1. ter Horst, R. et al. Host and Environmental Factors Influencing Individual Human Cytokine Responses. Cell (2016). doi:10.1016/j.cell.2016.10.018
2. Oosting, M. et al. Functional and Genomic Architecture of Borrelia burgdorferi-Induced Cytokine Responses in Humans. Cell Host Microbe (2016). doi:10.1016/j.chom.2016.10.006
3. Li, Y. et al. Inter-individual variability and genetic influences on cytokine responses to bacteria and fungi. Nat. Med. (2016). doi:10.1038/nm.4139
4. Boahen, C. K. et al. A functional genomics approach in Tanzanian population identifies distinct genetic regulators of cytokine production compared to European population. Am. J. Hum. Genet. 109, 471–485 (2022).
5. Bentley, A. R., Callier, S. L. & Rotimi, C. N. Evaluating the promise of inclusion of African ancestry populations in genomics. npj Genomic Medicine (2020). doi:10.1038/s41525-019-0111-x
6. Organization, W. H. Immunization coverage. Fact sheet N 378 (2015).
7. Aaby, P. et al. Randomized trial of BCG vaccination at birth to low-birth-weight children: Beneficial nonspecific effects in the neonatal period? J. Infect. Dis. (2011). doi:10.1093/infdis/jir240
8. Biering-Sørensen, S. et al. Small randomized trial among low-birth-weight children receiving bacillus Calmette-Guéerin vaccination at first health center contact. Pediatr. Infect. Dis. J. (2012). doi:10.1097/INF.0b013e3182458289
9. Biering-Sørensen, S. et al. Early BCG-Denmark and Neonatal Mortality Among Infants Weighing. Clin. Infect. Dis. An Off. Publ. Infect. Dis. Soc. Am. (2017). doi:10.1093/CID/CIX525
10. Netea, M. G. et al. Defining trained immunity and its role in health and disease. Nature Reviews Immunology (2020). doi:10.1038/s41577-020-0285-6
11. Kleinnijenhuis, J. et al. Bacille Calmette-Guérin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proc. Natl. Acad. Sci. U. S. A. (2012). doi:10.1073/pnas.1202870109
12. Arts, R. J. W. et al. BCG Vaccination Protects against Experimental Viral Infection in Humans through the Induction of Cytokines Associated with Trained Immunity. Cell Host Microbe (2018). doi:10.1016/j.chom.2017.12.010
13. Walk, J. et al. Outcomes of controlled human malaria infection after BCG vaccination. Nat. Commun. (2019). doi:10.1038/s41467-019-08659-3
14. Franco, L. M. et al. Integrative genomic analysis of the human immune response to influenza vaccination. Elife (2013). doi:10.7554/eLife.00299
15. Tan, P. L., Jacobson, R. M., Poland, G. A., Jacobsen, S. J. & Pankratz, V. S. Twin studies of immunogenicity - Determining the genetic contribution to vaccine failure. in Vaccine (2001). doi:10.1016/S0264-410X(00)00468-0
16. Ovsyannikova, I. G. et al. The association of CD46, SLAM and CD209 cellular receptor gene SNPs with variations in measles vaccine-induced immune responses: A replication study and examination of novel polymorphisms. Hum. Hered. (2011). doi:10.1159/000331585
17. Biering-Sørensen, S. et al. Early BCG-Denmark and Neonatal Mortality among Infants Weighing <2500 g: A Randomized Controlled Trial. Clin. Infect. Dis. (2017). doi:10.1093/cid/cix525
18. Jensen, K. J. et al. Heterologous immunological effects of early BCG vaccination in low-birth-weight infants in guinea-bissau: A randomized-controlled trial. J. Infect. Dis. (2015). doi:10.1093/infdis/jiu508
19. McLaren, W. et al. The Ensembl Variant Effect Predictor. Genome Biol. 17, (2016).
20. Ward, L. D. & Kellis, M. HaploReg v4: Systematic mining of putative causal variants, cell types, regulators and target genes for human complex traits and disease. Nucleic Acids Res. (2016). doi:10.1093/nar/gkv1340
21. Ghoussaini, M. et al. OUP accepted manuscript. Nucleic Acids Res. 1–10 (2020). doi:10.1093/nar/gkaa840
22. Carpenter, S. & Fitzgerald, K. A. Cytokines and long Noncoding RNAs. Cold Spring Harb. Perspect. Biol. (2018). doi:10.1101/cshperspect.a028589
23. Wang, J., Vasaikar, S., Shi, Z., Greer, M. & Zhang, B. WebGestalt 2017: A more comprehensive, powerful, flexible and interactive gene set enrichment analysis toolkit. Nucleic Acids Res. (2017). doi:10.1093/nar/gkx356
24. Cirovic, B. et al. BCG Vaccination in Humans Elicits Trained Immunity via the Hematopoietic Progenitor Compartment. Cell Host Microbe (2020). doi:10.1016/j.chom.2020.05.014
25. Yamamoto, M. et al. Plexin-A4 negatively regulates T lymphocyte responses. Int. Immunol. (2008). doi:10.1093/intimm/dxn006
26. Kaufmann, S. H. E. & Parida, S. K. Tuberculosis in Africa: Learning from Pathogenesis for Biomarker Identification. Cell Host and Microbe (2008). doi:10.1016/j.chom.2008.08.002
27. Gewinner, C. et al. Evidence that Inositol Polyphosphate 4-Phosphatase Type II Is a Tumor Suppressor that Inhibits PI3K Signaling. Cancer Cell (2009). doi:10.1016/j.ccr.2009.06.006
28. Cheng, S. C. et al. MTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity. Science (80-. ). (2014). doi:10.1126/science.1250684
29. Hasso-Agopsowicz, M., Scriba, T. J., Hanekom, W. A., Dockrell, H. M. & Smith, S. G. Differential DNA methylation of potassium channel KCa3.1 and immune signalling pathways is associated with infant immune responses following BCG vaccination. Sci. Rep. (2018). doi:10.1038/s41598-018-31537-9
30. Mcgarvey, J. A., Wagner, D. & Bermudez, L. E. Differential gene expression in mononuclear phagocytes infected with pathogenic and non-pathogenic mycobacteria. Clin. Exp. Immunol. (2004). doi:10.1111/j.1365-2249.2004.02490.x
31. Li, Y. et al. A Functional Genomics Approach to Understand Variation in Cytokine Production in Humans. Cell (2016). doi:10.1016/j.cell.2016.10.017
32. Mathieson, I. et al. Genome-wide patterns of selection in 230 ancient Eurasians. Nature (2015). doi:10.1038/nature16152
33. Finan, C., Ota, M. O. C., Marchant, A. & Newport, M. J. Natural variation in immune responses to neonatal Mycobacterium bovis Bacillus Calmette-Guerin (BCG) vaccination in a cohort of Gambian infants. PLoS One (2008). doi:10.1371/journal.pone.0003485
34. Chen, Y. et al. INPP4B restrains cell proliferation and metastasis via regulation of the PI3K/AKT/SGK pathway. J. Cell. Mol. Med. (2018). doi:10.1111/jcmm.13595
35. Han, Q. et al. Common Variants in PLXNA4 and Correlation to CSF-related Phenotypes in Alzheimer’s Disease. Front. Neurosci. (2018). doi:10.3389/fnins.2018.00946
36. Usher, N. T. et al. Association of BCG Vaccination in Childhood with Subsequent Cancer Diagnoses: A 60-Year Follow-up of a Clinical Trial. JAMA Netw. Open 2, (2019).
37. Gofrit, O. N. et al. Can immunization with Bacillus Calmette-Guérin (BCG) protect against Alzheimer’s disease? Med. Hypotheses 123, (2019).
38. Carroll, M. V., Lack, N., Sim, E., Krarup, A. & Sim, R. B. Multiple routes of complement activation by Mycobacterium bovis BCG. Mol. Immunol. 46, (2009).
39. Jagatia, H. & Tsolaki, A. G. The role of complement system and the immune response to tuberculosis infection. Medicina (Lithuania) 57, (2021).
40. Ioannidis, J. P. A. Population-wide generalizability of genome-wide discovered associations. Journal of the National Cancer Institute (2009). doi:10.1093/jnci/djp298
41. Quach, H. et al. Genetic Adaptation and Neandertal Admixture Shaped the Immune System of Human Populations. Cell (2016). doi:10.1016/j.cell.2016.09.024
42. Aulchenko, Y. S., Ripke, S., Isaacs, A. & van Duijn, C. M. GenABEL: An R library for genome-wide association analysis. Bioinformatics (2007). doi:10.1093/bioinformatics/btm108
43. Shah, T. S. et al. OptiCall: A robust genotype-calling algorithm for rare, low-frequency and common variants. Bioinformatics (2012). doi:10.1093/bioinformatics/bts180
44. Deelen, P. et al. Genotype harmonizer: Automatic strand alignment and format conversion for genotype data integration. BMC Res. Notes (2014). doi:10.1186/1756-0500-7-901
45. Das, S. et al. Next-generation genotype imputation service and methods. Nat. Genet. (2016). doi:10.1038/ng.3656
46. Moorlag, S. J. C. F. M. et al. An integrative genomics approach identifies KDM4 as a modulator of trained immunity. Eur. J. Immunol. (2021). doi:10.1002/eji.202149577
47. Kumar, S., Ambrosini, G. & Bucher, P. SNP2TFBS-a database of regulatory SNPs affecting predicted transcription factor binding site affinity. Nucleic Acids Res. 45, (2017).
48. Seal, R., Gordon, S., Lush, M., Wright, M. & Bruford, E. HGNC: The Why and How of Standardised Gene Nomenclature. Nat. Preced. (2009). doi:10.1038/npre.2009.3182.1
49. de Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: Generalized Gene-Set Analysis of GWAS Data. PLoS Comput. Biol. 11, (2015).
50. Fishilevich, S. et al. GeneHancer: Genome-wide integration of enhancers and target genes in GeneCards. Database 2017, (2017).
51. R Development Core Team, R. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing (2011). doi:10.1007/978-3-540-74686-7
52. Purcell, S. et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. (2007). doi:10.1086/519795
53. Shabalin, A. A. Matrix eQTL: Ultra fast eQTL analysis via large matrix operations. Bioinformatics (2012). doi:10.1093/bioinformatics/bts163
54. Willer, C. J., Li, Y. & Abecasis, G. R. METAL: Fast and efficient meta-analysis of genomewide association scans. Bioinformatics (2010). doi:10.1093/bioinformatics/btq340