
Page 1/22

Assessing bird habitat occupancy from gradient-
based landscape metrics and polar spectral indices
in the Colombian Andean region
Carlos Eduardo Ortiz-Yusty  (  carlos.ortiz@cuantico.com.co )

Cuántico Eco Lab
Juan Luis Parra 

Universidad de Antioquia
Andrea Morales-Rozo 

University of the Llanos
Roberto Munguía-Steyer 

National Autonomous University of Mexico
Joan Gastón Zamora Abrego 

Universidad Nacional de Colombia

Research Article

Keywords:

Posted Date: March 31st, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1503371/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.  
Read Full License

Additional Declarations: No competing interests reported.

Version of Record: A version of this preprint was published at Landscape Ecology on February 13th, 2023.
See the published version at https://doi.org/10.1007/s10980-022-01580-z.

https://doi.org/10.21203/rs.3.rs-1503371/v1
mailto:carlos.ortiz@cuantico.com.co
https://doi.org/10.21203/rs.3.rs-1503371/v1
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s10980-022-01580-z


Page 2/22

Abstract
Context: The patch-mosaic model (PMM) is the most common way to describe the landscape in
ecological research. Despite this, the gradient model (GM) was proposed as a more accurate
representation of the heterogeneity of landscapes; however, little has been explored on the behavior and
performance of continuous variables and surface-based metrics from GM under different analytical
scenarios.

Objectives: We address the question: which landscape metrics, patch-based or surface-based, best
explain habitat occupancy patterns of six bird species with different ecological preferences?

Methods: We generated detection histories for six bird species in a fragmented Andean landscape from
Colombia. We obtain patch-based metrics from a land cover classi�cation and surface-based metrics
from the principal polar spectral indices (PPSi) to describe the landscape. Finally, we �tted dynamic
occupancy models using variables derived from landscape models and compared their performance
using quasi-AIC for each species.

Results: We obtained 909 detections for the six selected bird species. We found that PPSi and surface-
based metrics were more informative when assessing occupancy patterns for �ve of the six species
studied. In addition, surface-based metrics allowed to detect interspeci�c differences between species
beyond an a�nity for a particular cover type.

Conclusions: Surface-based metrics can be an alternative for assessing species response to landscape
heterogeneity, particularly those that may be more sensitive to �ne-scale changes in vegetation cover.
However, there is no single “best” model to describe the landscape for all cases. PPSi can be very useful
for land cover analysis in landscape ecology studies as an alternative to more popular vegetation indices.

Introduction
Assessing how species, populations, or communities are related to landscape structure is a central issue
in landscape ecology and partly depends on the conceptual model chosen to describe landscape
composition and con�guration (Frazier & Kedron, 2017; Lausch et al., 2015; Lindenmayer et al., 2007).
There are different conceptual models to describe landscape structure, although the Patch-Mosaic model
(PMM) (Forman, 1995) is currently, the most popular one (Fardila et al., 2017; Lausch et al., 2015). The
PMM is an expansion of the patch model, which originates from island biogeography theory (Shafer,
1990), and assumes that landscapes are a mosaic of discretely delineated habitat units or homogeneous
areas without internal variation (Forman, 1995). Despite its popularity and acceptance, the PMM model
has been criticized for ignoring or simplifying the continuous nature of environmental gradients (Frazier &
Kedron, 2017; McGarigal et al., 2009). As an alternative, the Gradient Model (GM) has been proposed as a
more adequate way of conceptualizing and analyzing landscape structure capable of capturing more
heterogeneity and overcoming the limitations of the PMM (McGarigal et al., 2009; McGarigal & Cushman,
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2005). Thus, an essential task for landscape ecologists is to elucidate the best approach or model to
describe the landscape structure on which their research is focused.

In the PMM, the surface describing the landscape typically corresponds to a land cover or vegetation
classi�cation (Forman, 1995). Under this model, most metrics available to characterize the landscape
structure focus on analyzing the spatial pattern of the mosaic of habitat patches or landscape elements
(Kupfer, 2012; Lausch et al., 2015; Li & Yang, 2015) at three levels: patch, class (several patches of the
same type), and landscape (K. McGarigal, 2002; Lausch et al., 2015). There are many metrics associated
with patch and class level to analyze the spatial pattern of landscape elements. The vast majority of
these metrics have a high degree of correlation and quantify patch area and shape, the number or density
of edges, degree of isolation, and structure of the surrounding matrix (Hesselbarth et al., 2019; K.
McGarigal, 2002; McGarigal & Marks, 1995). Despite this, many of these metrics do not represent speci�c
aspects of habitat selection by organisms, and they depend on the spatial scale of analysis and the
habitat de�nition employed (Lausch et al., 2015). Studies of the effects of landscape structure or
dynamics on biodiversity typically use metrics based on the PMM (Fardila et al., 2017), mainly because
they are easy to obtain and interpret, and require less computational power (Lausch et al., 2015).

In contrast, in the GM, the landscape is a continuous tridimensional surface (x, y, z) where the only
discrete unit is the pixel or cell in a raster matrix (McGarigal & Cushman, 2005). The x and y raster
coordinates indicate the spatial or horizontal location of each pixel, while the pixel value indicates the
height (z). If all pixels in the raster have the same value, a homogeneous or �at surface is formed. Studies
analyzing landscape structure under the GM have used raster surfaces describing the amount of plant
biomass or photosynthetic vigor, such as normalized difference vegetation index (NDVI) (McGarigal et al.,
2009) or percent of vegetation cover (Bruton et al., 2015). Unlike the PMM, there are no established
guidelines to represent habitat variation in the landscape because the GM has been less explored (Lausch
et al., 2015; McGarigal et al., 2009; McGarigal & Cushman, 2005). GM landscape metrics, or surface-
based metrics, can be categorized into three major groups according to McGarigal et al. (2009):
amplitude metrics, surface bearing metrics, and spatial metrics. Amplitude metrics quantify the
distribution of height values (i.e., vertical distribution) of the surface (e.g., variability, kurtosis, and
skewness). Surface bearing metrics quantify surface texture based on the Abbott-Firestone curve
obtained from the inversion of the cumulative histogram of surface height distribution. Spatial metrics
measure the horizontal distribution (spatial pattern) of the surface height values.

Analyzing landscape environmental variation using surface metrics has several advantages over patch-
based metrics (McGarigal et al., 2009; McGarigal & Cushman, 2005). For example, surface metrics do not
require delimiting homogeneous areas or de�ning habitat edges a priori. Instead, each locality within the
landscape is considered a combination of environmental dimensions to which organisms respond,
according to their functional traits, ecological preferences, or niche breadth (McGarigal et al., 2009;
McGarigal & Cushman, 2005). This makes it possible to include all locations within the landscape for
analysis, independent of whether we consider them habitat or surrounding matrix, as well as facilitating
species-centered modeling and interpretation (i.e., exploring habitat preferences for each species and
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analyzing responses to fragmentation of that habitat) (Lausch et al., 2015). On the other hand, surface
metrics imply managing, processing, and storing large amounts of multidimensional spatially explicit
information, that are less intuitive, and still need to be standardized in their use and interpretation
(Lausch et al., 2015). Several of these drawbacks are becoming less problematic. There is now a large
availability of data to analyze landscapes in different environmental dimensions and spatial scales
resulting from remote sensing of the Earth’s surface (e.g., Landsat, Sentinel) (Wang & Gamon, 2019).
Moreover, using available open-source tools for obtaining, visualizing, processing, and analyzing
geographic and remote sensing data has also increased in ecology and conservation sciences (e.g., QGIS,
Google Earth Engine, geodiv package for R) (Kumar & Mutanga, 2018; Rocchini et al., 2017; Smith et al.,
2021).

In this study, we compare the utility of PMM and GM as approaches to describe how bird species perceive
habitats at the landscape scale in a fragmented Andean landscape from Colombia. Speci�cally, we
address the question: Which landscape metrics, patch-based or surface-based, best explain habitat
occupancy patterns of six bird species with different ecological preferences? We expect surface metrics
generated under the GM to be more informative than traditional binary or proportion variables based on
the PMM regardless of species ecologies. Nonetheless, for habitat specialists, variables based on PMM
may be as informative as those generated under the GM. In addition, considering that there is no
standardized continuous surface representing the landscape analogous to vegetation cover
classi�cation, we tested the effectiveness of polar spectral indices (PPSi) (Mo�et et al., 2010) as an
alternative to more traditional metrics (e.g., NDVI) to represent variation in vegetation cover under the GM.
The vegetation cover type and its variation across the landscape have been related to aspects of bird
ecology such as feeding, dispersal ability, behavior, reproduction, and predation probability (Barlow et al.,
2007; Bélisle et al., 2001; Carrara et al., 2015; Geoffroy et al., 2019; Kennedy et al., 2010; Neuschulz et al.,
2013; Walter et al., 2017). Thus, we expect that species responses to PPSi indices and greenness-based
surface metrics can be interpreted in terms of habitat use preference.

Materials And Methods
Study region

Our study region was located on the eastern side of the Central Cordillera of Colombia, corresponding to a
highly fragmented landscape of the humid tropical biome between 150 and 2500 m elevation (Fig. 1).
This region covers a mixture of sub-Andean humid forest relicts of different sizes, agroecosystems,
shrublands, secondary vegetation in different stages of succession, cattle pastures, and arti�cialized
soils (IDEAM et al., 2017). Also, this region contains three large arti�cial water bodies corresponding to
the San Lorenzo, Playas, and Punchiná hydroelectric dams.

Bird Sampling

We chose six bird species commonly sighted in the study region with different habitat requirements and
land-use patterns: Formicarius analis, Oncostoma olivaceum, Cercomacroides tyrannina, Ortalis
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columbiana, Troglodytes aedon and Tyrannus melancholicus. We generated detection histories for each
selected bird species by establishing 70 �xed sampling points along 14 transects (1.25 km each)
covering the transition from forest to secondary vegetation or grassland (Fig. 1). A minimum of 215 linear
meters separated each observation point. We visited each sampling point during June and July of 2014
and 2015, recording all visual or auditory detections for 15 minutes within a maximum radius of 100
meters. Bird records were taken by at least four experienced observers, visiting each site for two
consecutive days to obtain four temporal replicates per year. All sampling events were conducted
between 6:00 am, and 10:00 am.

F. analis (Formicariidae) is a medium ground species (body mass: 62.19 g; length: 19 cm) that feeds
mainly on invertebrates found on the forest �oor and is distributed in Central and South America. O.
olivaceum (Tyrannidae) is a small insectivorous species (body mass: 6.6 g; length: 9.1 cm) found in
forest understory, secondary vegetation, and shrublands areas; this species is distributed in Panama and
northern Colombia. C. tyrannina (Thamnophilidae) is a small insectivorous species (body mass: 9.34 g;
length: 16 cm) that feeds mainly on invertebrates, and is commonly observed in forests, forest edges, and
secondary vegetation. O. columbiana is a large species endemic to the Andean region of Colombia (body
mass: 600 g; length: 53 cm) that feeds mainly on fruits and seeds. This species is common in its
distribution range and is associated with forest edges, gallery forests, forest clearings, and pastures with
scattered trees; it is occasionally observed in urban and peri-urban areas. T. aedon is a small species
(body mass: 10.85 g; length: 11.4 cm) that inhabits semi-open areas, forest clearings, peri-urban and
urban areas, and feeds on invertebrates and fruits. Finally, T. melancholicus is one of the most widely
distributed species in Colombia, inhabiting pastures, grasslands with scattered trees, urban and peri-
urban areas. It is a medium sized species (body mass: 35 g; length: 22 cm) with generalist feeding habits
(mostly invertebrates) that stays high in the canopy. All descriptions were obtained from McMullan et al.
(2011) and Wilman et al. (2014).

Land cover classi�cation and Patch-based metrics

We obtained a mosaic covering the entire study region from 12 scenes of the MSI (Multispectral Imager)
sensor in the Sentinel 2 Earth observation satellite, employing the Sen2Cor and Sen2Three modules of
the free Sentinel Application Platform (SNAP) software (Louis et al., 2016; Main-Knorn et al., 2017). The
combination algorithm gives greater importance to suitable pixels (i.e., no clouds or shadows) from
scenes temporally closer to 2015, using pixels from more distant scenes only if closer scenes had low-
quality information. Using the Sentinel 2 mosaic, the continental, coastal and marine ecosystems map of
Colombia (IDEAM et al., 2017), and a high-resolution aerial photograph, we performed a supervised land
cover classi�cation using the open-source Semi-Automatic Classi�cation Plugin (SCP) for QGIS 3
(Congedo, 2016), identifying �ve vegetation - land cover types: forest, secondary vegetation, grassland,
water and bare or urban soil (Fig. 2). The obtained Kappa index was 0.82, and the overall supervised
classi�cation accuracy across the landscape was 88.07%, indicating an acceptable performance
(Olofsson et al., 2014) (see supplementary material Table S2).
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We calculated 24 patch-based metrics for each sampling unit focusing on forest cover using the
landscapemetrics package for R (Hesselbarth et al., 2019). Since many of these metrics are strongly
correlated with each other, we retained only those metrics that showed the lowest degree of correlation
(i.e., Pearson r < 0.7) with any of the other metrics: total area (Ca), average shape index (Shape), number
of patches (Np), clumpiness index (Clumpy), and mean Euclidean distance to nearest neighbor (Enn). The
Ca and Shape metrics quantify patch area and shape, while Np, Clumpy, and Enn are aggregation
metrics. We implemented circular nested buffers with four different radii (i.e., 70, 130, 270, and 8100
meters) to calculate the metrics and obtain a multiscale average for each sampling point. The equations
and descriptions of each patch-based metric used here are widely described in the scienti�c literature
(e.g., McGarigal and Marks, 1995).

Generally, Ca expresses the average area, in hectares, of all forest patches within the assessed radii and
is equivalent to the habitat amount according to Fahrig (2013), assuming forest cover as a proxy for
habitat of forest specialist species. The average Shape index expresses the ratio between perimeter and
area of the forest patches located within the assessed radii. The shape index shows low values for
regular-shaped patches (i.e., quadrangular). The number of patches, Np, is one of the simplest ways to
quantify fragmentation per se in a landscape; highly fragmented landscapes have many patches. Clumpy
indicates the aggregation degree of forest patches and ranges from − 1: maximum disaggregation to 1:
maximum aggregation. Finally, Enn measures the average edge-to-edge distance to the nearest neighbor
of the same class, in this case, forest. We expect Ca, Clumpy and Enn to be important for habitat
specialists such as Formicarius analis, Oncostoma olivaceum and Cercomacroides tyrannina, whereas
the number of patches and clumpy to be informative for generalist species such as Tyrannus
melancholicus and Ortalis columbiana.

Land cover gradient representation and Surface-based metrics

We obtained the polar principal spectral indices (PPSi) from the polar transformation of the Sentinel 2
mosaic spectral bands for the study region, adapting the methodology developed by Mo�et et al. (2010)
for ETM + and TM sensor scenes from the Landsat mission (see supplementary material Fig. S1). The
PPSi indices decompose the land cover variation into three orthogonal dimensions: greenness (PPSG),
brightness (PPSB), and wetness (PPSW), similar to the Tasseled Cap indices (Kauth & Thomas, 1976).
With PPSi indices, it is possible to differentiate the variation in land cover between sites associated with
changes in the vegetation itself (i.e., type of cover, amount of foliage, proportion of vegetation) from the
variation associated with spectral brightness or the presence of water, unlike unidimensional indices such
as NDVI (Mo�et et al., 2010). The PPSG index represents the most signi�cant variation among the
vegetation cover types classi�ed for the study region, separating forest and secondary vegetation from
pasture and bare or urbanized soil areas. Therefore, using the PPSB index in conjunction with the PPSG
index is necessary to separate forest and secondary vegetation cover. Thus, sites or pixels with high
PPSG values will have high PPSB values if they correspond to secondary vegetation and low PPSB
values if they correspond to a forest (see supplementary material Fig. S1). Combining these three indices
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allows describing land cover through continuous variables that accurately represent the vegetation
gradient present in a region based on information derived from remote sensing (Fig. 2).

We calculated 11 surface metrics for each sampling unit based on the PPSG greenness index using the
geodiv package for R (Smith et al., 2021). We calculated surface metrics by implementing circular buffers
with the same radii used to calculate patch-based metrics (i.e., 70, 130, 270, and 8100 meters) to obtain a
multiscale average per sampling point. Then, we retained �ve metrics that showed a lower degree of
correlation with each other (i.e., Pearson r < 0.7): average roughness (Sa), surface asymmetry (Ssk),
surface kurtosis (Sku), surface area ratio (Sdr), and summit density (Sds). Sa, Ssk and Sku are amplitude
metrics quantifying the variability and statistical distribution in the surface values (i.e., vertical
distribution) without considering the spatial arrangement, location, or distribution of the peaks and
valleys formed by the surface values (i.e., horizontal distribution). Sdr and Sds are spatial metrics, i.e.,
they consider both vertical and horizontal distribution of surface values.

In this case, Sa measures the absolute deviation of the PPSG values from the mean within each radius
and can be interpreted as the vegetation cover variation; high Sa values indicate high heterogeneity in
vegetation cover. Sa increased in sites composed of contrasting vegetation cover in our study area, such
as forest-grassland edge zones with forest fragments of various sizes surrounded by different cover
types. Ssk measures the skewness, and Sku measures the kurtosis of the distribution of PPSG values, so
they are interpreted as complementary measures of dominance. Low Ssk values indicate dominance of
high greenness values (i.e., forest or secondary vegetation), and high Sku values are interpreted as high
dominance of greenness values around the mean, i.e., there is a low probability of obtaining values far
from the mean. Sku is not a directional metric, so it does not indicate the dominant greenness value
speci�cally in each locality. Sku may increase in relatively homogeneous sites around the average
greenness value, which may be low or high. In our study area, Sku correlates moderately with greenness
(PPSG; r = 0.48, p < 0.001), summit density (Sds; r = 0.48, p < 0.001) and forest area cover (Ca; r = 0.46, p < 
0.001), indicating that higher Sku values tends to occur in forest or secondary vegetation areas
predominantly.

The area surface ratio, Sdr, measures the ratio between the observed surface area and the area of a �at
surface with the exact x,y dimensions, so it increases with increasing local variability in slopes; Sdr is an
indicator of the amount and magnitude of vegetation cover contrasts or edges. Sds measures the number
of local peaks of greenness per area and is therefore related to the number of pixels/sites with high
greenness values (forests and secondary vegetation) and their spatial distribution. Sds can be interpreted
as an indicator of forest fragmentation since the density of greenness peaks (i.e., localities with high
PPSG values) corresponds to forest or secondary vegetation cover patches.

Species occupancy analysis

We �t dynamic occupancy models (Kéry & Royle, 2021; MacKenzie et al., 2003) for the six selected bird
species using metrics from the PPM and GM landscape models as occupancy covariates (Ψ) and the
date and sampling time as detection covariates (p). No covariates were used to predict colonization (γ) or
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extinction (ε), assuming little or no variation in the dynamics governing the individual’s distribution of the
species of interest over this period (i.e., one year) (Betancur et al., 2020). We used the colext function in
the unmarked package for R software to �t all models (Fiske & Chandler, 2011). First, we built a global
model for each species with all selected landscape metrics plus altitude to test the general model �t and
diagnose the presence of overdispersion with the mb.gof.test function from the AICcmodavg package.
We tested the goodness-of-�t of the global models by comparing the observed chi-square statistic with
the reference distribution generated by 999 simulations. We evaluated overdispersion by calculating the
variance in�ation factor (cˆ). Global model is theoretically the best-�tting model because all candidate
models are special cases of the global model, so we can compute from it an unambiguous cˆ to
diagnose the presence of overdispersion (Burnhan & Anderson, 2002).

We modeled the detection parameter for each species while holding occupancy, colonization, and
extinction constant. We then modeled the occupancy parameter using the top-ranked detection sub-
model and holding colonization and extinction constant. We built a set of 42 candidate models for the
occupancy parameter avoiding models with correlated covariates or with more than three covariates to
avoid problems of model convergence and interpretation of results (see supplementary material Table
S3). Our main objective was to compare the metrics derived from the PMM and GM landscape models, so
we did not include models combining patch-based and surface-based variables, except for the global
model. Models were evaluated according to the quasi-AIC criterion (QAIC), calculated using the global
model variance in�ation factor. Selecting the best models from the QAIC and cˆ allows considering the
overdispersion in the calculation of the model parameter standard errors caused by possible lack of
independence in the predictors or species detection histories (Richards, 2008). We ranked models using
ΔQAICc and considered that models with ΔQAICc < 2 had the strongest support (see supplementary
material Table S4). For the �nal selection, we excluded models with poor explanatory power or
uninformative variables, i.e., variables whose con�dence interval included zero (Arnold, 2010). Finally, we
assessed the goodness-of-�t of the �nal models for each species using the mb.gof.test function on the
AICcmodavg package. With the �nal models for each species, we made inferences about the covariates’
effects and the direction of the relationships.

Results
We obtained 909 detections for the six selected bird species based on 25.5 effective hours of sampling
(i.e., 15 minutes x 70 sites x 8 replicates). Ortalis columbiana had the highest number of detections and
naïve occupancy (Ψnaïve = 0.66), while Troglodytes aedon had the lowest number of detections (Table 1).
The detections varied from 1.5% (Tyranus melancholicus) to 43% (Cercomacroides tyraninna) of all
detections between the two sampling years. We obtained a single �nal top-ranked dynamic occupancy
model for each bird species after our selection procedure and removal of models with uninformative
covariables. According to goodness-of-�t tests, the �nal top-ranked models for each species performed
well (Table 2). According to the top-ranked models, the occupancy probabilities of the assessed bird
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species were primarily associated with continuous variables and surface-based metrics, except for O.
columbiana (Table 2).

Table 1
The number of detections per year and sampling sites with at

least one detection for the six selected bird species. Ψ naïve is the
observed proportion of sites occupied (i.e., without considering

imperfect detectability).
Species 2014 2015 Total Ψ naïve

Formicarius analis 63 65 128 0.47

Oncostoma olivaceum 66 91 157 0.53

Cercomacroides tyrannina 41 18 59 0.37

Ortalis columbiana 178 213 391 0.66

Troglodytes aedon 20 23 43 0.16

Tyrannus melancholicus 65 66 131 0.53

Occupancy models revealed that bird species respond to different landscape features related to
vegetation cover variability, distribution, and isolation (Table 2, Fig. 3). O. olivaceum, T. aedon and T.
melancholicus were associated with surface-based metrics measuring variability or dominance in
greenness values. Occupancy probability of O. olivaceum was positively related to the kurtosis of the
greenness surface (Sku) and negatively related to altitude. Occupancy for this species is highest (Ψ > 
0.75) around Sku values greater than 3.5 and altitude less than 750 m asl. This means that O. olivaceum
prefers low elevation locations with little variation in greenness values. The occupancy probability of T.
aedon was determined by variability in greenness values (Sa), increasing in areas where variability is high
(Sa > 0.1). Occupancy probability of T. melancholicus increased at sites with low greenness (PPSG) and
high brightness (PPSB) values, indicating a preference for sites composed of grasslands and bare soils
(i.e., open habitats).
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Table 2
Top-ranked occupancy models for the six bird species analyzed. Sa: average roughness, Ssk: surface
asymmetry, Sku: surface kurtosis, Sdr: surface area ratio, Sds: summit density, ppsg: principal polar
spectral greenness index, ppsb: principal polar spectral brightness index, Alt: altitude, np: number of

forest patches.
Bird species Top

Model
Parameter Covariate Coe�cient Lower

CI
Upper
CI

Goodness
of �t

Formicarius
analis

Ψ(sds) p
(Date)
ε(.) γ(.)

Ψ sds 1.48 0.43 2.51 χ2 = 
51.84, p = 
0.08p Date 0.57 0.25 0.88

Oncostoma
olivaceum

Ψ(sku -
Alt) p (.)
ε(.) γ(.)

Ψ sku 1.09 0.30 1.88 χ2 = 
39.40, p = 
0.38Ψ Alt -0.98 -1.63 -0.33

Cercomacroides
tyraninna

Ψ(-sdr) p
(Date)
ε(.) γ(.)

Ψ sdr -1.67 -3.01 -0.33 χ2 = 
32.24, p = 
0.49p Date 0.58 0.22 0.93

Ortalis
columbiana

Ψ(Alt + 
np) p
(Date)
ε(.) γ(.)

Ψ Alt 2.52 1.32 3.71 χ2 = 50.1,

p = 0.08Ψ np 1.97 0.52 3.43

p Date 0.36 0.12 0.59

Troglodytes
aedon

Ψ(sa) p
(.) ε(.)
γ(.)

Ψ sa 1.68 0.58 2.79 χ2 = 
40.05, p = 
0.28

Tyrannus
melancholicus

Ψ(-ppsg 
+ ppsb)
p (Date)
ε(.) γ(.)

Ψ ppsg -3.82 -6.28 -1.35 χ2 = 
42.40, p = 
0.22Ψ ppsb 2.42 0.68 4.16

p Date 0.58 0.29 0.87

 
F. analis and C. tyrannina were associated with surface-based metrics related to the spatial distribution of
greenness values (Table 2, Fig. 3). The occupancy probability of F. analis was positively associated with
summit density (Sds), indicating a habitat use preference for localities dominated by high greenness
values, i.e., continuous, or little fragmented forest vegetation. According to the top-ranked model, the
occupancy probability of F. analis increased (Ψ > 0.75) in localities surrounded by the greatest amount of
forest in our study area (Sds > 0.05). The occupancy probability of C. tyrannina increased in sites with low
surface-area ratio values (Sdr), indicating a preference for areas with no abrupt changes in greenness, i.e.,
sites with continuous cover and away from forest edges.

Finally, O. columbiana was associated with a patch-based metric measuring the degree of forest cover
fragmentation or subdivision. The occupancy probability of O. columbiana was best explained by altitude
and the number of forest patches (np). The model obtained indicated that this species prefers sites above
1000 m and highly fragmented forest cover.
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Discussion
The gradient model (GM) was proposed as a more accurate representation of the natural heterogeneity of
landscapes; however, little has been explored on the behavior and performance of continuous variables
and surface metrics under different analytical scenarios (Kedron et al., 2018; McGarigal et al., 2009). Our
work advanced this topic by using metrics related to GM to analyze occupancy patterns of six bird
species with different ecological requirements compared to traditional patch model metrics (PMM). We
found that polar principal spectral indices (PPSi) and surface-based metrics were informative when
assessing occupancy patterns in response to landscape land cover structure for most of the species
studied. The increasing availability of spatially explicit data (i.e., remote sensing) opens the possibilities
of using these variables and the GM in many landscape applications.

Our analysis showed that occupancy models �tted with GM covariates had better performance for �ve of
the six bird species analyzed. Only the Colombian chachalaca, O. columbiana, was positively related to
the number of forest patches (np), a PMM covariate, indicating a preference for highly fragmented
landscapes. Although summit density (Sds) is a surface metric that can be interpreted as a measure of
fragmentation, neither this nor any other GM – based metric adequately represented the information
contained in the np metric. Studies explicitly comparing the performance of both PMM and GM models
have generally concluded that it is necessary to adopt a pluralistic view in landscape analysis
(Lindenmayer et al., 2007), deriving variables or metrics from different landscape models, as the
performance of these depends on the behavior or habitat use of species and the characteristics of the
landscape under study (Bruton et al., 2015; Price et al., 2009; Salgueiro et al., 2018). For example,
Salgueiro et al. (2018) found that the GM performs better in describing the landscape for specialist bird
species, which may be more sensitive to slight variations in landscape characteristics. Price et al. (2009)
found that savanna bird species in Australia that take advantage of different vegetation cover types for
foraging or nesting �t the GM better, while species that nest in dense vegetation areas exclusively �t the
PMM model better.

To ensure an adequate description of the landscape with both PMM and GM, we must obtain a surface
representing habitat composition (e.g., vegetation covers, NDVI, % vegetation cover, PPSi) and then
estimate landscape metrics describing their vertical and horizontal variation (e.g., patch-based or surface-
based metrics) (Frazier & Kedron, 2017; McGarigal & Cushman, 2005). Selecting surface and landscape
metrics should be based on knowledge of the habitat requirements and behavior of the species assessed
(Schindler et al., 2015); however, we rarely have relevant information on these aspects of species ecology,
especially in the tropics. Because of this, a cost-e�cient alternative is to use vegetation cover as a
indicator for habitat and obtain diverse metrics to quantify variability pattern expecting that some of
these metrics or a combination of them will be informative for most species (Frazier & Kedron, 2017).
Considering that in our analysis the landscape metrics derived under either landscape model come from
the same base information (i.e., Sentinel 2 imagery) and represent the same landscape characteristics
(i.e., vegetation cover), the difference in the occupancy models performance and the conclusions that can
be drawn from them are interesting. This means that the limitation of the patch-based landscape metrics
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for most of the species analyzed may not necessarily be due to vegetation cover being a poor indicator of
the habitat characteristics to which species respond but to the loss of information associated with its
discretization, homogenization, and simpli�cation (McGarigal et al., 2009; McGarigal & Cushman, 2005).
In this sense, using polar spectral principal indices (PPSi) as an indicator of vegetation or land cover in
combination with surface metrics can improve our understanding of the biodiversity patterns at the
landscape scale, especially in highly heterogeneous landscapes such as the ones included in this study
and highly frequent for tropical latitudes.

The polar principal spectral indices (PPSi) have two signi�cant advantages over other and more popular
forms of describing vegetation cover in a continuous format, such as percent tree cover or normalized
difference vegetation index (NDVI) (Mo�et et al., 2010). First, from an information standpoint, PPSi
indices are more sensitive to slight differences in vegetation cover composition among sites, even among
those classi�ed with equal cover in the patch model (Mo�et et al., 2010; Ramdani et al., 2019). Second,
the greenness index (PPSG) directly quanti�es aspects associated with vegetation and allows
differentiating cover types, making it possible to interpret surface metrics in terms of variability,
dominance, or contrast in vegetation cover types (Mo�et et al., 2010). This last point is crucial
considering that one of the most signi�cant limitations to the GM popularization has been how
unintuitive surface-based metrics are compared to patch-based metrics, as many of these originated to
evaluate manufactured surfaces with a focus on quality control in the industrial �eld (Abbot & Firestone,
1933; Kedron et al., 2018; McGarigal et al., 2009).

According to Kedron et al. (2018), there are no natural analogs between surface-based metrics and patch-
based metrics, so the focus should be directed at conceptualizing surface-based metrics and not using
them as indicators of patch-based metrics. Incorporating natural history observations and relating them
to surface-based metrics might be an innovative way to provide interpretation to these metrics. Using
surface-based metrics to describe the vertical and horizontal variation of PPSi indices in the landscape
ecology �eld can help us understand and communicate the results obtained using terminology, ideas, and
concepts more familiar to most researchers currently using the PMM and discrete land cover maps.
Additionally, including site values of greenness (PPSG) or brightness (PPSB) and surface-based metrics
in analytical models can help us to estimate whether species respond to the presence of a cover type at a
site and whether they depend on the existing cover at surrounding sites (i.e., local landscape).

We expected patch related variables to be informative for bird species with forest a�nity. On the other
hand, all forest-dependent species responded mainly to surface-based metrics, i.e., the occupancy of
these species in each location depends on both the vegetation cover of the site and the surrounding cover
in the local landscape. In general, these species responded negatively to increased variability in cover (i.e.,
surface roughness [sa]), preferring areas dominated by high greenness values (i.e., high values of kurtosis
[sku] and skewness [skk], and low values of surface-area ratio [sdr]). This indicates that forest species are
sensitive to subtle changes in vegetation cover, which are not quanti�ed under the patch model, and may
be related to low tolerances to habitat conditions modi�ed by habitat degradation or edge effects, i.e.,
lower niche breadth relative to the dimensions represented in vegetation covers. This is characteristic of
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the forests found in the study area, that have been disturbed in a variety of ways, resulting in a
heterogeneous mixture of secondary forests that are currently under protection. The relationships found
may also be related to a low capacity for movement or dispersion, impeding the search for and attaining
resources in variable environments. For example, F. analis – a terrestrial antbird – and C. tyrannina – an
understory antbird – that both occasionally follow army ants, may require good quality vegetation with a
rich understory to move (Hilty & Brown, 2001).

We expected surface-based metrics to be more informative for generalist bird species associated with a
variety of habitats. This was the case of Tyrannus melancholicus where both polar indices were
informative, but not the case for Troglodytes aedon and Ortalis columbiana. T. melancholicus was found
to associate with open habitats, nonetheless, other studies have found that this can be an artifact of
detection bias (Ruiz-Gutiérrez et al., 2010). T. aedon, a species associated to human settlements did not
exhibit any preferences for a speci�c cover type, which is consistent with the idea that most of the
landscape is perturbed and suitable for the persistence of this species. Finally, occupancy of O.
columbiana was predicted by a patch-based metric indicating preference for fragmented forests.
Considering these results, we adopt the view of Lindenmayer et al., 2007 supporting a pluralistic view that
recognizes the importance of both continuous and categorical variables in the analysis of landscape
variation.

Although at a broad level the assessed species could be classi�ed as forest-specialists or generalists,
with a preference for areas with little woody vegetation, the GM allowed us to detect interspeci�c
differences for the understanding of their ecology and conservation. For example, forest species such as
O. olivaceum, C. tyrannina and F. analis were related to different variability metrics and spatial
distribution of greenness values. O. olivaceum occupancy was positively related to skewness (Sku),
meaning preference for sites (or local landscapes) highly dominated by forest and secondary vegetation.
C. tyrannina was inversely related to surface - area ratio (Sdr), indicating preference for areas with
continuous forest cover away from edges, and F. analis was positively associated with summit density
(Sds), meaning preference for sites with a low fragmentation degree. Detecting these types of differences
can mean progress in proposing speci�c conservation measures for a particular species or understanding
co-occurrence patterns between species beyond an a�nity for a particular cover type (Abdel Moniem &
Holland, 2013).

Finally, our results suggest that using ecologically relevant environmental surfaces for species combined
with surface-based metrics that quantify vertical and horizontal variability can generate enough
information to characterize ecologically diverse species’ responses, particularly those that may be more
sensitive to �ne-scale changes in vegetation cover. Gradient-based landscape metrics were more
informative than patch-based metrics for characterizing the occupancy patterns of most bird species
assessed; however, the idea that there is no single “best” model to describe the landscape for all cases or
all species persists (Lindenmayer et al., 2007). The GM offers a great opportunity to take advantage of all
the high spatial, temporal, and spectral resolution data from remote sensing without losing information
due to the simpli�cation or reduction of the categorical classi�cations of land cover. Therefore, efforts
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should be made to obtain ecologically informative continuous variables and characterize surface-based
metrics’ behavior. In this sense, the polar principal spectral indices (PPS) can be very useful as a starting
point for land cover characterization, taking advantage of a large amount of information from remote
sensing and helping to popularize the GM by allowing its interpretation in the traditional terms and
concepts generated from the PPM and the use of categorized vegetation cover maps.
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Figure 1

Study region with bird sampling points location covering forest to grassland transition on the eastern side
of the Central Cordillera of Colombia. a: San Lorenzo dam; b: Punchiná dam.
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Figure 2

Landscape land cover representation under PMM and GM. Upper blocks: Distribution of the �ve land
cover classes obtained by semiautomatic classi�cation procedure. Middle blocks: False color image
composite from brightness, greenness, and wetness polar. Lower blocks: Spatial distribution of greenness
polar principal spectral index (i.e., PPSG).
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Figure 3

Occupancy probabilities of assessed birds in response to landscape metrics. Sa: average roughness, Ssk:
surface asymmetry, Sku: surface kurtosis, Sdr: surface area ratio, Sds: summit density, ppsg: principal
polar spectral greenness index, ppsb: principal polar spectral brightness index, Alt: altitude, np: number of
forest patches.
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