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Optical neural networks (ONNs) are emerging as a high-performance machine learning (ML)

in terms of power efficiency, parallelism, and computational speed. There are broad interests

in leveraging ONNs into medical sensing, security screening, drug detection, and autonomous

driving1. However, it is challenging to implement reconfigurability for ONNs at specific fre-

quency, e.g., Terehertz (THz), and thus deploying multi-task learning (MTL) algorithms on

ONNs requires re-building and duplicating physical diffractive systems, which significantly

degrades the energy and cost efficiency in practical application scenarios. This work presents

a diffractive ONNs targeting MTL with unreconfigurable components, namely, RubikONNs.

This architecture utilizes the physical properties of optical systems to encode multiple feed-

forward functions by physically rotating the hardware similarly to rotating a Rubik’s Cube.

We demonstrate two domain-specific training algorithms RotAgg and RotSeq to optimize

MTL performance of RubikONNs. Our analytic results demonstrate more than 4× im-

provements in energy and cost efficiency with marginal accuracy degradation compared to

the state-of-the-art approaches2, 3 for MTL-ONNs. Moreover, we perform a comprehensive

RubikONNs design space analysis and explainability, which offers concrete design method-

ologies for practical uses.
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Introduction

Recently, the use of Deep Neural Networks (DNNs) represents the state-of-the-art approaches in

many applications, including large-scale computer vision, natural language processing, and data

mining tasks1, 4. However, DNNs have substantial computational and memory requirements, which

greatly limit their training and deployment in resource-constrained (e.g., computation, I/O, and

memory bounded) environments 5, 6. To address these challenges, there has been a significant trend

in building specific high-performance DNNs hardware accelerator platforms. Particularly, there

are increasing efforts on implementing optical neural network (ONNs) that mimics conventional

feed-forward neural network functions based on light propagation2, 3, 7–17. There optical hardware

architectures bring significant advantages for machine learning systems in terms of their power ef-

ficiency, parallelism and computational speed. Among them, free-space diffractive optical neural

networks (DONNs) based on light diffraction feature millions of neurons in each layer intercon-

nected with neurons in neighboring layers2, 18. This ultrahigh density and parallelism make this

system possess fast and high throughput computing capability.

However, implementing reconfigurability and deploying multi-task learning (MTL) algo-

rithms on most ONNs systems requires re-building and duplicating physical hardware systems,

which significantly degrades the energy and cost efficiency in practical application scenarios. The

lack of reconfigurability prohibits weight parameters sharing, which is commonly used in conven-

tional neural networks to reduce the computation and energy cost of the neural networks19–21. As

a result, the existing state-of-the-art DONNs bring significant energy and system cost overhead in
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practical MTL application scenarios.

We present a new DONN architecture namely RubikONNs, which utilizes the physical prop-

erties of optical systems to encode multiple feed-forward functions by physically rotating the sys-

tems similarly as rotating a Rubik’s Cube. To optimize the MTL performance of RubikONNs,

we present two domain-specific algorithms, RotAgg and RotSeq in Methods. As a result, the Ru-

bikONNs architecture enables multi-task learning (MTL) using a single-task system, without the

need of fabricating new masks. We demonstrate four-task MTL on RubikONNs with implemen-

tation cost and energy efficiencies improved more than 4×. Finally, we perform a comprehensive

RubikONNs design space exploration analysis and explainability to offer concrete design method-

ologies for practical uses.

Results

Figure 1a illustrates the architecture of the RubikONNs deployed for four-task MTL image clas-

sification, which consists of three major components: (1) coherent input images, (2) diffractive

layers that encode the neural layers with trainable phase parameters (weights), and (3) detectors

that capture the output diffraction images. Specifically, input images are generated when a coherent

source passes through image masks. The encoded light wave is diffracted in the free space between

diffractive layers and modulated via phase modulation at each layer. As demonstrated in Refs2, 3, 18,

the output plane is divided into ten detector regions to represent ten classification classes. The

final prediction class will be produced by selecting the corresponding class with maximum energy
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Figure 1: Overview of RubikONNs diffractive neural networks system, consisting of (a) laser

source encoding input images, diffractive layers providing diffraction and trainable phase mod-

ulation (weights), detectors capturing the output diffraction images, and (b) a specific rotations

patterns introduced for four-task MTL image classification.
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sums of those ten detector regions. For example, in Figure 1, based on the label indices of the ten

detector regions for image ‘2’, we can see that the 3rd region on the first row has the highest energy.

So that the predicted class is class ‘2’. Similarly, the predicted classes ‘8’, ‘1’, and ‘9’ of other

three datasets can be generated by selecting the class with the maximum energy sum captured at

the detector.

Figure 1b illustrates the key architectural innovation in RubikONNs to deal with multiple

tasks with minimum system overhead, i.e, a MTL DONNs system encodes different forward func-

tions without changing the weight parameters that are physically fabricated in a single-task. Note

that the diffractive layers are mostly designed with 3D printed materials, such that the phase pa-

rameters (weights) carried by these layers are non-reconfigurable after fabrication. However, as

demonstrated in Refs.2, 3, the layers are portable in DONNs and they are in square shapes. This

means that we are able to rotate each layer by close-wise 90◦, 180◦, or 270◦, and place the layer

back in the system without any other changes. While each layer carries specific trained phase

parameters, by rotating one or multiple layers, the forward function becomes different since the

weights of the model are changed. In optical domain, this means that the phase modulation of

the light changes accordingly w.r.t specific rotation patterns. This offers the main motivation of

designing RubikONNs that aims to enable MTL in existing single-task DONNs. As a result, Ru-

bikONNs enables MTL by simply (1) pulling out the layer, (2) rotating it to the specific rotation

pattern as designed, and (3) plugging the layer back to the original location, without changing the

rest of the system.
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While the RubikONNs architecture enables zero-overhead MTL on DONNs systems, the

main challenge of enabling MTL-RubikONNs is to develop domain-specific training algorithms

that incorporate hardware design properties. We introduce two domain-specific MTL training

algorithms, i.e., rotated aggregation algorithm (RotAgg) and rotated sequence Algorithm (RotSeq)

for RubikONNs. The details of the algorithm and their implementations are included in Methods

and Algorithms 1 and 2. We provide detailed analysis for algorithmic space exploration in Table 1.

We also provide comprehensive analytic evaluations to demonstrate the efficiency and capability of

RubikONNs with other two state-of-the-art domain-specific training algorithms for four-task MTL

image classification tasks in Table 2. As shown in Figure 1, we can see that there are various options

of rotation patterns in RubikONNs. Therefore, we provide architectural design space exploration

of RubikONNs to provide more insights to understand the characterizations of RubikONNs (Table

3). Finally, to understand the impacts of rotations for MTL, we provide full propagation from the

laser source all the way to the detector in RubikONNs, which offers high-level explainability of

MTL learning with RubikONNs (Figures 2 and 3).

Analysis of RubikONNs on MTL

We first evaluate RotSeq algorithm (Alg. 2) on MTL using four selected datasets. As dis-

cussed in Methods, the performance of RotSeq can vary with different gradient update orders (i.e.,

lines 4–10 in Alg. 2). Therefore, we evaluate RotSeq algorithm with four different permutations

of the gradient update sequences, as shown in second column of Table 1. With such recurring per-

mutation of training orders, each task can be trained at each position in the training order. First,
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Table 1: Evaluations of prediction performance on four-task multi-task learning using datasets.

MNIST(D1), FMNIST(D2), KMNIST(D3), and EMNIST(D4), optimized with the proposed Rot-

Seq and RotAgg algorithms.

Algorithm Permutation MNIST(D1) FMNIST(D2) KMNIST(D3) EMNIST(D4)

RotSeq (Alg. 2)

D1 � D2 � D3 � D4 0.9440 0.8300 0.8197 0.8936

D4 � D1 � D2 � D3 0.9477 0.8332 0.8409 0.8671

D3 � D4 � D1 � D2 0.9538 0.8466 0.7923 0.8748

D2 � D3 � D4 � D1 0.9573 0.8275 0.8038 0.8768

RotAgg (Alg. 1) n/a 0.9535 0.8469 0.8290 0.8891

Li et al. 3 n/a 0.9550 0.8368 0.8237 0.8430

BaselineMTL n/a 0.9282 0.8237 0.7571 0.8316

for each dataset, we can see that RotSeq offers a small accuracy boost for the given task/dataset,

which is used as the last gradient update in one RotSeq training iteration. This is because RotSeq

(Alg. 2) updates the parameters in a given sequence to all training tasks, where testing accuracy is

basically obtained right after the gradient updates of the last task. Second, when a given dataset is

used at the beginning of each training iteration (first task in the training sequence), the prediction

performance of this task might slightly degrades. For example, MNIST accuracy collected using

model trained with D1 � D2 � D3 � D4 sequence is 0.0037/0.0098/0.0133 lower than the other

three permutations.

As for the comparison between RotAgg and RotSeq rotation training algorithms, the model
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trained with the RotAgg algorithm shows overall better performance and robustness since the train-

ing is not impacted by the orders of gradient updates. Instead, RotAgg averages the gradients ob-

tained independently for all tasks. The advantages of RotAgg can be summarized in two: (1) the

training hyperparameter space is much limited than RotSeq since the gradient update order does

not require exploration; (2) The algorithm is expected to perform more robustness than RotSeq,

because RotSeq includes slight training bias w.r.t the gradient update order. While using these four

datasets RotSeq performs similarly to RotAgg, this bias training characteristics can potentially re-

quire more training setup exploration. Thus, in the rest of the result section, we use RotAgg as

default algorithm for RubikONN architecture exploration analysis.

To fully demonstrate the effectiveness of the proposed approaches, we first compare the pre-

diction performance with two existing approaches. First of all, a straightforward method to enable

MTL on a fixed single-task DONNs architecture is to simply train DONNs while merging the

four datasets as one. Thus, we implement a straightforward baseline algorithm by extending the

approach in Ref.2, where the training dataset consists of fully shuffled training samples from all

four datasets, namely BaselineMTL. The evaluation result of this baseline algorithm is shown in

the last row of Table 1. Next, we compare our approaches to a specific MTL DONNs architec-

ture. Specifically, Ref.3 presents a DONNs architecture that utilizes transfer learning concepts

from conventional neural networks, which included shared diffractive layers (shared weights) and

independent diffractive layers at the output stage for each task. To make a fair comparison, we

extend that architecture to deal with four tasks and set three layers for the shared diffractive layers

and two layers for the independent-trained diffractive layers in each channel for four tasks. The
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system has the same system size as our RubikONNs.

Table 1 shows that by utilizing the physical rotation under our training algorithms, Ru-

bikONNs offer better or comparable prediction accuracy for all datasets than Ref.3 and Base-

lineMTL. We can see that with RotAgg and RotSeq, RubikONNs perform significantly better than

both baseline approaches. For example, RubikONNs with RotAgg algorithm offers about 2.5%

accuracy increases for MNIST, 2.3% increases for FMNIST, 5.8% increases for EMNIST and

7.2% for KMNIST, compared to BaselineMTL2; compared to Ref.3, RotAgg offers 4.6% accuracy

increases on EMNIST, and performs similarly for other three tasks. This demonstrates that by

utilizing the physical rotations into DONNs architecture, RubikONNs offers clear prediction im-

provements over other approaches, while system cost, energy consumption, and complexity into

the comparisons are not yet included in comparisons.

To evaluate the efficiency of the models regarding the system cost, complexity, and energy

efficiency, we introduce a accuracy-cost evaluation metric, where hardware cost is the sum of

diffractive layer cost and detector cost, and it can be approximated by only the detector cost as the

diffractive layer cost is significantly cheaper than the detectors. In Table 2, single-task cost metric is

set as the baseline (unit 1), and the improvement of the architectures is calculated using Equation 1.

Note that in Table 2, the baseline results are collected using the single-task implementation with

five layers and 200×200 system size, and our results are generated using the RotAgg algorithm. We

can see that our approach offers more than 4.0× and 2.0× hardware cost efficiency improvements

compared to Ref.2 and Ref.3, respectively. Regarding energy efficiency, we evaluate the power
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Table 2: Evaluations of hardware efficiency on multi-task learning compared with 2 and 3, using

datasets MNIST(D1), FMNIST(D2), KMNIST(D3), and EMNIST(D4).

Lin et al.2 Li et al.3 This work

D1 D2 D3 D4 D1 D2 D3 D4 D1 D2 D3 D4

Layer Cost 5 5 5 5 11 5

Detector Cost* 10 10 10 10 20 10

Acc.(%) 96.6 86.7 86.8 91.2 95.5 83.7 82.4 84.3 95.4 84.7 82.9 88.9

Cost Efficiency 1 1 1 1 2.0× 2.1× 1.9× 1.9× 4.0 × 4.1× 4.1× 4.1×

Power (µW /fps/task) 4.67×10−7 8.86×10−7 1.7×10−7

consumption per task. Our approach demonstrates 2.7× and 5.3× energy efficiency improvements

compared to Ref.2 and Ref.3, respectively.

Acc-Efficiency Metric =
AccMTL

Accbaseline
·

CostMTL

Costbaseline
;

Cost = #. Detectors or µW /fps/task

(1)

Design Space of RubikONNs Architecture

With the RubikONNs architecture and training algorithms, the rotation architecture can be de-

signed in many different variants. Specifically, the rotation angles of rotatable layers, and selected

diffractive layers to be rotated, which are independent to all other system and algorithm specifica-

tions. For example, instead of rotating the layers clockwise 90◦, the layers can also be rotated 180◦
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and 270◦ (−90◦). Similarly, the architecture can also be designed by selecting layers other than

the 4th and 5th layers to be rotated. Thus, we provide comprehensive analysis of other variants

of the architecture by evaluating different rotation angles and various rotation layer selections. To

limit the rotation architecture exploration space on the algorithm side for RubikONN architecture

exploration, we only use RotAgg algorithm as shown in Table 3.

(a) Analysis of rotated layer selections – Let the number of tasks be 4 and each rotation layer

can only be rotated clock-wise 90◦. The total number of layer selections is C2
5=10. According to

studies of conventional neural networks, the layers close to the inputs are usually very important for

feature extractions, while the layers close to outputs are crucial for generating the final prediction

class. Thus, we evaluate three combinations, including (1) the last two layers, (2) the first two

layers, and (3) the first and the last layers. The results are shown in Table 3. We can see that the

models trained with RotAgg algorithm perform almost the same, regardless of which layers are

selected as rotation layers.

(b) Analysis of different rotation angles – Since each diffractive layer can rotate close-wise

90◦, 180◦, and 270◦ (−90◦), the rotation angle can be independent from layer to layer, e.g., rotating

4th layer 90◦ and rotating 5th layer by 180◦. To evaluate the impacts of rotation angles, we fix the

selections of rotation layers, i.e., 4th and 5th layers. Table 3 shows the accuracy of four datasets

in the model trained with RotAgg when different rotation angles are applied to the last two layers.

Specifically, we evaluate two different rotation angle settings: (1) same rotation angles for both

layers; or (2) different rotation angles for the two layers. For example, (90◦, 180◦) means that if
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Table 3: Explorations with various rotation angles (clockwise) with the 4th and 5th layers as rota-

tion layers, and exploration of rotated layers with 90◦, 90◦ angle.

Rotation

Angle

RotAgg (Alg. 1) w rot lyers = 4th,5th

MNIST FMNIST KMNIST EMNIST

90◦, 90◦ 0.9535 0.8469 0.8290 0.8891

180◦, 180◦ 0.9537 0.8565 0.8300 0.8865

270◦, 270◦ 0.9553 0.8414 0.8300 0.8844

90◦, −90◦ 0.9531 0.8491 0.8277 0.8875

90◦, 180◦ 0.9555 0.8376 0.8322 0.8885

Rotated

Layers

RotAgg (Alg. 1) w rotation angle 90◦, 90◦

MNIST FMNIST KMNIST EMNIST

4th, 5th 0.9550 0.8469 0.8290 0.8891

1st, 2nd 0.9529 0.8503 0.8296 0.8871

1st, 5th 0.9544 0.8466 0.8249 0.8919
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the 4th layer is designed to be rotated for a given task, it rotates 90◦; and 5th layer rotates 180◦. In

general, with different rotation angles, RubikONNs shows little fluctuation in terms of accuracy.

In summary, Table 3 results suggest that the prediction performance is not restricted to spe-

cific rotation angles or rotation layers, which offers possibility to encode more forward functions,

and it is the key to enable larger number of tasks for MTL.

RubikONNs MTL Explainability

To understand the impacts of rotations for MTL, we provide the full propagation of RubikONNs

between the source, layers and detectors. Specifically, we measure the intensity of the light in the

RubikONNs at inference phase as shown in Figures 2 and 3. The visualizations of the forward

propagation shown in Figures 2 and 3 are organized by applying the same input image from one

dataset using all rotation patterns, following the designed rotation patterns shown in Figure 1b. It

is known that the main idea of DNNs is that layers close to the input focus on extracting features,

and layers close to the output focus on finalizing the predictions using the extracted features. The

intuition of RubikONNs architecture is relatively the same, and has been demonstrated based on

the propagation measurements. For example, in Figure 2, the input image is from MNIST dataset,

where four complete propagation measurements are included w.r.t the rotation patterns for task

MNIST, FMNIST, KMNIST, and EMNIST, respectively. We can see that the outputs of the first

three layers are identical for all four cases, since the first three layers are not the rotation layers.

The differences of forward propagation are observed starting from the 4th layer, which is rotated

clockwise 90◦ for MNIST and KMNIST tasks, and remains un-rotated for FMNIST and EMNIST
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tasks. Similarly, since the 5th layer is also designed to be rotated as well, the outputs collected

by the detectors clearly show four different intensity distributions. This confirms that RubikONNs

successfully encodes four different forward functions, which are properly optimized for four tasks

using our training algorithms.

Methods

Evaluation Setups. The model explored in our evaluation is designed with five diffractive layers

as it is shown in Figure 1(a). The system size is set to be 200× 200, i.e., the size of the diffractive

layers. The input image whose original size is 28×28 is enlarged to 200×200 that can be encoded

with a coherent THz source, with the wavelength = 0.75 mm. The physical distance between layers,

first layer to source, and final layer to detector, are set to be 3 cm. The architecture is designed with

the rotation patterns shown in Figure 1(b). The detectors collect the intensity of the ten pre-defined

regions with each size of 20 × 20 (Figure 1(a)), where the sums of intensity of these ten regions

are equivalent to a 1×10 vector in float32 type. The final prediction results are then generated

by selecting the corresponding class with the max energy sum of the detector region.

Training Parameters and Datasets. To evaluate the RubikONNs architecture and RotAgg and

RotSeq training algorithms, we select four public image classification datasets, including (1)

MNIST-1022 (MNIST), (2) Fashion-MNIST23 (FMNIST) , (3) Kuzushiji-MNIST24 (KMNIST), and

(4) Extension-MNIST-Letters25 (EMNIST), an extension of MNIST to handwritten letters. Specif-

ically, for EMNIST, we customize the dataset to have the first ten classes (i.e., A-J) to match
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Figure 2: Visualization of light propagation measurements at inference phase with MNIST image

”1” as input, using all four rotations at 4th layer and 5th layer of RubikONNs. At 4th layer, for

the first and third figure, the rotation angel is 0◦, for the second and forth, the rotation angel is 90◦.

The 4th propagation image will the same for the first and third and the same for the second and

forth. Since the input example is MNIST example ’1’ and the model for MNIST is trained with the

4th layer as 0◦, the propagation image at the 4th layer will show higher contrast when the model

is trained with the same rotation pattern at 4th layer (the first and third). The pattern shown in the

last image shows the power of the last layer in classification.
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Figure 3: Visualization of light propagation measurements (input, and diffraction pattern of 4th

and 5th layers) at inference phase with FMNIST, KMNIST, and EMNIST images, using all four

rotation configurations of RubikONNs.

the DONN physical system, with 48000 training examples and 8000 testing examples. The total

number of training iterations of all experiments is set to 30, where the aggregated gradients (Alg.

1 RotAgg) or sequential gradient updates (Alg. 2 RotSeq) of each iteration are generated with 5

epoch. The learning rate in the training process is set to be 0.01 for all experiments cross all

four datasets using Adam26 as the optimizer. The implementations are constructed using PyTorch

v1.5.127. All experiments are conducted on a Nvidia 2080 Ti GPU.

Algorithm 1: Rotated Aggregation Training (RotAgg) for RubikONNs. The RotAgg algorithm

shown in Alg. 1 aims to update the parameters of RubikONNs by averagely aggregating gradients

generated from all tasks, while the gradient of each task is computed by including the rotations in

every training iteration. Therefore, the training iterations are fully aware of physical rotations of the

RubikONNs architecture. Specifically, RotAgg algorithm initializes one model for aggregation,

17



Algorithm 1: Rotated Aggregation Algorithm (RotAgg).

Result: W = {W 1,2,3
C

,W 4
R, W 5

R} for the rotation model

1 Initialization: Weights W0
0 = {WC0

1,2,3,WR0

4,WR0

5} for the model ▷ Weights initialization

2 while i ≤ training iterations do

3 W1,2,3,4
i ←W0

i ;

4 W1
i ← {W 1,2,3

Ci
,W 4

Ri
W

5
Ri
}; W1

i+1 D1
←−−W1

i − η∇W1
i; ▷ training w.r.t task 1 (D1) w/o rotation.

5 W2
i ← {W 1,2,3

Ci
,W 4

Ri
,rotate(W 5

Ri
)}; W2

i+1 D2
←−−W2

i − η∇W2
i; ▷ task 2 (D2) update w 5th layer rotated 90◦

6 W3
i ← {W 1,2,3

Ci
,rotate(W 4

Ri
),rotate(W 5

Ri
)}; W3

i+1 D3
←−−W3

i − η∇W3
i; ▷ task 3 (D3) update w 4,5th layer

rotated 90◦.

7 W4
i ← {W 1,2,3

Ci
,rotate(W 4

Ri
),W 5

Ri
}; W4

i+1 D4
←−−W4

i − η∇W4
i; ▷ task 4 (D4) update w 4th layer rotated 90◦.

8 W2
i ← {W 1,2,3

Ci
,W 4

Ri
,rotate-back(W 5

Ri
)};

W3
i ← {W 1,2,3

Ci
,rotate-back(W 4

Ri
),rotate-back(W 5

Ri
)}; W4

i ← {W 1,2,3
Ci

,rotate(W 4
Ri

),W 5
Ri
}; ▷

reversely rotating virtual models for aggregation.

9 W0
i+1 ← (W

i+1
1 +W

i+1
2 +W

i+1
3 +W

i+1
4 )/4;

10 i← i+ 1

11 end

and four virtual models to store temporary updates w.r.t to specific rotation patterns and dataset

(line 1). We illustrate RotAgg using the same rotation designs shown in Figure 1. In this case, the

first three layers are common layers that are not rotated during training and inference, namely as

W
1,2,3
C , and the rotations layers are denoted as W 4

R and W 5
R. In every training iteration, RotAgg

first updates the parameters in the four virtual models, W i
1,2,3,4, where the four models are trained

separately w.r.t the designed rotation patterns and the corresponding dataset (lines 4 - 7). Note that

at each iteration, the virtual model is re-initialized with the initial weight parameters or parameters

optimized in the previous iteration (line 3). For example, the first update is performed for task

1 w.r.t dataset D1 (line 4), where the model is rotated based on W i
1 with the rotation pattern of

[0◦, 0◦] as shown in Figure 1. The second update is then performed w.r.t to task 2 dataset D2,
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where the virtual model W i
2 is initialized by rotating parameters in rotation layers (L4 and L5)

with the rotation pattern [0◦, 90◦] (line 5). Similarly, the virtual models for task 3 (D3) and task

4 (D4) are performed. Before the final weight aggregation, the four virtual models are reverse-

rotated back to the initial position (line 8). Finally, RotAgg averagely aggregates the weights from

all four virtual models (line 9), and return W i+1
0 for next iteration or as final model.

Algorithm 2: Sequential Rotation Training Algorithm (RotSeq).

Result: W = {W 1,2,3
C

,W 4
R,W 5

R} for the rotation model

1 initialization: Weights W 0 for the model;

2 while i ≤ training iterations do

3 W
i = {W 1,2,3

Ci
,W 4

Ri
,W 5

Ri
};

4 W
i D1
←−−W

i − η∇W i;

5 W
i ← {W 1,2,3

Ci
,W 4

Ri
,rotate(W 5

Ri
)}; ▷ re-training w.r.t task 2 (D2) w 5th layer rotated 90◦.

6 W
i D2
←−−W

i − η∇W i;

7 W
i ← {W 1,2,3

Ci
,rotate(W 4

Ri
),W 5

Ri
}; ▷ re-training w.r.t task 3 (D3) w 4th & 5th layers rotated 90◦.

8 W
i D3
←−−W

i − η∇W i;

9 W
i ← {W 1,2,3

Ci
,W 4

Ri
,rotate-back(W 5

Ri
)}; ▷ re-training w.r.t task 4 (D4) w 4th layer rotated 90◦.

10 W
i D4
←−−W

i − η∇W i;

11 W
i ← {W 1,2,3

Ci
,rotate-back(W 4

Ri
),W 5

Ri
}; ▷ rotate back the original pattern for task 1 (D1)

12 W
i+1 ←W

i;

13 i← i+ 1

14 end

Algorithm 2: Sequential Rotation Training (RotSeq) for RubikONNs. The second training

algorithm RotSeq shown in Alg. 2 aims to update the parameters of RubikONNs by sequentially

updating the model w.r.t a given sequence of task orders in order to incorporate the physical ro-

tations in the training process. Here, we illustrate Alg. 2 using a specific order of updates, i.e.,

D1→D2→D3→D4. In the illustration example, for the first task, the model is updated w.r.t dataset
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D1 without rotating the rotation layers (line 4). Unlike the RotAgg algorithm, the model is directly

updated to W i after the training of the first task. Next, the weights are rotated with the rotation pat-

tern [0◦, 90◦], i.e., rotating W 5
Ri

clockwise 90◦ before the gradient update process for task 2 (line 5).

Note that the model rotated before training for task 2 has already been updated w.r.t D1. Similarly,

the model is trained in the same sequential updating fashion according to the rotation patterns

designed for task 3 (line 7) and task 4 (line 9). Therefore, in addition to other training parame-

ters, RotSeq could also be impacted by the inner loop update orders. In Results, a comprehensive

analysis of the update orders is provided.

Code and Data Availability

Dataset: Datasets used in this work, including select four public image classification datasets (1)

MNIST-1022 (MNIST), (2) Fashion-MNIST23 (FMNIST) , (3) Kuzushiji-MNIST24 (KMNIST), and

(4) Extension-MNIST-Letters25 (EMNIST), are all public datasets that are described in Methods.

Code: Please find all code in the supplementary file RubikONN-SciRep.zip uploaded with the

submission.

• train single task.py: used for producing results in Tables 1 and 2 for Ref.2

• train 4 single model.py: used for producing results as BaselinMTL row in Table

2.

• train split 4ctest.py: used for producing results in Ref.3 in Tables 1 and 2.
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• train 4 avg.py: This is the implementation of the proposed algorithm RotAgg (Algo-

rithm 1).

• train 4 seq.py: This is the implementation of the proposed algorithm RotSeq (Algo-

rithm 2).
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