[1] T. Tsujino, K. Komura, T. Inamoto, and H. Azuma, "CRISPR Screen Contributes to Novel Target Discovery in Prostate Cancer," Int J Mol Sci, vol. 22, no. 23, 2021.
[2] S. V. Carlsson, and A. J. Vickers, "Screening for Prostate Cancer," Med Clin North Am, vol. 104, no. 6, pp. 1051-1062, 2020.
[3] A. Cimadamore, R. Mazzucchelli, A. Lopez-Beltran, F. Massari, M. Santoni, M. Scarpelli, L. Cheng, and R. Montironi, "Prostate Cancer in 2021: Novelties in Prognostic and Therapeutic Biomarker Evaluation," Cancers (Basel), vol. 13, no. 14, 2021.
[4] K. W. Fisher, R. Montironi, A. Lopez Beltran, H. Moch, L. Wang, M. Scarpelli, S. R. Williamson, M. O. Koch, and L. Cheng, "Molecular foundations for personalized therapy in prostate cancer," Curr Drug Targets, vol. 16, no. 2, pp. 103-14, 2015.
[5] T. L. Lotan, F. L. Carvalho, S. B. Peskoe, J. L. Hicks, J. Good, H. Fedor, E. Humphreys, M. Han, E. A. Platz, J. A. Squire, A. M. De Marzo, and D. M. Berman, "PTEN loss is associated with upgrading of prostate cancer from biopsy to radical prostatectomy," Mod Pathol, vol. 28, no. 1, pp. 128-137, 2015.
[6] C. G. Picanço-Albuquerque, C. L. Morais, F. L. Carvalho, S. B. Peskoe, J. L. Hicks, O. Ludkovski, T. Vidotto, H. Fedor, E. Humphreys, M. Han, E. A. Platz, A. M. De Marzo, D. M. Berman, T. L. Lotan, and J. A. Squire, "In prostate cancer needle biopsies, detections of PTEN loss by fluorescence in situ hybridization (FISH) and by immunohistochemistry (IHC) are concordant and show consistent association with upgrading," Virchows Arch, vol. 468, no. 5, pp. 607-17, 2016.
[7] G. Chakraborty, J. Armenia, Y. Z. Mazzu, S. Nandakumar, K. H. Stopsack, M. O. Atiq, K. Komura, L. Jehane, R. Hirani, K. Chadalavada, Y. Yoshikawa, N. A. Khan, Y. Chen, W. Abida, L. A. Mucci, G. M. Lee, G. J. Nanjangud, and P. W. Kantoff, "Significance of BRCA2 and RB1 Co-loss in Aggressive Prostate Cancer Progression," Clin Cancer Res, vol. 26, no. 8, pp. 2047-2064, 2020.
[8] A. Flammiger, L. Weisbach, H. Huland, P. Tennstedt, R. Simon, S. Minner, C. Bokemeyer, G. Sauter, T. Schlomm, and M. Trepel, "High tissue density of FOXP3+ T cells is associated with clinical outcome in prostate cancer," Eur J Cancer, vol. 49, no. 6, pp. 1273-9, 2013.
[9] D. Bansal, M. A. Reimers, E. M. Knoche, and R. K. Pachynski, "Immunotherapy and Immunotherapy Combinations in Metastatic Castration-Resistant Prostate Cancer," Cancers (Basel), vol. 13, no. 2, 2021.
[10] B. Song, S. H. Park, J. C. Zhao, K. W. Fong, S. Li, Y. Lee, Y. A. Yang, S. Sridhar, X. Lu, S. A. Abdulkadir, R. L. Vessella, C. Morrissey, T. M. Kuzel, W. Catalona, X. Yang, and J. Yu, "Targeting FOXA1-mediated repression of TGF-β signaling suppresses castration-resistant prostate cancer progression," J Clin Invest, vol. 129, no. 2, pp. 569-582, 2019.
[11] X. Rui, S. Shao, L. Wang, and J. Leng, "Identification of recurrence marker associated with immune infiltration in prostate cancer with radical resection and build prognostic nomogram," BMC Cancer, vol. 19, no. 1, pp. 1179, 2019.
[12] B. Liu, Y. Xie, and Z. Wu, "Identification of Candidate Genes and Pathways in Nonsegmental Vitiligo Using Integrated Bioinformatics Methods," Dermatology, vol. 237, no. 3, pp. 464-472, 2021.
[13] K. Yuan, R. Zeng, P. Deng, A. Zhang, H. Liu, N. Wang, Y. Tang, Z. Yin, and H. Liu, "Identification and Verification of Immune-Related Genes Prognostic Signature Based on ssGSEA for Adrenocortical Carcinoma (ACC)," Int J Gen Med, vol. 15, pp. 1471-1483, 2022.
[14] C. Ren, M. Li, W. Du, J. Lü, Y. Zheng, H. Xu, and R. Quan, "Comprehensive Bioinformatics Analysis Reveals Hub Genes and Inflammation State of Rheumatoid Arthritis," Biomed Res Int, vol. 2020, pp. 6943103, 2020.
[15] A. Zito, M. Lualdi, P. Granata, D. Cocciadiferro, A. Novelli, T. Alberio, R. Casalone, and M. Fasano, "Gene Set Enrichment Analysis of Interaction Networks Weighted by Node Centrality," Front Genet, vol. 12, pp. 577623, 2021.
[16] M. Zhang, K. Zhu, H. Pu, Z. Wang, H. Zhao, J. Zhang, and Y. Wang, "An Immune-Related Signature Predicts Survival in Patients With Lung Adenocarcinoma," Front Oncol, vol. 9, pp. 1314, 2019.
[17] H. Jiang, J. Gu, J. Du, X. Qi, C. Qian, and B. Fei, "A 21‑gene Support Vector Machine classifier and a 10‑gene risk score system constructed for patients with gastric cancer," Mol Med Rep, vol. 21, no. 1, pp. 347-359, 2020.
[18] Q. Cheng, X. Chen, H. Wu, and Y. Du, "Three hematologic/immune system-specific expressed genes are considered as the potential biomarkers for the diagnosis of early rheumatoid arthritis through bioinformatics analysis," J Transl Med, vol. 19, no. 1, pp. 18, 2021.
[19] Y. Jiao, Y. Li, P. Jiang, W. Han, and Y. Liu, "PGM5: a novel diagnostic and prognostic biomarker for liver cancer," PeerJ, vol. 7, pp. e7070, 2019.
[20] C. Zhang, J. H. Zheng, Z. H. Lin, H. Y. Lv, Z. M. Ye, Y. P. Chen, and X. Y. Zhang, "Profiles of immune cell infiltration and immune-related genes in the tumor microenvironment of osteosarcoma," Aging (Albany NY), vol. 12, no. 4, pp. 3486-3501, 2020.
[21] H. Zhang, R. Liu, L. Sun, W. Guo, X. Ji, and X. Hu, "Comprehensive Analysis of Gene Expression Changes and Validation in Hepatocellular Carcinoma," Onco Targets Ther, vol. 14, pp. 1021-1031, 2021.
[22] J. Gao, L. Shi, J. Gu, D. Zhang, W. Wang, X. Zhu, and J. Liu, "Difference of immune cell infiltration between stable and unstable carotid artery atherosclerosis," J Cell Mol Med, vol. 25, no. 23, pp. 10973-10979, 2021.
[23] C. Ma, H. Luo, J. Cao, C. Gao, X. Fa, and G. Wang, "Independent prognostic implications of RRM2 in lung adenocarcinoma," J Cancer, vol. 11, no. 23, pp. 7009-7022, 2020.
[24] Y. Fang, S. Huang, L. Han, S. Wang, and B. Xiong, "Comprehensive Analysis of Peritoneal Metastasis Sequencing Data to Identify LINC00924 as a Prognostic Biomarker in Gastric Cancer," Cancer Manag Res, vol. 13, pp. 5599-5611, 2021.
[25] I. Tsaur, M. P. Brandt, E. Juengel, C. Manceau, and G. Ploussard, "Immunotherapy in prostate cancer: new horizon of hurdles and hopes," World J Urol, vol. 39, no. 5, pp. 1387-1403, 2021.
[26] Z. Liu, H. Li, and S. Pan, "Discovery and Validation of Key Biomarkers Based on Immune Infiltrates in Alzheimer's Disease," Front Genet, vol. 12, pp. 658323, 2021.
[27] D. Zeng, R. Zhou, Y. Yu, Y. Luo, J. Zhang, H. Sun, J. Bin, Y. Liao, J. Rao, Y. Zhang, and W. Liao, "Gene expression profiles for a prognostic immunoscore in gastric cancer," Br J Surg, vol. 105, no. 10, pp. 1338-1348, 2018.
[28] Y. Xiong, K. Wang, H. Zhou, L. Peng, W. You, and Z. Fu, "Profiles of immune infiltration in colorectal cancer and their clinical significant: A gene expression-based study," Cancer Med, vol. 7, no. 9, pp. 4496-4508, 2018.
[29] H. R. Ali, L. Chlon, P. D. Pharoah, F. Markowetz, and C. Caldas, "Patterns of Immune Infiltration in Breast Cancer and Their Clinical Implications: A Gene-Expression-Based Retrospective Study," PLoS Med, vol. 13, no. 12, pp. e1002194, 2016.
[30] W. Zhang, W. Chai, Z. Zhu, and X. Li, "Aldehyde oxidase 1 promoted the occurrence and development of colorectal cancer by up-regulation of expression of CD133," Int Immunopharmacol, vol. 85, pp. 106618, 2020.
[31] W. Li, M. Middha, M. Bicak, D. D. Sjoberg, E. Vertosick, A. Dahlin, C. Häggström, G. Hallmans, A. C. Rönn, P. Stattin, O. Melander, D. Ulmert, H. Lilja, and R. J. Klein, "Genome-wide Scan Identifies Role for AOX1 in Prostate Cancer Survival," Eur Urol, vol. 74, no. 6, pp. 710-719, 2018.
[32] X. Shi, J. Wang, S. Dai, L. Qin, J. Zhou, and Y. Chen, "Apolipoprotein C1 (APOC1): A Novel Diagnostic and Prognostic Biomarker for Cervical Cancer," Onco Targets Ther, vol. 13, pp. 12881-12891, 2020.
[33] W. P. Su, L. N. Sun, S. L. Yang, H. Zhao, T. Y. Zeng, W. Z. Wu, and D. Wang, "Apolipoprotein C1 promotes prostate cancer cell proliferation in vitro," J Biochem Mol Toxicol, vol. 32, no. 7, pp. e22158, 2018.
[34] R. Cartoni, M. W. Norsworthy, F. Bei, C. Wang, S. Li, Y. Zhang, C. V. Gabel, T. L. Schwarz, and Z. He, "The Mammalian-Specific Protein Armcx1 Regulates Mitochondrial Transport during Axon Regeneration," Neuron, vol. 92, no. 6, pp. 1294-1307, 2016.
[35] S. Jauhiainen, J. P. Laakkonen, K. Ketola, P. I. Toivanen, T. Nieminen, T. Ninchoji, A. L. Levonen, M. U. Kaikkonen, and S. Ylä-Herttuala, "Axon Guidance-Related Factor FLRT3 Regulates VEGF-Signaling and Endothelial Cell Function," Front Physiol, vol. 10, pp. 224, 2019.
[36] B. V. Chakravarthi, S. S. Pathi, M. T. Goswami, M. Cieślik, H. Zheng, S. Nallasivam, S. R. Arekapudi, X. Jing, J. Siddiqui, J. Athanikar, S. L. Carskadon, R. J. Lonigro, L. P. Kunju, A. M. Chinnaiyan, N. Palanisamy, and S. Varambally, "The miR-124-prolyl hydroxylase P4HA1-MMP1 axis plays a critical role in prostate cancer progression," Oncotarget, vol. 5, no. 16, pp. 6654-69, 2014.
[37] Y. Lv, Y. Jin, Y. Zhou, J. Jin, Z. Ma, and Z. Ren, "Deep sequencing of transcriptome profiling of GSTM2 knock-down in swine testis cells," Sci Rep, vol. 6, pp. 38254, 2016.
[38] A. Albawardi, J. Livingstone, S. Almarzooqi, N. Palanisamy, K. E. Houlahan, A. A. A. Awwad, R. A. Abdelsalam, P. C. Boutros, and T. A. Bismar, "Copy Number Profiles of Prostate Cancer in Men of Middle Eastern Ancestry," Cancers (Basel), vol. 13, no. 10, 2021.
[39] P. G. Patel, T. Wessel, A. Kawashima, J. B. A. Okello, T. Jamaspishvili, K. P. Guérard, L. Lee, A. Y. Lee, N. E. How, D. Dion, E. Scarlata, C. L. Jackson, S. Boursalie, T. Sack, R. Dunn, M. Moussa, K. Mackie, A. Ellis, E. Marra, J. Chin, K. Siddiqui, K. Hetou, L. A. Pickard, V. Arthur-Hayward, G. Bauman, S. Chevalier, F. Brimo, P. C. Boutros, D. J. Lapointe Ph, J. M. S. Bartlett, R. J. Gooding, and D. M. Berman, "A three-gene DNA methylation biomarker accurately classifies early stage prostate cancer," Prostate, vol. 79, no. 14, pp. 1705-1714, 2019.
[40] J. C. Angulo, J. I. Lopez, J. F. Dorado, M. Sanchez-Chapado, B. Colas, and S. Ropero, "A DNA Hypermethylation Profile Independently Predicts Biochemical Recurrence Following Radical Prostatectomy," Urol Int, vol. 97, no. 1, pp. 16-25, 2016.
[41] N. Ashour, J. C. Angulo, G. Andrés, R. Alelú, A. González-Corpas, M. V. Toledo, J. M. Rodríguez-Barbero, J. I. López, M. Sánchez-Chapado, and S. Ropero, "A DNA hypermethylation profile reveals new potential biomarkers for prostate cancer diagnosis and prognosis," Prostate, vol. 74, no. 12, pp. 1171-82, 2014.
[42] S. Li, L. Wang, S. Sun, and Q. Wu, "Hepsin: a multifunctional transmembrane serine protease in pathobiology," Febs j, vol. 288, no. 18, pp. 5252-5264, 2021.
[43] X. Ma, J. Guo, K. Liu, L. Chen, D. Liu, S. Dong, J. Xia, Q. Long, Y. Yue, P. Zhao, F. Hu, Z. Xiao, X. Pan, K. Xiao, Z. Cheng, Z. Ke, Z. S. Chen, and C. Zou, "Identification of a distinct luminal subgroup diagnosing and stratifying early stage prostate cancer by tissue-based single-cell RNA sequencing," Mol Cancer, vol. 19, no. 1, pp. 147, 2020.
[44] F. Petitprez, N. Fossati, Y. Vano, M. Freschi, E. Becht, R. Lucianò, J. Calderaro, T. Guédet, L. Lacroix, P. M. V. Rancoita, F. Montorsi, W. H. Fridman, C. Sautès-Fridman, A. Briganti, C. Doglioni, and M. Bellone, "PD-L1 Expression and CD8(+) T-cell Infiltrate are Associated with Clinical Progression in Patients with Node-positive Prostate Cancer," Eur Urol Focus, vol. 5, no. 2, pp. 192-196, 2019.
[45] E. Zhang, F. Dai, Y. Mao, W. He, F. Liu, W. Ma, and Y. Qiao, "Differences of the immune cell landscape between normal and tumor tissue in human prostate," Clin Transl Oncol, vol. 22, no. 3, pp. 344-350, 2020.
[46] S. Malekghasemi, J. Majidi, B. Baradaran, and L. Aghebati-Maleki, "Prostate cancer cells modulate the differentiation of THP-1 cells in response to etoposide and TLR agonists treatments," Cell Biol Int, vol. 44, no. 10, pp. 2031-2041, 2020.
[47] M. D. Jelic, A. D. Mandic, S. M. Maricic, and B. U. Srdjenovic, "Oxidative stress and its role in cancer," J Cancer Res Ther, vol. 17, no. 1, pp. 22-28, 2021.
[48] S. Chikara, L. D. Nagaprashantha, J. Singhal, D. Horne, S. Awasthi, and S. S. Singhal, "Oxidative stress and dietary phytochemicals: Role in cancer chemoprevention and treatment," Cancer Lett, vol. 413, pp. 122-134, 2018.
[49] L. Xiong, Y. Feng, W. Hu, J. Tan, S. Li, and H. Wang, "Expression of AOX1 Predicts Prognosis of Clear Cell Renal Cell Carcinoma," Front Genet, vol. 12, pp. 683173, 2021.
[50] J. Wu, Y. Wei, T. Li, L. Lin, Z. Yang, and L. Ye, "DNA Methylation-Mediated Lowly Expressed AOX1 Promotes Cell Migration and Invasion of Prostate Cancer," Urol Int, pp. 1-9, 2022.
[51] K. Yuan, R. Zeng, Peng. Deng, "Identification and validation of immune-related biomarkers based on machine learning in patients with prostate cancer, 21 April 2022, PREPRINT (Version 1) available at Research Square.