immunosuppressive activity and the release of 306 

pro-inflammatory cytokines. 307 
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Several macrophage subpopulations were identified (Figure 5A), including tumor inflammatory 308 

macrophages (TIMΦ) with a high “Inflammatory gene signature”, antigen presenting macrophages 309 

(AP MΦ) with a high “antigen processing and presentation gene signature”, as well as M2-macrophages 310 

(M2-MΦ) with a high “M2-like gene signature” (Figure 5C, S5D, Table S4). M2-MΦ showed a gradual 311 

increase in cell abundance from healthy towards tumor fraction (Figure 5E) and M2-like macrophages 312 

have been shown to suppress anti-tumor immune response across a broad range of tumors (70). In 313 

prostate cancer, the high infiltration of M2-like macrophages in tumor tissue has been linked to tumor 314 

recurrence (71) and metastasis (72,73).  315 

Multiplex immunohistochemistry (mIHC), performed in-situ on the same tissue samples as the single 316 

cell expression, confirmed a higher infiltration of CD68+ macrophages and of CD68+CD163+ M2-MΦ 317 

in tumor tissues compared to their matched adj-normal tissues (Figure 5F). Quantification of tumor 318 

infiltration by M2-MΦ was more pronounced in cases of high Gleason scores (4+4, 4+5, 5+5) 319 

(Figure 5G). M2-MΦ express high levels of genes involved in angiogenesis such as angiogenic factor 320 

EGFL7 (74,75) and in tumor metastasis such as LYVE1 (76,77) and NRP1 (78) (Figure S5E), 321 

suggesting a role for M2-MΦ infiltration in angiogenesis within tumors.  322 

Myeloid dendritic cells (mDCs) present tumor antigens to T-cells with a critical role in the initiation and 323 

regulation of the adaptive anti-tumor immune response (79–81). We identified three mDC 324 

subpopulations, each with high expression of either CD1C, CLEC9A or LAMP3. No significant changes 325 

were observed in the cell abundance of the different mDCs subsets (Figure S5F).  326 

Overall, our myeloid cell analysis identified immunosuppressive subpopulations that may contribute to 327 

tumor progression, including MDSC-like monocytes (TIMo), and macrophages with an M2-like 328 

signature. 329 

 330 
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Prostate cancer is characterized by T-cell exhaustion and immunosuppressive Treg activity 331 

The adaptive immune system plays a pivotal role in mounting an effective, antigen-specific immune 332 

response against tumors. Unsupervised clustering of the lymphoid compartment revealed four CD4+ 333 

T cell, three CD8+ T cell and two NK subpopulations (Figure 6A) as annotated by key-marker genes 334 

(Figure 6B).  335 

The functional state of CD8+ T cells was assayed using a cytotoxicity gene signature (“cytotoxicity 336 

score”) (Table S4) (82,83). CD8+ effector cells exhibited a higher cytotoxicity score compared to the 337 

other CTL-1 and CTL-2 CD8+ subpopulations (Figure 6C) and the CD8+ effector cell cytotoxicity score 338 

was consistent across different sample fractions (Figure S6A).  339 

Both CTL-1 and CD8+ effector cells exhibited higher expression of a T-cell exhaustion gene signature 340 

(3,84,85) (Table S4, Figure 6D), and the exhaustion score was higher in the prostate tumor and adj-341 

normal samples as compared to healthy prostate tissues (Figure 6E). No significant difference in the 342 

exhaustion score was observed when comparing cells from LG and HG samples (Figure S6B).  343 

Measurement of T cell abundance showed a higher proportion of exhausted CTL-1 cells in tissues 344 

collected from cancerous prostate compared to healthy prostate tissues (Figure S6C), suggesting an 345 

expansion of exhausted CTLs in the prostate tumor. No differences were observed in T cell abundance 346 

when comparing LG and HG Gleason groups (Figure S6D). 347 

CD4+ T cells were subdivided into naïve, T-helper-1 (Th1), T-helper 17 (Th17), and T-regulatory (Treg) 348 

cells based on cell-type specific genes (86) (Figure 6B). CD4+ cell abundance was stable across the 349 

different sample fractions (Figure S6C and S6D). As a surrogate for CD4+ T-cell function, Treg activity 350 

was assayed (87,88) (Table S4) and was increased in the tumor and adj-normal samples (Figure 6F). 351 

Notably, genes of tumor necrosis factor receptor superfamily TNFRSF9, TNFRSF18, and TNFRSF4 352 

were highly and exclusively expressed in the Tregs infiltrating the tumor (Figure S6E). These receptors 353 

bind tumor necrosis factors, pro-inflammatory cytokines involved in inflammation-associated 354 

carcinogenesis (89) and in supporting an immunosuppressive TME. 355 
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Tregs and MDSCs represent two immunosuppressive cell populations important for cancer immune 356 

tolerance. Both populations exhibited high suppressive activity in the tumor fraction and their crosstalk 357 

has been previously reported in different cancers (90,91). Based on this, we examined the correlation 358 

between the MDSC score in TIMo and the Treg activity score in Tregs both in tumor samples and their 359 

adjacent-normal tissue samples. Within the tumor fraction, the MDSC score and Treg activity score 360 

were significant correlated, with no clear separation between LG and HG Gleason patients (Fig 6G, 361 

top). No correlation was seen in adj-normal tissues (Fig 6G, bottom).  362 

Taken together, we characterized the functional status of T-cell subpopulations in prostate tumors to 363 

demonstrate exhausted CTLs along with increased Treg suppressive activity which correlated strongly 364 

with the suppressive activity of MDSC-like monocytes. 365 

 366 

The prostate cancer TME is enriched in exhausted CD56DIM NK cells  367 

Natural killer (NK) cells are an innate lymphoid cell with cytotoxic function that can be modulated by 368 

activating and inhibitory cell-surface receptors (92). A high density of tumor infiltrating NK cells usually 369 

correlates with good prognosis in different solid tumors, including breast cancer (93), lung cancer (94), 370 

and prostate cancer (95). NK cells were annotated based on key marker gene expression (Figure 6B) 371 

(96) and clustering revealed 4 NK subpopulations (Figure 7A and 7B). No differences were observed 372 

in NK cell abundance across the 5 different sample fractions (Figure S7A). NKT cells were 373 

characterized by high expression of T cell marker genes CD3D and CD8 and CD56dim NK cells by high 374 

expression of HAVCR2, which is expressed by terminally differentiated NK cells (96). CD56bright NK 375 

cells expressed XCL1, XCL2, GZMK, CD44 and KLRC1 (96), while the CD56bright-IL7R+ cells 376 

separated based on specific expression of IL7R and the homing-receptor SELL (encoding CD62L) 377 

(Figure 7B) (97–99).  378 

The NKT and CD56DIM cells also showed high expression of the effector protein and cytotoxic-related 379 

genes FGFBP2, GNLY, GZMB, GZMH (96,100) (Figure S7B). However, these same NK 380 

subpopulations exhibited a higher exhaustion gene signature (Table S4) in the tumor samples as 381 
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compared to healthy tissue (Figure 7C), suggesting impaired effector function within the prostate TME. 382 

Of the NK subpopulations, the CD56DIM cells scored highest for the exhaustion gene signature (Figure 383 

S7C) and were in higher abundance in the prostate tumor as compared to healthy prostate (Figure 7D).  384 

 385 

The prostate cancer TME is characterized by activated B cells 386 

B cells are less extensively studied in cancer as compared to the myeloid and T cell counterparts. B cell 387 

infiltration has been described in several cancer types though their function and correlation to survival 388 

remain controversial (101). Clustering of B cells based on key marker genes revealed 3 subpopulations: 389 

naïve-B, active-B and plasma cells (Figure 7E). B-cell abundance was similar across the five sample 390 

fractions (Figure S7D). B cell activity was assessed in active B cells and plasma cells (102) (Table S4). 391 

B-cell activity was significantly higher in cells from tumor and adj-normal tissue compared to healthy 392 

prostate (Figure 7F), possibly due to the recognition of tumor antigens by the B-cells. However, this 393 

increased activity was accompanied by a lower B-cell abundance in the tumor samples (Figure 7G).  394 

In our spatial characterization of immune cells, B cells and macrophages were most abundant, with few 395 

monocytes, T cells and plasma cells (Figure S7E, S7F and S7G). This low abundance did not permit 396 

a formal analysis of potential ligand/receptor interactions.  397 

  398 
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Discussion  399 

Localized prostate cancer has been extensively studied using bulk transcriptomic and genomic 400 

sequencing approaches, providing insights into oncogenic drivers and recurrent molecular changes. 401 

Here, we used a high-resolution single-cell approach to characterize changes in tumor, immune, and 402 

non-immune stromal cells within the with tumor microenvironment. These findings were complemented 403 

by spatial transcriptomic analysis where the tissue architecture and cell-to-cell relationships are 404 

preserved, allowing one to determine whether transcriptomic changes are context-dependent.  405 

The strengths of our study include the (a) fresh nature of our patient samples, (b) matched tumor and 406 

adjacent-normal samples across a spectrum of Gleason scores to help overcome the inherent patient-407 

to-patient variability, (c) rigorous collection of truly normal control prostate samples (healthy), and 408 

(d) the combined single-cell and spatial transcriptomic analysis. Indeed, this manuscript represents a 409 

highly detailed spatial transcriptomic analysis using Slide-seqV2 to characterize the prostate tumor 410 

tissue, as well as a new computational approach to detect spatial context-dependent transcriptional 411 

differences in different cell types, which are typically obscured by the admixture from neighboring cells. 412 

Such changes are likely to provide insights about the impact of microenvironment on the cell and the 413 

mechanisms through which such changes may be induced. We hope that the developed context-414 

dependent DE method and the associated tutorial will enable analysis of such processes by other 415 

investigators (Supplementary Note 1). 416 

As expected, the prostate TME is complex with several subsets of myeloid cells, T cells, NK cells and 417 

B cells in addition to the non-immune stromal populations of endothelial cells, fibroblasts and pericytes. 418 

This led to some key observations.  419 

Regarding epithelial cells, we identified distinct subsets of hillock and club cells that have been 420 

described in normal prostate tissue (5,7,20). Club cells have been identified in human prostate tumors 421 

(23); however, we are the first to show and characterize the hillock cells in human prostate tumors 422 

(Figure 2B). Our RNA velocity analysis suggested a progenitor role for club cells which has been 423 

previously reported (23). We also saw a directional flow from hillock to basal cells, suggesting a second 424 
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progenitor role of the hillock cells. The identification of hillock epithelial subset in our dataset may be 425 

due to the dissociation protocol we followed as it has been reported that the method and conditions of 426 

tumor dissociation affects cell yield and transcriptional state in primary solid tumor tissues (103,104). 427 

However, hillock epithelial cells were also detected in our Slide-seq data where no dissociation took 428 

place (Figure 2E). 429 

Malignant and normal cells can be challenging to distinguish. We used an iterative strategy, first relying 430 

on detection of genomic aberrations to distinguish normal and malignant luminal-type cells, and then 431 

deriving a succinct Prostate Tumor Gene Signature, which could robustly identify tumor cells across 432 

four independent datasets.  433 

Regarding myeloid cells, we showed that a population of tumor-inflammatory monocytes were 434 

immunosuppressive with a high MDSC gene signature. In addition, M2-like macrophages were 435 

increased in abundance in the tumor microenvironment, a finding that was consistent across single-cell 436 

analysis and immunohistochemistry. M2-macrophages have been reported to be involved in the growth 437 

and progression of prostate cancer and they have gained remarkable importance as therapeutic 438 

candidates for solid tumors (105).  439 

Regarding lymphoid cells, we observed that cytotoxic T-lymphocytes showed a high exhaustion 440 

signature along with a low cytotoxic signature. Treg cells also showed a high exhaustion signature. 441 

Interestingly, we did not see significant T-cell differences when comparing low-grade and high-grade 442 

cases, suggesting that even the low-grade tumors had already established a highly immunosuppressive 443 

microenvironment. Even within the NK cells, the CD56DIM NK cells were expanded in the tumor fraction, 444 

again suggesting a functionally less cytotoxic NK cell.  445 

We hypothesized that the immunosuppressive myeloid cells were contributing to the exhausted T-cell 446 

phenotype, as our group has previously shown in the setting of metastatic prostate cancer (106). 447 

Indeed, there was a correlation between the MDSC and Treg activity signatures, pointing to the role of 448 

myeloid cells in establishing a T-cell suppressive and pro-tumor microenvironment.  449 
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We utilized the spatial neighborhood to infer cell-to-cell interactions with high resolution and this enabled 450 

the identification of ligand-receptor interactions in undissociated tissue section, especially between 451 

tumors cells and their stroma. Beyond the tumor-fibroblast and tumor-endothelial cell communication 452 

that we highlighted we hope that this analysis will prove more broadly useful for the community and 453 

point towards clinically relevant and therapeutically targetable interactions. This analysis also supports 454 

the complementary use of techniques that involve tissue dissociation with techniques that preserve the 455 

normal tissue architecture to home in on these cell-cell relationships.  456 

Overall, this combined dataset of single-cell and spatial transcriptomic analysis of primary prostate 457 

tumor samples and their normal controls provides a rich community resource. Biological validation of 458 

the tumor relationships with their neighboring immune and stromal cells will lead to a better 459 

understanding of prostate cancer progression and will identify new therapeutic targets for this common 460 

disease. We also hope that this manuscript highlights the importance of multidisciplinary teams as the 461 

longitudinal collection of fresh patient samples can only be obtained when surgical, pathology, and basic 462 

science collages work in true collaboration.  463 

  464 
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STAR Methods 465 

Patient materials 466 

In accordance with the U.S. Common Rule and after Institutional Review Board (IRB) approval, all 467 

human tissues ware collected at Massachusetts General Hospital in Boston (MGH, Boston, MA) and 468 

carried out with institutional review board (IRB) approval (IRB#2003P000641). 469 

Surgical approach and tumor collection 470 

Patients with clinically localized prostate cancer were treated with minimally invasive transabdominal 471 

radical prostatectomy. The dissection of the prostate was done by antegrade approach, freeing the 472 

bladder neck, then progressing caudally to the apex and urethra. Upon freeing the prostate, it was 473 

placed in a laparoscopic specimen sac. The specimen was then immediately removed from the patient. 474 

The staff transported the tissue without delay to the pathology lab where the research staff was waiting 475 

to assure the least possible ischemic time from separation of the organ from blood supply to prepared 476 

specimen. The prostate was marked with ink, and sectioned. The prostate cancer tissue is identified by 477 

a trained genitourinary pathologist, aided with biopsy and MRI reports. The cancer is confirmed by 478 

histological examination of the immediate adjacent tissue. Cancer cell content is estimated to be 70%. 479 

Sample preparation 480 

Dissociation of tissues into single cells: All samples were collected in Media 199 supplemented with 2% 481 

(v/v) FBS. Single cell suspensions of the tumors were obtained by cutting the tumor in to small pieces 482 

(1mm3) followed by enzymatic dissociation for 45 minutes at 37°C with shaking at 120 rpm using 483 

Collagenase I, Collagenase II, Collagenase III, Collagenase IV (all at a concentration of 1mg/ml) and 484 

Dispase (2mg/ml) in the presence of RNase inhibitors (RNasin (Promega), RNase OUT (Invitrogen)), 485 

and DNase I (ThermoFisher). Erythrocytes were subsequently removed by ACK Lysing buffer (Quality 486 

Biological) and cells resuspended in Media 199 supplemented with 2% (v/v) FBS for further analysis. 487 
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FACS sorting: Single cells from tumor samples were surface stained with anti-CD235-PE (Biolegend) 488 

for 30 min at 4°C. Cells were washed twice with 2% FBS-PBS (v/v) followed by DAPI staining (1 ug/ml). 489 

Flow sorting for live-nonerythroid cells (DAPI-neg/CD235-neg) was performed on a BD FACS Aria III 490 

instrument equipped with a 100um nozzle (BD Biosciences, San Jose, CA). All flow cytometry data 491 

were analyzed using FlowJo software (Treestar, San Carlos, CA).  492 

Multiplex immunohistochemistry analysis 493 

We used multiplex immunohistochemistry (mIHC) panel to evaluate a set of unselected radical 494 

prostatectomy cases, spanning all grade groups. A seven-plex Fluorescence Immunohistochemistry 495 

assay was performed on 4-µm FFPE sections, using Leica Bond Rx autostainer. A six antibodies panel 496 

consisted of CD3 (Rabbit polyclonal, Dako), CD8 (C8/144B, Mouse monoclonal, Dako), PD-1(EH33, 497 

Mouse monoclonal, Cell Signaling), FOXP3 (D2W8E, Rabbit monoclonal, Cell Signaling), CD68 (PG-498 

M1, Mouse monoclonal, Dako), CD163 (10D6, Mouse monoclonal, Leica Biosystem), along with DAPI 499 

counterstaining. Briefly the staining consists of sequential tyramine signal amplified 500 

immunofluorescence labels for each target, and a DAPI counterstain. Each labeling cycle consists of 501 

application of a primary antibody, a secondary antibody conjugated to horse radish peroxidase (HRP), 502 

and an opal fluorophore (Opal 690, Opal 570, Opal 540, Opal 620, Opal 650 and Opal 520, Akoya 503 

Biosciences), respectively. The stained slides were scanned on a Perkin Elmer Vectra 3 imaging system 504 

(Akoya Biosciences) and analyzed using Halo Image Analysis platform (Indica Labs). Each single 505 

stained control slide is imaged with the established exposure time for creating the spectral library. We 506 

ran an algorithm learning tool utilizing the Halo image software training for the gland and stroma regions, 507 

and subsequently completed cell segmentation. The thresholds for the antibodies were set respectively, 508 

based on the staining intensity, by cross reviewing more than 20 images. Cells with the intensity above 509 

the setting threshold were defined as positive. Regions of interest included both immune-cell-rich and 510 

non-rich areas and included both tumor and benign areas.  511 
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scRNA-seq data processing and analysis 512 

Sequencing data were processed using 10X Cell Ranger with default parameters (version 3.0.1), 513 

aligned to GRCh37 human reference genome. The obtained read count matrices were further analyzed 514 

with Scrublet (107) for doublets identification. Scrublet scores above 0.4 were omitted. In total, 179,359 515 

cells from 39 samples were obtained. We used Conos (15) (k=15, k.self=5, matching.method='mNN', 516 

metric='angular', space='PCA') to integrate multiple scRNA-seq datasets together. Principal component 517 

analysis was performed on 2000 genes with the most variable expression was selected by conos. 518 

Leiden clustering was used to build to determine joint cell clusters across the entire dataset collection. 519 

First 15 principal components were used to perform UMAP embedding.  520 

Determination of major cell types and cell states 521 

To identity major cell types in both tumor and healthy sample datasets, we used sets of well-established 522 

marker genes for each of those cell types and annotated each cell type based on highly expressed 523 

genes. The detailed gene list can be found in Table S3. For subtype assessment within the major cell 524 

types, we extract raw count matrices and re-analyzed cell subsets separately with Conos. 525 

Calculation of gene set signature scores 526 

To assess cell states in different cell subsets and conditions, we used a gene set signature score to 527 

measure the relative difference of cell states. The signature scores were calculated as average 528 

expression values of the genes in a given set. Specifically, we first calculated signature score for each 529 

cell as an average normalized (for cell size) gene expression magnitudes, then the signature score for 530 

each sample was computed as the mean across all cells. All signature gene modules are listed in the 531 

Table S4. The statistical significance was assessed using Wilcoxon rank-sum test. 532 

Differential expressed genes (DEG) analysis 533 

For differential expression analysis between cell types, Wilcoxon rank sum test, implemented by the 534 

getDifferentialGenes() function from Conos R was used to identify marker genes of each cell cluster. 535 
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The genes were considered differentially expressed if the p-value determined Z score was greater than 536 

3. For differential expression analysis between sample fractions (for example Tumor Treg vs. adj-537 

Normal Treg), getPerCellTypeDE() function in Conos was utilized with default settings. DESeq2 (108) 538 

was applied to “mini-bulk” (or meta-cell) RNA-seq measurements by combining all molecules measured 539 

for each gene in each subpopulation in each sample. A minimal number of 10 cells (of the selected cell 540 

type) were required for a sample to be included in the comparison. 541 

Identification of tumor cells from luminal epithelial cells 542 

To identify the tumor cells from normal epithelial cells, we used interCNV (24,25) for inferring large-543 

scale chromosomal copy-number variations. We performed inferCNV on different epithelial 544 

subpopulations using the same cell type from healthy tissues as the reference “normal" cells. Only 545 

epithelial luminal cells show clear copy number aberration. To identify tumor cells, we examined 546 

hierarchical clustering of CNV profiles obtained from inferCNV and filtered tumor cells with deletion in 547 

chr8, chr12 and chr16. In addition, we utilized “prostate cancer signatures” to rescue additional tumor 548 

cells. In total, 1,237 tumor cells were obtained. 549 

Generation of the “Prostate Tumor Gene Signature”  550 

To generate a gene expression signature that is clinically relevant, we compared the gene expression 551 

profiles between tumor cells and non-tumor luminal cells in tumor fraction. Only the upregulated genes 552 

with an Z-score > 3 were selected and taken into subsequent analysis. We next screened each of the 553 

DEGs based on their expression in healthy prostate tissue, requiring each gene to be expressed in less 554 

than 5% cells of all epithelial cells. In total, we identified 8 significant DEGs that met the above criteria. 555 

The average expression of these curated DE genes is regarded as the diagnosis signature score, later 556 

used on multiple bulk RNAseq data to quantify the predictive accuracy of such signature. ROC analysis 557 

showed a strong prostate cancer predictive ability with an AUC score of 0.956 (GSE21034 (27) ), 0.93 558 

(GSE97284 (28)), 0.937 (TCGA (29)) and 0.94 (GSE70770 (30)) in four independent prostate cancer 559 

cohorts. 560 
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RNA velocity-based cell fate tracing 561 

To perform the RNA velocity analysis, the spliced reads and unspliced reads were recounted by the 562 

velocyto python package (21) based on previous aligned bam files of scRNA-seq data. The calculation 563 

of RNA velocity on the UMAP embedding were done by following the scVelo (22) pipeline on both 564 

individual sample group as well as the merged dataset. 565 

Slide-seq data pre-processing and cell-type annotation  566 

Sequencing data were processed using Slideseq-tools pipeline 567 

(https://github.com/MacoskoLab/slideseq-tools). First the raw sequence data is aligned to human 568 

genome reference version hg38 to obtain count matrixes and beads spatial coordinates. We used 569 

recently published RCTD (17) to annotated spatial barcoded beads. Specifically, we sample down 10X 570 

scRNA-seq data to 1,000 cells per cell type and transfer the 10X data into the RCTD object as reference. 571 

Slide-seqV2 data were filtered using default RCTD setting, requiring at least 100 UMI per cell. To 572 

annotate Slide-seq beads. We first annotated the major cell clusters (T cells, B cells, stromal cells, 573 

epithelial cells and myeloid cells) with corresponding 10X reference in major cell annotation, then each 574 

of the major cell cluster was extracted for cell sub-cluster annotation. We only keep the spatial beads 575 

that are predicted as “singlet” or “doublet-certain” categories.  576 

Spatial autocorrelation analysis 577 

To measure how the cells are spatially distributed across the puck, we measure the spatial 578 

autocorrelation metric and evaluated clustering centrality pattern for each cell type. We applied 579 

“compute autocorrelations” function from hotspot package (109), and calculated the Moran's I  score to 580 

capture the overall spatial sparsity of cell-type specific spatial distribution. Please note that the positive 581 

value indicates the centralized clustering whereas the lower score signifies the lack of centralization. 582 

Finally, Wilcoxon signed-rank test is used to access Moran's I differences across healthy, adjacent 583 

normal and tumor conditions (Figure 1H,2G). 584 

https://github.com/MacoskoLab/slideseq-tools
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Estimate spatially differential expressed genes 585 

To obtain the differentially expressed genes across different regions within a puck we used a custom 586 

pre-processing phase. We first identified specific regions within the tumor puck by segmenting out the 587 

tumor proliferated region as “tumor context” and the non-proliferated region within the puck as “tumor-588 

adjacent context”. The context specific cell level expressions are then summarized to the cell-type level 589 

pseudo-bulk profiles. We use a constrained linear regression model to correct for the linear ad-mixture 590 

effects in the slide-seqV2 measurement given a target cell-type. Finally, we pass the corrected pseudo-591 

bulk profiles to the off-the-shelf differential gene expression tool edgeR (110). For the detailed overview 592 

of the differential expression pipeline please refer to the Supplementary Note. 593 

 594 

Identification of significant ligand-receptor pairs 595 

Following the widely used protocol of delineating the significant ligand-receptor (LR) identification we 596 

used the already LR pairs downloaded from CellPhoneDB (v1.1.0) (111) as a background. In 10X data, 597 

the significant LR is discovered using a similar approach previously described in CellPhoneDB (111). 598 

We first calculate gene expression ratio scores for each cell type, considering the genes, that are at 599 

least expressed in 10% of cells within that cell type. To obtain the signal strength of a LR-pair in two 600 

corresponding cell-type we rely on the join expression distribution of the associated genes. Specifically, 601 

we compute the LR-pair score given a cell type A and cell type B as the product of average expression 602 

of the ligand from cell type A and receptor for cell type B. We observe such product might lead to an 603 

inflation of LR pairs that are in actual not present in the environment. To filter out the statistically 604 

significat interactions we further randomly shuffle the cluster labels of all cell types and re-calculate LR-605 

pair score across 1,000 permutations. This background is used as null distribution to evaluate the P-606 

value for the target LR-pair interaction.  607 

To access ligand-receptor interactions in slide-seq data, we combined information from the spatial 608 

structure of the cell-types in conjunction with the ligand-receptor expression. We assume that spatially 609 
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inferred ligand-receptor pairs are co-expressed in adjacent cells. Specifically, we first build a k-nearest 610 

neighbor graph (kNN, k = 10) based on the spatial coordinates of the corresponding beads, then for 611 

any pair of cell types, we defined a LR-pair score to filter significant LR-pairs by calculating the 612 

aggregated expression product of ligand and receptor in adjacent neighborhood cells obtained from 613 

kNN graph.  614 

Formally, LR-pair score for cell types A and B respectively is defined as: 615 

 616 

 Score = ∑𝑛
𝑖 ∑𝑚

𝑗 𝐿𝑒𝑥𝑝𝑖 ∗ 𝑅𝑒𝑥𝑝𝑗 ∗ 𝑀𝑖𝑗 −  ∑𝑛
𝑖 ∑𝑚

𝑗 𝑅𝑒𝑥𝑝𝑖 ∗ 𝐿𝑒𝑥𝑝𝑗 ∗ 𝑀𝑖𝑗  617 

 618 

Here n represents the number of cells for “sender cell” type A, m represents the number of “receiver 619 

cells” for cell type B. 𝐿𝑒𝑥𝑝𝑖 represents Ligand L expression in cell type 𝐴𝑖. 𝑅𝑒𝑥𝑝𝑗  represents Receptor R 620 

expression in cell type 𝐵𝑗. 𝑀𝑖𝑗  is connection matrix for cell type A and B. To avoid potential bias from 621 

admixture noise, such as the ligand expression signal from “receiver cells” B and receptor expression 622 

signal from “sender cell” A, we use a reverse score by swapping the ligand and the receptor. 𝑅𝑒𝑥𝑝𝑖 623 

represents Receptor R expression in cell type 𝐴𝑖. 𝐿𝑒𝑥𝑝𝑗 represents Ligand L expression in cell type 𝐵𝑗. 624 

To evaluate if the RL score S is statistically significant, we created a background distribution by shuffling 625 

cell labels in expression matrix (shuffling happens in 2000 rounds). In each round, a permutation score 626 

is calculated using the same formula. P-values were calculated as the probability of observed RL score 627 

given the background distribution. The p values for all LR-pairs corresponding to the cell-types were 628 

subsequently adjusted for multiple hypothesis testing. In total, 405 significant potential interaction were 629 

reported in Table S5.  630 

 631 

  632 
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Figure 1. The prostate TME characterized by single-cell and spatial transcriptomic analysis. 
A. Schematic illustration of sample collection and processing. B. Integrative analysis of scRNA-seq samples visualized using a common UMAP 
embedding for cell annotation (left) and sample fractions (right). C. Dotplot representing key-marker gene expression in major cell types. The color 
represents scaled average expression of marker genes in each cell type, and the size indicates the proportion of cells expressing marker genes. D. 
Stacked barplots showing the fractional composition of cell number for di�erent clusters within scRNA-seq (using two di�erent dissociation 
protocols: Collagenases+Dispase and Rocky, see text) and Slide-seqV2. The connection between the stacked barplots connects same cell clusters. E. 
Boxplot comparing proportion of major cell populations between healthy prostate tissues and tissues collected from cancerous prostates (tumor 
and adj-normal). Signi�cance was assessed using Wilcoxon rank sum test (*p<0.05). F. Boxplot showing inter-individual gene expression distances 
(based on Pearson correlation) within healthy, adj-normal, and tumor samples, averaged across all cell types. Signi�cance was assessed using 
Wilcoxon rank sum test *p<0.05, ***p<0.001). Boxplots in (E-F) include centerline, median; box limits, upper and lower quartiles; and whiskers are 
highest and lowest values no greater than 1.5x interquartile range. G. Spatial presentation at a high-resolution level using Slide-seqV2 for the major 
cell populations in healthy, adj-normal of LG case and two tumor tissues collected from a low-grade (Tumor-LG) and high-grade (Tumor-HG) 
patients. H. Barplots showing spatial autocorrelation (Moran's I) of �broblasts and pericytes in Healthy, adj-Nomral and Tumor samples. Moran's I 
evaluates whether the cells are clustered (high Moran's I score) or dispersed (low Moran’s I score). Statistical analysis was performed using Wilcoxon 
rank sum test. (*p<0.05, error bars: SEM).
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Figure 2. A Prostate Tumor Gene Signature distinguishes normal and malignant luminal epithelial cells. 
A. Joint embedding represent the detailed annotation of epithelial subpopulations in prostate tissues. B. RNA velocity analysis of the transitions of 
epithelial cells, estimated on di�erent sample fraction. C. Violin plot showing the expression of genes panel of “Prostate Tumor Gene Signature” in 
malignant cells and in the epithelial luminal cells of healthy, adj-normal and tumor prostate samples. D. Boxplot representing the 
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Signi�cance was assessed using Wilcoxon rank sum test (*p<0.05). E. Spatial presentation of epithelial subpopulations in healthy, adj-normal 
(Adj-Normal LG) and two tumor tissues collected from a low-grade (Tumor (LG)) and high-grade (Tumor (HG)) patients. F. Dotplot representing 
key-marker gene expression in epithelial subpopulations in Slide-seqV2. The color represents scaled average expression of marker genes in each cell 
type, and the size indicates the proportion of cells expressing marker genes. G. Spatial presentation for “Prostate Tumor Gene Signature” average 
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Figure 5. Prostate tumors are enriched in immunosuppressive myeloid cells. 
A-B. Joint embedding showing the detailed annotation of the myeloid subpopulations (A) and the expression of select gene markers for each 
myeloid subpopulation (B). C. From the top: boxplots representing the average gene expression pattern of monocyte, macrophage, in�ammatory, 
antigen processing and presentation, MDSC gene signatures, and M2-like macrophages across the di�erent myeloid subpopulations. Heatmap 
showing the average gene expression of representative genes from monocyte, macrophage, in�ammatory, antigen processing and presentation, 
MDSC gene signatures, and M2-like macrophages gene signature across the di�erent myeloid subpopulations in healthy, adj-normal and tumor 
prostate samples. See Supplementary Table S4 for the genes de�ning the above-mentioned signatures. D. Boxplot comparing the average 
expression of MDSC gene signature in tumor in�ammatory monocytes (TIMo) across the three di�erent samples. E. Boxplot representing the cell 
fraction of di�erent myeloid subpopulations across the healthy, tumor and their adj-normal prostate tissues. Boxplots in (C, D, E) include centerline, 
median; box limits, upper and lower quartiles; and whiskers are highest and lowest values no greater than 1.5x interquartile range. Statistical 
signi�cance was accessed using Wilcoxon rank sum test (*p<0.05, ****p<0.0001). F. Top: Multiplex Fluorescence immunohistochemistry (mFIHC) 
staining of prostate tumor tissue (bottom) and its adj-normal tissue (top) collected from a prostatectomy case of Gleason score 5+5. Samples are 
labeled with PD-1 (Clone EH33) (color Red), FOXP3 (color Orange), CD8 (color Yellow), CD68 (color Magenta), CD3 (color Cyan), CD163 (color Green) 
and DAPI (Blue) by using mFIHC. Bottom: Quanti�cation of absolute number of macrophages (left) and M2-like macrophages (right) from mIHC data 
comparing tumor tissues to their matched adj-normal tissues collected from prostatectomy cases of di�erent Gleason scores. 
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Figure 6. Prostate cancer is characterized by T-cell exhaustion and immunosuppressive Treg activity.  
A. Joint embedding showing the detailed annotation of lymphoid subpopulations. B. Dotplot representing key-marker gene expression in lymphoid 
subpopulations. The color represents scaled average expression of marker genes in each subpopulation, and the size indicates the proportion of 
cells expressing marker genes. C-D. Boxplots represent the average expression of cytotoxicity (C) and exhaustion (D) scores in CD8+ CTLs 
subpopulations (CTL-1, CTL-2 and CD8+ e�ector cells). E. Boxplots comparing the average expression of exhaustion score in CTL-1 (top) and CD8+ 
e�ector (bottom) subpopulations across healthy, adj-normal and tumor samples. F. Boxplot represents the average expression of Treg activity gene 
signature in Treg subpopulation across the three di�erent samples. Boxplots in (C-F) include centerline, median; box limits, upper and lower 
quartiles; and whiskers are highest and lowest values no greater than 1.5x interquartile range. Statistics signi�cance are accessed using Wilcoxon 
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in NK subpopulations. C. Boxplots comparing the exhaustion score of CD56dim and NKT subpopulation across healthy, adj-normal, and tumor 
samples. See Supplementary Table S4 for the genes de�ning exhaustion score. D. Boxplot comparing the relative abundance of di�erent NK 
subpopulations in healthy, adj-normal, and tumor samples. E. Joint embedding showing the detailed annotation of B cell subpopulations (left) and 
the expression of B cell speci�c marker genes (right). F. Boxplot comparing B cell activity signature in active B and plasma subpopulations between 
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