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Abstract: In 2019, Yonghae Lee et al. combined the circuit implementation of the 

HHL quantum algorithm with a classical computer, and designed a hybrid HHL 

quantum circuit optimization algorithm to reduce experimental errors caused by 

decoherence and so on. However, the optimization is achieved only in the auxiliary 

quantum coding phase, and no quantum resource reduction is done on the quantum 

phase estimation and inverse quantum phase estimation stages. At the same time, 

the circuit optimization illustration on the 2th-order linear equation system 
just has the result and no specific process. In this paper, based on the idea of 

the hybrid HHL algorithm and the general quantum circuit implementation framework 

of HHL, a global optimization HHL algorithm is proposed. The feasibility of the 

global optimization HHL algorithm is verified by IBM's qiskit. The detail circuit 

optimization illustrations on the 4th-order linear equations show that the global 

optimization HHL algorithm can effectively reduce quantum resources without 

losing the fidelity of the results. Thus the global optimization HHL algorithm 
can further avoid some result errors than the existing implementation methods. 

Introduction 

Quantum computing is an operation method that follows the operating laws of 
quantum mechanics. Compared with traditional classical computing, quantum 
computing achieves an exponential speedup on some problems. For example, the Shor 
quantum algorithm [1]is famous for factoring large integers in polynomial time. Grover 
algorithm [2]achieves an exponential speedup in searching data. While the HHL 
algorithm achieves an exponential acceleration [3]. 

However, in the process of mapping quantum algorithms to quantum circuits, due 
to the limitations of current technology, the errors of quantum gates, experimental errors 
and decoherence will introduce errors in the experimental process [4]. Therefore, it is 
necessary to reduce the number of gates and the overall running time of the algorithm. 
In view of this, the realization and optimization of quantum circuits has attracted the 
attention of various fields.  

Among them, in terms of quantum circuit implementation and optimization of 
cryptographic algorithms, B-Langenberg et al. proposed the quantum circuit 
implementation and optimization of AES cryptographic algorithm [7], and many 
scholars have made further optimizations on it [8].  

In circuit synthesis of quantum algorithms, T Monz et al. implemented the use of 
Shor's algorithm to factorize numbers 15 [10]7 qubits and 4 cache qubits with efficient 



control. Z Diao et al. proposed the quantum circuit composition of [11]. Markus Grassl 
successfully used the Grover algorithm to realize the exhaustive key search for [12]. 
The quantum circuit implementation and optimization of the HHL algorithm also 
attracted a lot of attention. Among them, by introducing the variable time amplitude 
amplification algorithm into the HHL algorithm, Ambainis et al. reduced the number of 
repeated runs required to obtain the correct answer, thereby reducing the running time 
of the algorithm [13], but did not give a specific quantum circuit implementation. 
Yudong Cao et al. proposed a general HHL algorithm quantum circuit implementation 
[14]. Yonghae Lee et al. gave a hybrid HHL quantum algorithm Error! Reference 
source not found., which effectively reduces the quantum gate resources used in the 
auxiliary qubit rotation part of the HHL algorithm. Compared with the general HHL 
algorithm quantum circuit implementation proposed by Cao et al., the hybrid HHL 
algorithm uses smaller quantum resources in the auxiliary qubit rotation stage. However, 
the optimization has only limited to the auxiliary quantum encoding stage, and no 
quantum resource can be reduced on the quantum phase estimation and inverse 
quantum phase estimation stages. Meanwhile, in the circuit optimization verification, 
there is only optimization result on the 2th-order linear equation system and no specific 
realization process is given. 

In view of this, inspired by the idea of combining with classical computers and the 
general HHL quantum circuit implementation, we provide a global optimization 
quantum circuit diagram of the HHL algorithm to further reducing the number of 
quantum gates, thus further avoiding some result errors caused by quantum gate errors. 
The experimental results show that our globally optimized HHL algorithm effectively 
reduces the consumption of quantum resources without losing the fidelity of the results.  

Basic definitions 

 k-fixed [6]: Suppose 𝜆𝑗，𝑗 = 1,… , 𝑙，is  all non-zero eigenvalues of the 
Hermitian matrix A, 𝑏𝑘𝑗   is the k-th bit of the binary representation of the 
eigenvalues 𝜆𝑗, j = 1,…, l , defined 𝑚̅𝑘, k ∈ 𝑁, as follows 𝑚̄𝑘 = 1𝑙 (∑ 𝑏𝑘𝑗𝑙𝑗=1 )                         ( 1 ) 

Hermitian matrix A is said to be k -fixed if it is 𝑚̅𝑘 fixed at 0 or 1. 
 n-represented [21]: Denoted 𝜆  as the eigenvalue of the matrix, if it can be 

represented 𝜆  by no more than n binary number, it is called n-represented 

 fidelity f [3]: The fidelity index is defined as 𝑓 = |⟨𝑥(𝑡)|𝑥𝑒(𝑡)⟩|2                       ( 2 ) 

Among them |𝑥(𝑡)⟩ is the state obtained by the evolution of the initial state |𝑥(0)⟩ without interference, and is the state obtained by the evolution of the |𝑥𝑒(𝑡)⟩ initial state |𝑥(0)⟩ in the case of interference, that is, the fidelity can be 
understood as the inner product of the theoretical value and the experimental value. 

For example, assuming that the theoretical normalized solution of a (𝑥1𝑥2) linear system of equations is, and the actual normalized solution is (𝑦1𝑦2), then 



the fidelity is 𝑓 = √𝑥1𝑦1 + 𝑥2𝑦2. 
HHL algorithm [3] 
Quantum Circuit Implementation of HHL Algorithm: The quantum circuit 
implementation of the HHL algorithm requires the use of three quantum registers, 
denoted as 𝐴𝑛𝑐𝑖𝑙𝑙𝑎, 𝑅𝑒 𝑔 . 𝐶 and 𝑅𝑒 𝑔 . 𝐵, where  

 𝐴𝑛𝑐𝑖𝑙𝑙𝑎 is used to store auxiliary qubits; 
 𝑅𝑒 𝑔 . 𝐶 is used to store the binary representation of the eigenvalues of 

the coefficient matrix A; 
 𝑅𝑒 𝑔 . 𝐵 is used to store the vector solution of a system of linear equations 

when the measurement of the contents of the 𝐴𝑛𝑐𝑖𝑙𝑙𝑎quantum register is 
1. 

 Initially, all three quantum registers are set to |0⟩ state. 
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Figure 1  Circuit overview diagram of HHL algorithm 

As shown in Figure 1  Circuit overview diagram of HHL algorithm, the quantum circuit 
implementation process of the HHL algorithm is mainly composed of three stages, 
namely: quantum phase estimation (Quantum Phase Estimation, QPE), auxiliary 
quantum encoding (Ancilla quantum encoding, AQE) and inverse quantum phase 
estimation (Inverse Quantum Phase Estimation, Inverse QPE) of which 

a) The essence of QPE is to estimate the eigenvalues of the coefficient matrix A. 
It is the core subroutine of the HHL algorithm and the core routine of many 
quantum algorithms.  

Firstly, the conversion from the ground state to the mixed state suitable for 
storing the phase is completed, and the quantum state after the conversion is 
completed is |0⟩A⊗ (H⊗n⊗ 𝐼)|0⟩⊗ |0⟩b= |0⟩A⊗ 1√2n ∑ |x0x1. . . xn−1⟩x0x1...xn−1∈{0,1}n ⊗ |b⟩ xi ∈ {0,1}.        ( 3 ) 

Secondly, use n control U gates C − 𝑈𝐴𝑗   𝑗 = 20, . . . 2𝑛−1 to addition of 

phase 𝑒2𝜋𝑖𝜃𝑗， 𝑗 = 20, . . . 2𝑛−1，to probability amplitude, which 𝜃𝑗  is a real 



number in the  interval(0,1).  |0⟩𝐴⊗ (|0⟩+𝑒2𝜋𝑖𝜃0|1⟩)(|0⟩+𝑒2𝜋𝑖𝜃1|1⟩)...(|0⟩+𝑒2𝜋𝑖𝜃𝑗|1⟩)2𝑛/2 ⊗ |𝑏⟩                             ( 4 ) 

Finally, the information on the probability amplitude of the qubit is stored 
in the quantum state, and the final quantum state is |0⟩𝐴⊗ 1√2𝑛∑ |𝜃𝑖⟩𝑛−1𝑖=0 ⊗|𝑏⟩                                                             ( 5 )                  

In the entire HHL algorithm, the   unitary operator 𝑈 = 𝑈𝐴 = 𝑒𝑖𝐴𝑡 =∑ 𝑒𝑖𝜆𝑗𝑡|𝑢𝑗⟩⟨𝑢𝑗|𝑁−1𝑗=0 , |𝑏⟩ = ∑ 𝑏𝑗𝑁−1𝑗=0 |𝑢𝑗⟩, where t is a constant that can be set by 

itself. Therefore, in the entire HHL algorithm, the state of time, that is, the 
moment in Figure 1  Circuit overview diagram of HHL algorithm is (𝑏):  |0⟩𝐴⊗∑ 𝑏𝑗|𝜆𝑗⟩𝑛𝑙⊗ |𝑢𝑗⟩𝑁−1𝑗=0                           ( 6 )                    

|𝑢⟩ = ∑ 𝑏𝑗|𝑢𝑗⟩𝑁−1
𝑗=0 ，    |𝜆𝑗⟩𝑛𝑙 = 1√2𝑛∑|𝜃𝑖⟩𝑛−1

𝑖=0  

Here |𝜆𝑗⟩𝑛𝑙 is the n-bit binary representation of “𝜆𝑗“. 

b) In the AQE stage, a controlled rotation operation on auxiliary qubits is 
performed as follows: |0⟩𝐴⊗ |𝜆𝑗⟩𝑛𝑙 → (√1 − 𝑐2𝜆𝑗2 |0⟩𝐴 + 𝑐𝜆𝑗 |1⟩𝐴)⊗ |𝜆𝑗⟩𝑛𝑙    ( 7 )  

Here 𝑐 is a normalizing constant. 
After the AQE part, the state of the system at moment Figure 1  Circuit 

overview diagram of HHL algorithm(c) is: ∑ 𝑏𝑗|𝜆𝑗⟩𝑛𝑙|𝑢𝑗⟩ (√1 − 𝑐2𝜆𝑗2 |0⟩𝐴 + 𝑐𝜆𝑗 |1⟩𝐴)𝑁−1𝑗=0                      ( 8 ) 

c)  Inverse QPE stage is the inverse operation of the QPE stage. After the QPE 

stage, the |𝜆𝑗⟩  in the superposition state in the 𝑅𝑒 𝑔 . 𝐶  register will 

become |0⟩, at this time, the state of the entire quantum system is Figure 1  
Circuit overview diagram of HHL algorithm(𝑑):   ∑ 𝑏𝑗|0⟩𝑛𝑙|𝑢𝑗⟩𝑁−1𝑗=0 (√1 − 𝑐2𝜆𝑗2 |0⟩𝐴 + 𝑐𝜆𝑗 |1⟩𝐴)                                 ( 9 ) 

After the above three stages are completed, 𝑅𝑒 𝑔 . 𝐶  all qubits in the 
quantum register are set to the |0⟩ state, and the auxiliary qubit is measured 
on the Z-axis. If the measurement result is |1⟩𝐴, that is, the output state of |1⟩ Ancilla is, then the system successfully solves the system of equations and 
obtains the normalized solution of the system of equations is as follows: |𝑥⟩ = (√ 1∑ |𝑏𝑗|2/|𝜆𝑗|2𝑁−1𝑗=0 )∑ 𝑏𝑗𝜆𝑗 |0⟩𝑛𝑙|𝑢𝑗⟩𝑁−1𝑗=0 .      ( 10 ) 

General HHL Algorithm Quantum Circuit Implementation: In 2012, Yudong Cao 



et al. proposed an efficient and general quantum circuit design implementation [14]. In 
this design, the Group Leader Optimization Algorithm was used to find the circuit 
decomposition of the [16]. Then simply  multiply the offset angles of all the revolving 
gates in the circuit by a factor of 2, 4, and 8 to get the operators 𝑒𝑥𝑝[𝑖𝐴(2𝜋/8)] , 𝑒𝑥𝑝[𝑖𝐴(2𝜋/4)] and 𝑒𝑥𝑝[𝑖𝐴(2𝜋/2)]. They show a 4th-order linear equation as shown in 
Figure 2. General HHL algorithm quantum circuit below. The quantum circuit of the HHL 
algorithm solved by the group verifies the feasibility of this circuit model to solve the 
linear equation system.  
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Figure 2. General HHL algorithm quantum circuit  

Hybrid HHL quantum circuit implementation: Yonghae Lee et al. proposed a hybrid 
HHL quantum circuit implementation algorithm [6]. The implementation of the 
algorithm is based on the following two characteristics given in the paper: 

Lemma 1. The fidelity of HHL algorithm results can reach 1 only when all 
eigenvalues of the matrix can perfectly n-represented. 

For example, for a 2th-order matrix, at that time 𝜆𝑛=2 = 1，2 or 3 , its 
eigenvalues are 2-represented. Using 2-bit quantum registers, its fidelity can reach 1, 
but if its eigenvalues exceed 3 or are decimals, it is not perfectly 2-represented, so the 
fidelity cannot reach 1 when using 2-bit quantum registers. 

Lemma 2. If the eigenvalues of the matrix are not perfectly n-represented, then 
the fidelity of the algorithm's results will be positively related to the number of extra 
quantum registers used. 

This is because for matrices with non-perfect n-represented eigenvalues, 
additional qubit registers are needed to represent the eigenvalues of the matrix and to 
control the phase rotation. In other words, additional quantum registers are required to 
improve the fidelity of the results. For example, the eigenvalues of a 2th-order matrix 𝜆𝑛=2 = 4 are not perfectly represented by 2- represented. In this case, in order to make 
the fidelity close to 1, it is necessary to use 3 qubits to store the eigenvalue information 
of the matrix. 

From Lemma 1 and Lemma 2 we note that once the eigenvalues of the matrix are 
not perfectly n-represented, the number of qubits in quantum registers that need to be 



used to achieve high fidelity increases dramatically, even if the matrix's eigenvalues are 
not perfectly n-represented. When all eigenvalues can be perfectly n-represented, n - 
scale quantum registers are also required to ensure high fidelity. Therefore, in the 
implementation process of the HHL algorithm, in order to reduce the circuit complexity, 
it is necessary to choose a matrix with perfect n-represented as much as possible. At 
the same time, the literature Error! Reference source not found.pointed out the 
following conclusion: 

Conclusion: In the execution of the HHL algorithm, for a perfect n- represented 
matrix, if it has k-fixed eigenvalues, it can be implemented with a smaller depth 
quantum circuit, and compared with the original HHL algorithm, the circuit complexity 
is reduced, and the smaller depth quantum circuit of HHL algorithm has higher fidelity. 

Reference [6]of the AQE stage of the HHL algorithm, and gives the quantum circuit 
of the optimized 2th-order matrix as shown in Figure 3．  The quantum circuits before and 
after the optimization of the AQE stage in the hybrid HHL algorithm. . In the hybrid quantum 
circuit implementation algorithm, the feedforward combined with the information 
obtained by classical calculation after quantum phase estimation effectively reduces the 
number of quantum gates of the original HHL algorithm. 

)( 1YR )( 2YR  
3 YR

Original AQE part

1r

2r

)( 1YR )( 13  YR

ducedRe AQE part

1r

2r  

Figure 3．  The quantum circuits before and after the optimization of the AQE stage in the 

hybrid HHL algorithm. 
However, the implementation details of the optimization of the AQE stage of the 

HHL algorithm are not described in this algorithm, and the quantum circuits in the QPE 
and inverse QPE stages are not optimized. 

This paper will take the general HHL algorithm quantum circuit implementation 
proposed by Yudong Cao et al. as the framework, and use the design idea of the hybrid 
HHL quantum algorithm proposed by Yonghae Lee et al. to optimize the 
implementation circuit of the HHL algorithm as a whole. 

Result 

Preparation before optimization 

QPE is repeatedly performed to obtain the information of the eigenvalues: in 
the quantum phase estimation part, the binary representation of the eigenvalues has 
been stored in 𝑅𝑒 𝑔 . 𝐵 each qubit of the quantum register after the phase estimation. 
If the 𝑅𝑒 𝑔 . 𝐵 quantum register is measured on the Z-axis, then the 𝑅𝑒 𝑔 . 𝐵 quantum 
register can be collapsed to an eigenvalue of the matrix, and the measurement process 
can be repeated. 

Secondly, the prior information is obtained by combining probability statistics 
with classical computers: whether the information of the matrix eigenvalues obtained 
in the QPE stage is statistically observed to be k-fixed. If the k-fixed characteristic is not 



observed in the statistical eigenvalue information, more qubit registers need to be used 
to store the matrix eigenvalues in order to discover the k-fixed characteristic. 

Simplification of quantum circuits 

In this subsection, according to the k-fixed property of the matrix, we give a specific 
implementation method to reduce the number of quantum gates required to realize the 
HHL quantum circuit, and compare it with the general HHL algorithm quantum circuit. 

1) Quantum Phase Estimation Stage 

After the qubits of the quantum register 𝑅𝑒 𝑔 . 𝐶 pass through the controll U-gate, 
the information of the eigenvalues of the matrix is stored in |1⟩′𝑠   probability 
amplitude. |𝜑⟩ = 1√2𝑛 (|0⟩ + 𝑒2𝜋𝑖0.𝜃𝑛−1|1⟩)⏟            |𝑥0⟩ (|0⟩ + 𝑒2𝜋𝑖0.𝜃𝑛−2𝜃𝑛−1|1⟩)⏟                |𝑥1⟩  

. . . (|0⟩ + 𝑒2𝜋𝑖0.𝜃0...𝜃𝑛−1|1⟩)⏟            |𝑥𝑛−1⟩                         ( 11 )          0. 𝜃𝑛−1 , 0. 𝜃𝑛−2𝜃𝑛−1 , . . .  0. 𝜃0. . . 𝜃𝑛−1 is the binary expansion of 𝜃0, 𝜃1, . . . 𝜃𝑗.  

For qubits |𝑥𝑛⟩, n=1,2,… according to the following formula: |𝑥𝑛⟩ = 1√2 (|0⟩ + (−1)𝜃0𝑒12𝜋𝑖𝜃1 . . . 𝑒 12𝑛−1𝜋𝑖𝜃𝑛−1|1⟩)              ( 12 ) 

To   extract 𝜃0  into the qbuit, it is necessary to apply the control U-gate on |𝑥𝑛⟩ with a phase rotation angle of 𝑒 12𝑗𝜋𝑖𝜃𝑗 , 𝑗 = 1. . . 𝑛 − 1 before applying the H-gate 
to the qubit |𝑥𝑛⟩. 

When it 𝜆𝑗   is k-fixed, as shown in 𝑥𝑛 = 1√2 (|0⟩ +(−1)𝜃0𝑒12𝜋𝑖𝜃1 . . . 𝑒 12𝑛−1𝜋𝑖𝜃𝑛−1|1⟩)              ( 12 ), the k-th qubit |𝑥𝑘⟩ does not need 

to extract the eigenvalue information to the probability amplitude first like other qubits, 
and then store it in the quantum state. For example, when the eigenvalue of a perfect 
4-represented matrix is 𝜆𝑗  2-fixed, one can get 

|𝜑⟩𝜃1=0 = (|0⟩ + 𝑒2𝜋𝑖(12𝜃3)|1⟩) (|0⟩ + 𝑒2𝜋𝑖(12𝜃2+14𝜃3)|1⟩)4  

                ∙ (|0⟩+𝑒2𝜋𝑖(14𝜃2+18𝜃3)|1⟩)(|0⟩+𝑒2𝜋𝑖(12𝜃0+18𝜃2+ 116𝜃3)|1⟩)4 |𝜇⟩ 
→ |𝜃0𝜃2𝜃3⟩|0⟩|𝜇⟩.        ( 13 ) 

|𝜑⟩𝜃1=1 = (|0⟩ + 𝑒2𝜋𝑖(12𝜃3)|1⟩) (|0⟩ + 𝑒2𝜋𝑖(12𝜃2+14𝜃3)|1⟩)4  

∙ (|0⟩ + 𝑒2𝜋𝑖(14𝜃2+18𝜃3)|1⟩)(|0⟩ + 𝑒2𝜋𝑖(12𝜃0+18𝜃2+ 116𝜃3)|1⟩)4 |𝜇⟩ 



→ |𝜃0𝜃2𝜃3⟩|1⟩|𝜇⟩.        ( 14 ) 

According to the above formula, the comparison diagram shown in Figure 4.  
Comparison of quantum phase estimation with and without k -fixed propertiescan be 
obtained. 
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a  Original 4-qubit quantum phase estimation 
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b  Quantum Phase Estimation with 2-fixed Properties 

Figure 4.  Comparison of quantum phase estimation with and without k -fixed properties 

Thus, if the eigenvalues of a perfect n-represented matrix satisfy k-fixed. For a qubit 
representing 𝜆𝑘 in quantum register 𝑅𝑒𝑔 . 𝐶, the applied quantum gate can be roughly 

reduced by a factor of 𝑛−1𝑛 . 

2) Auxiliary Quantum Encoding Phase 

After phase estimation, quantum register 𝑅𝑒 𝑔 . 𝐶  stores a series of binary 
superposition states of eigenvalues. The control rotation part is to control the auxiliary 
qubit according to the superposition state in the quantum register at this time, as shown 
in Figure 5 below. Figure 5.  AQE part of the original circuit and the optimized circuitis the 
quantum circuit under the general HHL algorithm quantum circuit implementation. 
Figure 5.  AQE part of the original circuit and the optimized circuit is 2-fixed and 𝑚̄1 =0  time-dependent the optimized quantum circuit implementation. Figure 5.  AQE 
part of the original circuit and the optimized circuit is the optimized quantum circuit 
implementation of 2-fixed and 𝑚̄1 = 1. 
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Figure 5.  AQE part of the original circuit and the optimized circuit 

 After the AQE section, the system status 

|0⟩𝐴|𝜃0𝜃2𝜃3⟩|1⟩|𝜇⟩ → ((√1 − ( 𝑐𝜆𝜃1=1)2)|0⟩𝐴 + 𝑐𝜆𝜃1=1 |1⟩𝐴)|𝜃0𝜃2𝜃3⟩|1⟩|𝜇⟩.   ( 15 ) 

|0⟩𝐴|𝜃0𝜃2𝜃3⟩|0⟩|𝜇⟩ → ((√1 − ( 𝑐𝜆𝜃1=0)2)|0⟩𝐴 + 𝑐𝜆𝜃1=0 |1⟩𝐴)|𝜃0𝜃2𝜃3⟩|0⟩|𝜇⟩.   ( 16 ) 

3) Inverse quantum phase estimation 

After the AQE part, the inverse quantum phase estimation and quantum phase 
estimation have the same simplified circuit implementation, and will not be repeated 

here. The applied quantum gates can likewise be roughly reduced to the original 𝑛−1𝑛 . 

Quantum circuit implementation example：IBM Q provides a Qiskit library based 
on the Python programming environment that can be used for remote access or 
emulation with classics. In this section, the Qiskit library is used to simulate the 

randomly selected 4th-order matrix 

11 5 -1 -1

5 11 1 1
=

-1 1 11 -5

-1 1 -5 11
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 with the general HHL 

algorithm quantum circuit implementation and the global optimized  HHL algorithm. 
Here the eigenvalues of matrix A can be accurately stored using four qubits. 

The quantum circuit before and after optimization is shown in Figure 6.  
Comparison of the quantum circuit of the HHL algorithm before and after optimizationbelow. 



 

a  General HHL algorithm implementation architecture algorithm quantum circuit diagram 

 

b  Global optimized HHL algorithm quantum circuit diagram 

Figure 6.  Comparison of the quantum circuit of the HHL algorithm before and after optimization 

Before and after optimization: It can be seen from Figure 6.  Comparison of the quantum 
circuit of the HHL algorithm before and after optimization that the quantum circuit of the 
global optimized HHL algorithm uses less quantum gates than the circuit 
implementation of the unoptimized HHL algorithm. On the other hand, the quantum 
resources and fidelity used to obtain the experimental solution using the general HHL 
algorithm quantum circuit implementation and the experimental solution obtained 
through the global optimization HHL algorithm are compared as shown in Table 1 
below. 
Table 1.  Comparison of Experimental and Theoretical Solutions of 4th-Order Linear Equations 

Algorithm           Solution    Fidelity    Depth     Width   total quantum gate 

Theoretical solution    ( 
 √0.0455√0.0455√0.1818√0.7272) 

 
      1          - -         --           -- 



General framework     ( 
 √0.0412√0.0450√0.2450√0.6687) 

 
     0.993        28          14           39  

Global optimization     ( 
 √0.0371√0.0358√0.1687√0.7583) 

 
     0.998        21          14          28 

Note: When using quantum circuits to implement the HHL algorithm to solve the 
linear equation system, the fidelity of the experimental solution cannot reach 1 due to 
current technical limitations. 

Experimental results show that when using the global optimized HHL quantum 
circuit to solve linear equations, the fidelity of the experimental solution is higher than 
that of the original HHL general purpose quantum circuit, and it uses less quantum 
resources. 

For hybrid HHL algorithm proposed by Yonghae Lee et al. did not give the specific 
implementation circuit of the entire algorithm, and when comparing the quantum 
resources used, they only gave the number of CNOT gates implemented by the quantum 
circuit of the HHL algorithm for solving 2th-order linear equations. For comparison, 
the method of implementation and the number of all quantum gates used are not given. 
For this reason, no comparison is made here. 

Discussion 

In general, for higher-order linear equation systems, if the prior condition is 
satisfied, that is, the eigenvalues of the matrix of the linear equation system have k-
fixed characteristics, the quantum resources consumption can be reduced without 
reducing the fidelity of the experimental results. For an n-dimensional linear equation 
system, in the case of satisfying k-fixed, the quantum gate applied to the qubit 
representing 𝜆𝑘 in the quantum register 𝑅𝑒 𝑔 . 𝐶 can be roughly reduced to the original 𝑛−1𝑛 , and the reduced circuit depth of the quantum circuit is about 2n. 

Methods  

Global optimized HHL algorithm is the same as the general HHL algorithm 
quantum circuit implementation in the initialization part, the difference is that the global 
optimized HHL algorithm uses the general HHL algorithm to achieve the QPE part, and 
further uses the measured 𝑅𝑒 𝑔 . 𝐵quantum register. The information of some matrix 
eigenvalues is used to assist the construction of the following circuit. 

1) General HHL Algorithm Quantum Circuit 
Initialize: 
   𝐴𝑛𝑐 : 𝑞 [0] ← |0⟩ 



      𝑅𝑒 𝑔 . 𝐶 : 𝑞 [0]𝑞[1]𝑞[2]𝑞[3] ← |0000⟩       𝑅𝑒 𝑔 . 𝐵 : 𝑞 [0]𝑞[1] ← (𝑈3(𝜃, 0,0))⊗ 𝑈3(𝜃, 0,0)|00⟩ 
Different |𝑏⟩ can be achieved by changing the 𝜃 value. 

QPEA: 𝑓𝑜𝑟 𝑖 = 0 to  3  do                𝑅𝑒 𝑔 . 𝐶 : 𝑞 [𝑖] ← 𝑈𝐴2𝑗⊗ (𝑅𝑒𝑔 . 𝐵 : 𝑞 [0]𝑞[1], 𝑅𝑒 𝑔 . 𝐶 : 𝑞 [𝑖])      𝑒𝑛𝑑      𝑅𝑒 𝑔 . 𝐶 : 𝑞 [0] ← 𝐻⊗(𝑐 − 𝑈3 (0,0,−78𝜋) (𝑅𝑒 𝑔 . 𝐶 : 𝑞 [3]𝑞[2]𝑞[1], 𝑅𝑒 𝑔 . 𝐶 : 𝑞 [0]))     𝑅𝑒 𝑔 . 𝐶 : 𝑞 [1] ← 𝐻⊗(𝑐 − 𝑈3 (0,0,−34𝜋) (𝑅𝑒 𝑔 . 𝐶 : 𝑞 [3]𝑞[2], 𝑅𝑒 𝑔 . 𝐶 : 𝑞 [1]))     𝑅𝑒 𝑔 . 𝐶 : 𝑞 [2] ← 𝐻⊗(𝑐 − 𝑈3 (0,0,−12𝜋) (𝑅𝑒 𝑔 . 𝐶 : 𝑞 [3], 𝑅𝑒 𝑔 . 𝐶 : 𝑞 [2]))     𝑅𝑒 𝑔 . 𝐶:q[3] ← 𝐻⊗𝑅𝑒𝑔 . 𝐶 : 𝑞 [3] 𝑐 − 𝑈3 (0,0,− 78𝜋) is composed of three qubits that control different rotation angles 

for 𝑅𝑒 𝑔 . 𝐶 : 𝑞 [3]𝑞[2]𝑞[1] respectively. 𝑐 − 𝑈3(0,0,− 34𝜋) is composed of two qubits that 

control different rotation angles for the control bits 𝑅𝑒𝑔 . 𝐶 : 𝑞 [3]𝑞[2] respectively. 
AQE: 

  𝑎𝑛𝑐 _ 𝑞 [0] ← 𝑐 − 𝑈3(12𝜋, 0,0)(𝑅𝑒 𝑔 . 𝐶 : 𝑞 [3], 𝑎𝑛𝑐 _ 𝑞 [0])     𝑎𝑛𝑐 _ 𝑞 [0] ← 𝑐 − 𝑈3(14𝜋, 0,0)(𝑅𝑒 𝑔 . 𝐶 : 𝑞 [2], 𝑎𝑛𝑐 _ 𝑞 [0])     𝑎𝑛𝑐 _ 𝑞 [0] ← 𝑐 − 𝑈3(18𝜋, 0,0)(𝑅𝑒 𝑔 . 𝐶 : 𝑞 [1], 𝑎𝑛𝑐 _ 𝑞 [0])     𝑎𝑛𝑐 _ 𝑞 [0] ← 𝑐 − 𝑈3( 116𝜋, 0,0)(𝑅𝑒 𝑔 . 𝐶 : 𝑞 [0], 𝑎𝑛𝑐 _ 𝑞 [0]) 𝑰𝒏𝒗𝒆𝒓𝒔𝒆 _𝑨𝑸𝑬:     𝑅𝑒𝑔. 𝐶: 𝑞[0]𝑞[1]𝑞[2]𝑞[3] ← 𝑞 _ 𝑓 𝑡(𝑅𝑒𝑔. 𝐶: 𝑞[0]𝑞[1]𝑞[2]𝑞[3]) 𝑓𝑜𝑟 𝑖 = 0 to  3  do  

        𝑅𝑒𝑔. 𝐶: 𝑞[𝑖] ← 𝑖𝑛𝑣𝑒𝑟𝑠𝑒 _𝑈𝐴2𝑖⊗(𝑅𝑒𝑔. 𝐵: 𝑞[0]𝑞[1], 𝑅𝑒𝑔. 𝐶: 𝑞[𝑖])     𝑒𝑛𝑑 Measure: 
  𝐷𝑜 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 𝑎𝑛𝑐 _ 𝑞 [0]  
     𝑖𝑓 𝑎𝑛𝑐 _ 𝑞 [0] = |1⟩then 
        𝑟𝑒𝑡𝑢𝑟𝑛 𝑅𝑒𝑔. 𝐵: 𝑞[0]𝑞[1] 
     𝑒𝑛𝑑 

2) Globally optimized HHL algorithm 

 

Initialization: 
 𝐴𝑛𝑐 : 𝑞 [0] ← |0⟩ 



      𝑅𝑒 𝑔 . 𝐶 : 𝑞 [0]𝑞[1]𝑞[2]𝑞[3] ← |0000⟩       𝑅𝑒 𝑔 . 𝐵 : 𝑞 [0]𝑞[1] ← (𝑈3(𝜃, 0,0))⊗ 𝑈3(𝜃, 0,0)|00⟩ 
QPEA: 𝑓𝑜𝑟 𝑖 = 1 to  3  do                𝑅𝑒 𝑔 . 𝐶 : 𝑞 [𝑖] ← 𝑈𝐴2𝑗⊗ (𝑅𝑒𝑔 . 𝐵 : 𝑞 [0]𝑞[1], 𝑅𝑒 𝑔 . 𝐶 : 𝑞 [𝑖])         𝑒𝑛𝑑        𝑅𝑒 𝑔 . 𝐶 : 𝑞 [1] ← 𝐻⊗ (𝑐 − 𝑈3 (0,0,−34𝜋) (𝑅𝑒 𝑔 . 𝐶 : 𝑞 [3]𝑞[2], 𝑅𝑒 𝑔 . 𝐶 : 𝑞 [1]))        𝑅𝑒 𝑔 . 𝐶 : 𝑞 [2] ← 𝐻⊗ (𝑐 − 𝑈3 (0,0,−12𝜋) (𝑅𝑒 𝑔 . 𝐶 : 𝑞 [3], 𝑅𝑒 𝑔 . 𝐶 : 𝑞 [2]))        𝑅𝑒 𝑔 . 𝐶:  q[3] ← 𝐻⊗ 𝑅𝑒𝑔 . 𝐶 : 𝑞 [3] 
AQE: 

      𝑎𝑛𝑐 _ 𝑞 [0] ← 𝑐 − 𝑈3(12𝜋, 0,0)(𝑅𝑒 𝑔 . 𝐶 : 𝑞 [3], 𝑎𝑛𝑐 _ 𝑞 [0])        𝑎𝑛𝑐 _ 𝑞 [0] ← 𝑐 − 𝑈3(14𝜋, 0,0)(𝑅𝑒 𝑔 . 𝐶 : 𝑞 [2], 𝑎𝑛𝑐 _ 𝑞 [0])        𝑎𝑛𝑐 _ 𝑞 [0] ← 𝑐 − 𝑈3(18𝜋, 0,0)(𝑅𝑒 𝑔 . 𝐶 : 𝑞 [1], 𝑎𝑛𝑐 _ 𝑞 [0]) 𝑰𝒏𝒗𝒆𝒓𝒔𝒆 _𝑨𝑸𝑬:     𝑅𝑒𝑔. 𝐶: 𝑞[0]𝑞[1]𝑞[2]𝑞[3] ← 𝑞 _ 𝑓 𝑡(𝑅𝑒𝑔. 𝐶: 𝑞[0]𝑞[1]𝑞[2]𝑞[3]) 𝑓𝑜𝑟 𝑖 = 1 to  3  do  

        𝑅𝑒𝑔. 𝐶: 𝑞[𝑖] ← 𝑖𝑛𝑣𝑒𝑟𝑠𝑒 _𝑈𝐴2𝑖⊗(𝑅𝑒𝑔. 𝐵: 𝑞[0]𝑞[1], 𝑅𝑒𝑔. 𝐶: 𝑞[𝑖])     𝑒𝑛𝑑 Measure: 
  𝐷𝑜 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 𝑎𝑛𝑐 _ 𝑞 [0]  
     𝑖𝑓 𝑎𝑛𝑐 _ 𝑞 [0] = |1⟩then 
        𝑟𝑒𝑡𝑢𝑟𝑛 𝑅𝑒𝑔. 𝐵: 𝑞[0]𝑞[1] 
     𝑒𝑛𝑑 

Data availability 

The datasets used and/or analysed during the current study available from the corresponding author 
on reasonable request.  
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