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Abstract
Assessing microplastics risk to aquatic ecosystems has been limited by lack of holistic exposure data
and poor understanding of biological response thresholds. Here we take advantage of two recent
advances, a toxicological meta-analysis that produced biotic response thresholds and a method to
quantitatively correct exposure data for sampling methodology biases, to assess microplastic exposure
risk in San Francisco Bay, California, USA. Using compartment-speci�c particle size abundance data, we
rescaled empirical surface water monitoring data obtained from manta trawls (> 333 µm) to a broader
size (1 to 5,000 µm) range, corrected for biases in �ber undercounting and spectroscopic subsampling,
and assessed the introduced uncertainty using probabilistic methods. We then compared these rescaled
concentrations to four risk thresholds developed to inform risk management for California for each of
two effect categories/mechanisms - tissue translocation-mediated effects and food dilution - each
aligned to ecologically relevant dose metrics of surface area and volume, respectively. More than three-
quarters of samples exceeded the most conservative food dilution threshold, which rose to 85% when
considering just the Central Bay. Within the Central Bay, 38% of the samples exceeded a higher threshold
associated with management planning, which was statistically signi�cant at the 95% con�dence interval.
For tissue translocation-mediated effects, no samples exceeded any threshold with statistical
signi�cance. The risk associated with food dilution is higher than that found in other systems, which
likely re�ects this study having been conducted for an enclosed water body. A sensitivity analysis
indicated that the largest contributor to assessment variability was associated with estimation of
ambient concentration exposure due to correcting for �ber undercounting. Even after compensating for
biases associated with �bers and other small particles, concentrations from the trawl samples were still
signi�cantly lower than the 1-L grab samples taken at the same time, suggesting our SFB risk estimates
are an underestimate. We chose to rely on the trawl data because the 1-L grab sample volume was too
small to provide accurate spatial representation, but future risk characterization studies would be
improved by using in-line �ltration pumps that sample larger volumes while capturing a fuller range of
particle size than a towed net.

Introduction
Microplastics have been found in a wide array of aquatic environments, from pristine mountain streams
to the Arctic (Gonzalez-Pleiter et al. 2020) to deep undersea habitats (Abel et al. 2021). Toxicological
studies have determined microplastics can cause adverse effects, such as tissue in�ammation (Pirsaheb
et al., 2020), impaired growth (Zimmerman et al. 2020, Redondo-Hasselerharm et al. 2018), feeding
disruption (Wang et al. 2020), developmental anomalies (Gardon et al. 2020), and changes in gene
expression (Zhang et al. 2019). However, the prevalence of those biotic effects in natural aquatic
ecosystems is not well understood (Gouin et al. 2019).

Quantifying the risk of microplastics in aquatic ecosystems is challenging for two reasons. First, the
concentrations at which those effects manifest in biota are not well understood. That uncertainty arises
because of shortcomings in existing toxicological studies (de Ruijter et al. 2020), with fewer than half of
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the studies conducted to date having included more than two exposure concentrations and many of
those exposures at extreme concentrations well beyond what is typically encountered in the natural
environment (Burns and Boxall 2018, Hampton et al. 2022). Although this testing provides useful insights
into potential effects and mechanisms of toxicity, testing at multiple relevant concentrations to establish
a dose-response relationship is necessary to quantitatively characterize risk. Exacerbating this problem is
that microplastics have a diversity of properties, such as size, shape, and polymer type, that can affect
toxicity, and few studies have quanti�ed the relative importance of these factors (Hampton et al.,2022;
Bucci and Rochman, 2022). Most (72% out of 163) toxicity studies have been conducted using single-
sized beads of a single polymer type (Mehinto et al. 2022) which is a poor representation of mixtures
encountered in the ambient environment (Rubin et al., 2021).

The second challenge is a lack of holistic exposure data to compare directly to toxicologically derived
response thresholds. Most ambient microplastics data are collected by towing ~ 330 µm mesh nets,
which underestimates the abundance of microplastics smaller than the mesh size (Brander et al., 2020).
Studies that have sampled from the environment and report broader size distributions �nd that the
smaller sized particles are exponentially more abundant (Covernton et al., 2019; Kooi et al. 2021),
suggesting the need for sampling regimes and/or estimation methods that capture a more complete size
range of particles. Additionally, �eld monitoring particle data often suffers from unquanti�ed biases due
to self-contamination (Scopetani et al. 2020), di�culties associated with sampling and analyzing �bers
(Miller et al. 2021), spectroscopic interferences and library mischaracterizations (Cowger et al. 2020;
Werbowski et al. 2021), spatial and temporal heterogeneity (Koelmans et al. 2019), as well as
spectroscopy subsampling regimes performed to ensure feasibility when particles are counted manually
(Zhu et al. 2021).

Here we take advantage of two recent advances that address these challenges. The �rst is a meta-
analysis in which a broad array of toxicological studies were incorporated into a single risk assessment
framework (Mehinto et al. 2022), which produced thresholds for a range of biotic responses and
recommended management actions. This meta-analysis applied critical quality criteria to screen reliable
toxicity studies and integrated the results into a combined outcome that transcended shortcomings of the
underlying individual studies. The second is the use of probability density functions (PDFs) to
quantitatively correct exposure data for biases due to sampling methodologies (Koelmans et al., 2020,
Kooi and Koelmans 2019). Size abundance microplastic particle data can be used to derive probability
density functions (PDFs) that allow the rescaling of �eld monitoring data restricted to a given size range
(e.g., > 330 µm) to a more holistic size range (e.g., 1 to 5,000 µm), enabling direct comparison to toxicity
thresholds from laboratory studies aligned to the same size range (Koelmans et al 2022).

Combining these two advances, we assess the risk to aquatic ecosystems from microplastic exposure in
San Francisco Bay, California (SFB) where a comprehensive study of ambient exposure was conducted
(Zhu et al 2021) (Fig. 1). After rescaling to a common size distribution, we compare the monitoring data
to aligned risk and management thresholds from Mehinto et al. (2022) to estimate the likelihood and
pervasiveness of a local biological response. Using PDFs and Monte-Carlo modeling, we quantify the
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uncertainty of the rescaling methods to determine where the greatest uncertainties in this risk
characterization lie, pointing to the science advancements needed to improve risk assessments in the
future.

Materials And Methods
Figure 1. Flowchart of general steps involved in microplastics risk characterization as employed in this
study. Data obtained/derived from respective studies are annotated using colors; Zhu et al. (2021) is
green, Mehinto et al.(2022) is red, and this study is blue.

Data quality

Crucial to assessing risks is selecting data �t for that assessment purpose. Surface water monitoring
data for microplastics in SFB, California, USA reported by Zhu et al. (2021) were quantitatively assessed
for quality according to the criteria de�ned for water sampling in Koelmans et al. (2019). Data reported
for other matrices (e.g., stormwater e�uent, �sh tissue, sediment) were not scored due to a lack of
established quality criteria for such matrices. Brie�y, nine criteria which relate to the reproducibility and
reliability of aqueous microplastics sampling, contamination mitigation, sample processing/handling,
and chemical analysis were applied. For each criterion, a score of 0, 1, or 2 was applied and a total
accumulated score was calculated by adding scores for individual criteria (maximum 18 points).
Samples that received a ‘zero’ value for any individual score were not considered su�ciently reliable
(Hermsen et al. 2018).

Microplastics characterization

Blank-corrected environmental microdebris occurrence data from SFB and outside of SFB, in National
Marine Sanctuaries, were obtained from Zhu et al. (2021). Sampling details can be found in Zhu et al.,
2021. In short, sampling sites were picked to represent each region within SFB. Regions are characterized
by differences in population sizes and point sources upstream, such as wastewater and stormwater.
Surface water concentrations were spectroscopy corrected. Spectroscopy was only performed on a
subset of particles, i.e., roughly 10% of each morphology within each size fraction (see Zhu et al., 2021
for more detail). This methodology was chosen in an attempt to be more representative. This led to
spectroscopy conducted on 23% of all particles from surface manta trawls. The systematic removal of all
�ber particle counts from manta trawl data in Zhu et al (2021) was corrected for using a subset of manta
samples in which all �bers were counted and reported in Hung et al (2020). While Zhu et al. (2021)
presented a novel method to correct manta trawl samples for size, a different size rescaling method was
used here (i.e., Koelmans et al. 2020). Blank-, �ber-, and plastic polymer-corrected particle concentrations
were rescaled to a common size distribution (1 to 5,000 µm) to allow direct comparison to hazard
thresholds (Mehinto et al., 2022) according to the methods in Koelmans et al (2020; described below)
using marine surface water size distribution data from Kooi et al. (2022). Additionally, a statistically
signi�cant outlier was identi�ed based on four-times the mean Cook’s distance and was removed from
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the Zhu et al. (2021) dataset, which was a sample collected from a tidal front and was highly
contaminated with microplastics and other debris (sample identi�cation: CB9-Manta-11 Jan 18).

Due to time-constraints of spectroscopically con�rming the polymer identity of all particles in samples,
Zhu et al. (2021) subsampled particles from samples based on the number of particles of a particular
morphology and size class within a given sample. For each site in the SFB and compartment (i.e.,
stormwater, wastewater, �sh tissue, sediment, surface water) the proportion of particles that were
spectroscopically determined to be a speci�c polymer (e.g., polyester, polyethylene, etc.) were divided by
the total number of particles spectroscopically characterized for that compartment-site combination
(Fig. 1). Zhu et. al. (2021) reported that interferences such as dyes and carbon black prevented the
spectroscopic con�rmation of all particles and reported some polymers using suspected terms such as
“anthropogenic (synthetic)” or “anthropogenic (unknown base)”, etc. To be conservative, particles that
could not be polymerically con�rmed were excluded from the proportion of microdebris particles
considered to be plastic, with a hierarchical schema developed here and employed to classify particle
types (Figure S1). To determine if a single polymer correction factor should be applied to all matrices or
should be performed separately for each matrix, a one-way analysis of variance (ANOVA) was conducted
(Table S3). Then, for surface water data obtained using manta trawl, a one-way ANOVA was conducted to
determine if there are site-speci�c differences in plastic proportions of microdebris particles, with site-
speci�c correction factors being applied only if the ANOVA determined statistically signi�cant
differences. Proportions of microdebris con�rmed to be plastic values were multiplied by the total number
of microdebris particles reported by Zhu et al. (2021) for each compartment to obtain microplastic
occurrence data in a probabilistic manner as part of the Monte-Carlo modeling method (described below).

Due to the mesh size of a manta trawl net (333 µm), �bers are known to pass through the sampling
apparatus, leading to a systematic shape-based undercounting bias. Zhu et al (2021) did not include
�bers in total particle counts in their blank-corrected concentrations for samples collected using manta
trawls to remove that uncertainty with the impact of systematically undercounting microplastic particles.
Hung et al (2020) reported particle count data for all shapes - including �bers - in 9 manta trawl samples
taken from various sites across the SFB and Marine Sanctuaries. This manta trawl �ber subsampling
dataset was used to derive a correction factor to estimate the amount of microplastics that would be
present in the other manta trawl samples from SFB if plastic �bers had been counted in those samples,
with uncertainties propagated probabilistically using the Monte-Carlo method described below. For each
manta trawl sample with �ber counts, the proportion of particles that were �bers was calculated and a
�ber correction factor was derived as the inverse of one minus the median fraction of particles that were
�bers. Due to the small sample size, site-speci�c differences in �ber proportions were not considered.

Rescaling of environmental concentrations

Environmental microdebris occurrence data from SFB reported in Zhu et al. (2021) included various size
ranges of particles based on each sampling technique (e.g., > 333µm for manta trawl; > 50 µm for grab
samples: see Table S8) which were rescaled to a common size distribution of 1–5,000 µm to compare to
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ecotoxicity thresholds aligned to the same size distribution in Mehinto et al (2020) based on the methods
described in Koelmans et al. (2020; 2022). Environmental concentrations were multiplied by a correction
factor derived for each sampling technique based on their particle size limits (Eq. 1) (Koelmans et al.
2020).

Equation 1Cenv = CFmeas ∗ Cmeas

In Eq. 1, Cenv is the environmentally realistic occurrence concentration in particles · L− 1 (adjusted for non-
alignment of mesh sizes), CFmeas is a dimensionless correction factor for the environmentally monitored

concentration (meas); and Cmeas is the measured environmental concentration, expressed in particles · L− 

1 (Koelmans et al. 2020). Environmental concentrations are rescaled to an upper (UL,D; µm) and lower
default size range (LL,D; µm) (here 5000 and 1 µm respectively), using the power law slope of
microplastic particle abundance in the environment based on size (a, unitless), with the upper limit (UL,
meas; µm) and lower limit (LL, meas; µm) de�ned by the size limits of quanti�cation of the monitoring
method employed (Eq. 2) (Koelmans et al. 2020).

Equation 2CFmeas =
L1−a

UL ,D −L1−a
LL ,D

L1−a
UL ,meas −L1−a

LLmeas

Kooi et al. (2021) derived power slope exponents (a) based on size for freshwater and marine
environments across several locations in Europe using individual particle datasets obtained using state-
of-the-science Fourier-transform infrared imaging coupled with a focal-plane array detector and
automated image analysis. When measured particles length data was pooled across all samples for each
compartment across distinct locations (e.g., Rhine and Dommel rivers), power law exponent values
contained low variability within each compartment, but were signi�cantly different between
compartments (e.g., a = 2.64 ± 0.01 for marine and a = 2.07 ± 0.03 for freshwater surface waters),
implying microplastic size relationships are highly conserved within compartments (Kooi et al. 2022).
While within-compartment particle size distributions are not expected to deviate signi�cantly across
regions, site-speci�c data would be preferable to rescale environmental concentrations so long as the
data is high resolution and is reliable (Kooi et al. 2022). Lacking site-speci�c high-resolution particle size
distribution data, compartment-speci�c a values for length were used from Kooi et al. (2022) to rescale
environmental concentrations in SFB (Table S7). To account for within-compartment variability in
rescaling environmental concentrations, uncertainties in the derived a value were propagated
probabilistically using Monte-Carlo methods described below.

Zhu et al. (2021) reported particle length data for SFB for all compartments (except surface water
obtained using 1-L grab samples) which was measured manually and was not intended to provide high-
resolution information on particle size distributions. Nonetheless, this dataset was used to derive
compartment-speci�c size a values according to the methods described in Kooi & Koelmans (2019) as
part of a sensitivity analysis only and were not used to rescale concentrations for risk characterization
purposes. Brie�y, all particle monitoring data from SFB reported on an online open data repository
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managed by the California Natural Resources Agency (https://data.cnra.ca.gov/dataset/microplastic-sf-
bay) were aggregated, and only the measured lengths of individual particles spectroscopically con�rmed
to be plastic were used in estimating size distributions. Plastic particle data were grouped by
compartment (i.e., surface water, sediment, �sh tissue, wastewater e�uent, stormwater runoff), and
abundance particle length-based data were plotted on a log-log scale with relative abundance on the y-
axis and particle size on the x-axis and a linear trendline �t to the data was used to derive the a exponent
value. Since power laws usually only apply to values greater than some minimum value (in this case,
particle length), both the minimum applicable value and the �nal a value were determined using a
maximum likelihood estimation method (Clauset et al., 2009; Newman, 2005) using the poweRlaw
package (Gillespie, 2014), and bootstrap 100 times. As part of the sensitivity analysis only, the a value
derived using manta trawl data (> 333 µm) was used to rescale the manta trawl-derived surface water
monitoring data.

Risk Characterization

Aquatic ecotoxicological thresholds were used to characterize risk by deriving the ratio of predicted no-
effect concentration (PNEC) thresholds to predicted environmental concentrations (PEC), with
exceedances greater than one indicative of risk. While data were available for microplastics
concentrations in various matrices (e.g., surface water, stormwater, wastewater e�uent, sediment, �sh
tissue) in the SFB, only surface water concentration data were used for risk characterization as direct
comparisons of undiluted stormwater or wastewater are not representative of environmental exposures,
and due to the lack of hazard thresholds for marine sediment or �sh tissue.

Surface water concentration data were compared to ecotoxicological thresholds derived by Mehinto et al.
(2022) using species sensitivity distributions (SSDs) based on chronic no-observed-adverse-effect
concentrations for 14–16 freshwater and marine species from 6 to 7 taxonomic groups. Prior to
derivation, Mehinto et al. screened 162 peer-reviewed laboratory toxicity studies for a set of pre-de�ned
quality criteria based on the standards de�ned by de Ruijter et al. (2020). A total of 290 threshold data
points were extracted from 21 studies that met the minimum pre-de�ned criteria. These thresholds were
aligned to a common size distribution of 1–5,000 µm using environmental PDFs and based on
mechanisms of action as described in Koelmans et al. (2020) and Kooi et al. (2021). Following Kooi et al
(2021), Mehinto et al (2022) derived thresholds for two effect mechanisms/pathways – food dilution and
tissue translocation, which were aligned by volume and surface area ecologically relevant metrics,
respectively. The food dilution-based effect considered particles small enough to be ingested by the
organism of interest to be accessible (i.e., exclude non-accessible particles), then aligned (both
monodisperse and polydisperse) laboratory effect concentrations to environmentally realistic
concentrations based on particle volume (Mehinto et al.2022). The tissue translocation mechanism of
action considered particles wide enough to translocate across tissues (83 µm) following ingestion to be
accessible and aligned laboratory effect concentrations to environmentally realistic concentrations based
on translocatable surface area (Mehinto et al.2022). Although the methodology used to align thresholds
was identical for the mechanism of the food dilution effect, additional studies were used in Mehinto et al.
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(2022) compared to Koelmans et al. (2020), which only used effect thresholds data for studies in which
the authors con�rmed that a food dilution mechanism was demonstrated or was plausible. For both
effect mechanisms/pathways, four PNEC thresholds were derived which correspond to different levels of
con�dence that microplastics can cause adverse effects to aquatic organisms and call for varying levels
of management action - ranging from increasing monitoring to implementing Source control measures
(Table S9) (Mehinto et al.2022). At the time of writing, the risk management actions associated with
thresholds from Mehinto et al. (2022) carry no regulatory or legal authority in California or any other
jurisdiction and are only suggestions.

Sensitivity Analysis

Uncertainties were evaluated probabilistically using Monte Carlo methods based on PDFs derived for
each correction factor, including: manta trawl �ber correction (shape under-counting bias), plastic fraction
of total microdebris particles (spectroscopic subsampling variability), and rescaling concentrations to a
common size range (a variability) (Fig. 1). To obtain the combined correction factor with probabilistic
propagation of uncertainties, a data frame of 10,000 values was generated for each correction factor
based on their modeled distribution, and each of these three data frames was multiplied by one another
row-wise. The 50th percentile value from this combined correction factor distribution was used to correct
the manta trawl surface water monitoring data, and the 5th and 95th percentile values were used to
calculate uncertainty. This methodology accurately accounts for the underlying distributions of the
correction factor data and is preferable to error propagation techniques that rely on assumptions of
normality.

For each correction factor, a theoretical distribution was �t to the data based on the shape of the
underlying distribution (see Table S10) - which was evaluated visually using Cullen and Frey graphs
(Figure S8) and using a maximum likelihood estimation approach with the �tdistrplus R package
(Delignette-Muller & Dutang 2015). Due to the highly skewed distribution in the manta trawl �ber
correction data (Figure S6), these data were log-transformed prior to derivation of a PDF, then back-
transformed into linear space following the Monte Carlo simulation. Following log-transformation, �ber
correction data (unitless; >1) were well-�t by a normal distribution (Figure S8a). Plastic proportion data
(unitless; 0–1) were well-�t by a two-shape beta distribution (Figure S8b) that was truncated such that
values greater than one was not produced during the Monte Carlo simulated due to their theoretical
implausibility (i.e., more than 100% of particles cannot be plastic). Because the size-based a values used
to rescale concentrations (i.e., from Kooi et al. 2022) were derived using maximum likelihood estimation
based on a log-log linear distribution (Figure S7; Table SS7), a normal distribution was assumed, and the
PDF was approximated using a normal distribution based on the mean and standard deviation of the
linear regression slope (Table S7). Correction factors were derived from the Monte-Carlo simulated
distribution of alpha values using Eq. 2.

To quantify and compare the relative sensitivity of correction and rescaling factors applied here on the
resulting exposure assessment, variability for each parameter was held constant while uncertainty in the
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other variables was calculated. Finally, to assess the relative uncertainty between rescaled and corrected
environmental occurrences with modeled risk thresholds, the 95th percentile of the Monte Carlo simulated
occurrence data water was compared to the 95% con�dence intervals for microplastics hazard thresholds
reported in Mehinto et al.(2022) based on the SSD model. An additional sensitivity analysis was
performed using site-speci�c a values derived for SFB using manta trawl particle length data as
described above.

Statistics

All statistical analyses were conducted in R (version 4.1.1; R Core Team, 2021) and �gures were produced
using the package ggplot2 (Wickham, 2009). Base maps sourced from Google were used for mapping
using the ggmap package (Kahle and Wickham, 2013). One-way ANOVAs were used to determine if
plastic correction factors should be separated for each matrix and site (for manta trawl only). To
determine if bias corrections (i.e., rescaling, �ber correction, plastic correction) resulted in comparable
concentrations between water matrices, one-way ANOVAs were run for both raw and rescaled/corrected
concentrations. For all hypothesis tests, statistical signi�cance was determined at an alpha level of 0.05,
and multiple comparisons were performed using Tukey’s Honest Signi�cant Difference post-hoc test,
when applicable. All Monte-Carlo simulations were performed with 10,000 iterations with a seed set for
reproducibility.

Results
Data Quality

Microplastics monitoring data reported in Zhu et al. (2021) received total accumulated scores of 13, 10,
and 14 for manta trawl, grab samples, and wastewater treatment plant e�uent samples respectively
according to criteria de�ned in Koelmans et al. (2019) (Table S1). While manta trawl and wastewater
treatment plant e�uent data received a score of at least one for each quality criteria, grab samples
received “zero” scores for several criteria (sample size and sample treatment) (Table S1). Accordingly,
manta trawl and wastewater treatment plant e�uent data from Zhu et al. (2021) are considered
su�ciently reliable for the purposes of risk characterization, while the grab sample data are not, however
only manta trawl data (surface water) were used for risk characterization due to the non-applicability of
wastewater data for estimating exposure. Because blank-corrections were applied based on color-
morphology combinations instead of polymer identi�cation, all matrices received a score of “1” for
negative controls instead of “2”. The blank correction procedure applied in Zhu et al. (2021) may lead to
an underestimation of concentrations if microplastic particles of the same color have a different polymer
identity - an uncertainty which is not accounted for in this probabilistic assessment. The grab, wastewater
treatment plant e�uent, and manta trawl data scores were higher than the average score for surface
waters (7.9; range 4 to 15; n = 55) reported in Koelmans et al. (2019). While additional quality criteria are
available for biota and sediment (Hermsen et al. 2018; Redondo-Hasselerharm et al. in press; Bäuerlein et
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al. Submitted), risk thresholds are unavailable for these compartments and these data were not quality
scored here. Additionally, stormwater was not scored due to a lack of established quality criteria.

Microplastics characterization

The percentage of analyzed particles spectroscopically determined to be plastic was signi�cantly
different between matrices according to a one-way ANOVA (p < 1x10− 16; Table S3), so matrix-speci�c
plastic correction factors were derived accordingly using PDFs (Figures S3 and S9; Tables S2 - S4; Table
S10). Tukey’s post-hoc test for signi�cance revealed signi�cant differences in plastic proportions of total
particles between manta trawl and sediment, �sh tissue, wastewater treatment plant (WWTP) e�uent,
and surface water collected with 1-L grab (Table S4). Surface water samples collected with manta trawl
contained the highest percentages of con�rmed microplastics (72% ± 24%), followed by surface water
collected by 1-L grab (42% ±24), sediment (37% ± 14%), wastewater treatment plant e�uent (31% ± 18%),
and �sh tissue (24% ±12%) (Table S2; Figure S2). Additional signi�cant differences were found between
sediment and �sh tissue; sediment and 1-L grab surface water; and �sh tissue and 1-L grab surface water
(Table S4). As surface water data obtained using manta trawl were the only monitoring data used for risk
characterization here, site-speci�c differences were tested using a one-way ANOVA, which demonstrated
no signi�cant difference in proportions of plastic particles relative to all spectroscopically characterized
particles by location (p = 0.12; Table S5; Figures S3 – S4). Accordingly, a single correction factor for
plastic percentages was applied to all manta trawl data regardless of location, which was the median
value of 0.63 (0.31 to 0.95: 95% CI) that was derived from a two-shape beta distribution PDF (Table S10;
Figure S9).

To correct for the systematic removal of �ber particle data from the blank-corrected dataset reported in
Zhu et al. (2021), data were used from Hung et al. (2020) for 9 manta trawl samples from SFB in which
all �bers were counted. On average, �bers constituted 78% (± 28% sd) of particles in the manta trawl
samples in which they were counted (Table S6). Other aqueous matrices and sediment contained lower
percentages of �bers, while �sh tissue contained a higher percentage (Table S6, Figure S5). Based on the
PDF of the �ber proportions, a �ber correction factor of 8.87 (95% CI: 1.29 to 50.89; Table S10) was
calculated and applied to manta trawl monitoring data as part of the Monte-Carlo analysis. Due to the
relatively small sample size (n = 9) and skewed nature of the �ber proportion distribution (Figure S6), the
�ber correction factor contains relatively high uncertainty compared to the plastic spectroscopy
correction factor and size rescaling correction factor (Figure S13).

Rescaled Environmental Occurrence Data

Size abundance distributions of microplastics in SFB were �t by linear regression on a log(10)-log(10)
scale using a maximum likelihood estimation approach (Kooi et al. 2021), with a exponent values
ranging from 2.15 to 3.02 (Figure S7, Table S7). Length-based power law exponent values (a) derived for
microplastics in SFB were comparable to values derived from various locations in Europe reported by
Kooi et al. (2021) (Table S7). Notably, the a values for marine surface waters were 2.15 ± 0.48 and 2.07 ± 
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0.03 (mean ± sd) for SFB and in Europe, respectively, thus representing less than a 5% difference and are
not statistically signi�cant from one another (Table S7). Additionally, a law exponents followed the same
rank order by matrix between Kooi et al. (2021) and those derived here for comparable matrices (i.e.,
marine surface water < wastewater e�uent < marine sediment). The greatest difference between a law
exponents was for marine sediment (2.90 ± 0.41 and 2.57 ± 0.20 for SFB and Europe, respectively) (Table
S7). Direct comparisons for power law exponents derived for SFB to other studies/locations were not
possible for stormwater runoff (which has not been reported elsewhere) or �sh tissue (“biota” reported in
Kooi et al. 2021 corresponds to benthic invertebrates).

Size-based correction factors for matrices ranged from 58 to 9,774 depending on matrix (a value) and
mesh size (Table S8). Fish tissue data had the smallest mesh size (25 µm) and had the smallest
correction factor accordingly (58; 95% CI: 53 to 63) (Table S8). Manta trawl data had the largest mesh
size (333 µm) and had the second largest correction factor (529; 95% CI: 401 to 704 based an a value of
2.07 form Kooi et al. 2021) (Table S8). Stormwater data had a smaller mesh size than manta trawl (106
µm), however the correction factor was over 10x higher (9,774; 95% CI: 5,614 to 17,019) due to the high a
value (2.97 ± 0.83) (Table S8).

In theory, rescaling data and correcting for systematic biases (i.e., �ber correction, spectroscopic
subsampling) should reduce differences in monitoring concentrations taken at similar times and
locations within a given matrix due to size-differences in mesh sizes of sampling apparatus (Koelmans et
al. 2020). Before rescaling and correcting, surface water concentrations collected using manta trawl as
well as e�uent from wastewater treatment plants were not signi�cantly different from one another
according to one-way ANOVA with Tukey’s post-hoc (p > 0.05; Tables S11 – S12) but were both
signi�cantly lower than surface water collected through other means (stormwater, 1-L grab surface water;
p < 0.001) (Table S12). Additionally, 1-L grab surface water concentrations were signi�cantly higher than
stormwater concentrations collected with a depth-integrated peristaltic pump (p = 0.03; Table S12).
Following rescaling and correcting, manta trawl-collected surface water concentrations were still
signi�cantly lower than other surface water concentrations collected via other methods (i.e., stormwater,
1-L grab surface water) (p < 0.001; Tables S13 – S14), however wastewater concentrations were no longer
signi�cantly different from both 1-L grab and manta trawl-collected surface water concentrations (p > 
0.05) (Fig. 2; Table S14). Despite the combined correction factor to account for systematic under-
counting based on size and �bers as well as fractions of particle spectroscopically con�rmed to be
plastics, rescaled and corrected manta trawl surface water data were still signi�cantly lower (p = 3.4 x 10− 

14; Table S14) than rescaled surface water 1-L grab samples, of which the majority were taken at similar
locations and times. These results suggest that additional systematic biases are present in either the
manta trawl (likely undercounting) or the 1-L grab samples (potentially overcounting). Undercounting in
manta trawl samples may be due in part or in whole to imprecise blank corrections based on shape-color
combinations as opposed to polymer-based corrections.

Risk characterization
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Depending on the postulated effect mechanism/pathway (i.e., food-dilution or tissue translocation), risk
exceedances of microplastics in SFB vary signi�cantly. For all comparisons of PNECs (i.e., hazard
thresholds from Mehinto et al. 2022) with PECs (i.e., corrected, and rescaled surface water concentrations
in SFB) stated throughout this manuscript, only those in which the 95% CI does not include ‘0%’ represent
statistically signi�cant exceedances. Accordingly, only food-dilution thresholds one, two, and three have
statistically signi�cant exceedances in the SFB, while all other thresholds (i.e., food-dilution threshold
four, and all tissue translocation thresholds) do not.

Comparison of corrected and rescaled manta-trawl collected surface water samples with food-dilution
thresholds derived by Mehinto et al. (2022) resulted in 82% (95% CI: 27–100%) of samples exceeding the
most conservative risk threshold (i.e. “Investigative monitoring” threshold one), 27% (95% CI: 3–73%) of
samples exceeding threshold two (“Discharge monitoring”), 21% (95% CI: 3–58%) of samples exceeding
threshold three (“Management planning”), and 3% (95% CI: 0–18%) of samples exceeding threshold four
(“Source control measures”) (Table S15).

Comparison of surface water samples with tissue translocation-based thresholds derived by Mehinto et
al. (2022) resulted in 3% (95% CI: 0–9%) of samples exceeding the most conservative risk threshold (i.e.,
“Investigative monitoring” threshold one), 0% (95% CI: 0 to 3%) of samples exceeding threshold two
(“Discharge monitoring”), 0% (95% CI: 0 to 3%) of samples exceeding threshold three (“Management
planning”), and 0% (95% CI: 0 to 0%) of samples exceeding threshold four (“Source control measures”)
(Table S15).

Risk exceedances were higher during the rainy season, with 94% (95% CI: 41–100%) of surface water
samples collected following a storm event exceeding food dilution threshold one compared with 71%
(95% CI: 12–100%) of samples collected during the dry season (Figure S10). Rainy season samples
exceeded food dilution threshold three within con�dence limits (29%; 95% CI: 6–71%), however dry
season samples did not (12%; 95% CI: 0–47%) (Figure S10).

Risk exceedances varied by location within the SFB (Fig. 4, Table S16). The Central Bay had the highest
proportion of samples exceeding risk thresholds, with 85% (95% CI: 38–100%) exceeding Mehinto et al.
(2022)’s most conservative food dilution threshold one (“Investigate monitoring”), 38% (95% CI: 8–85%)
exceeding food-dilution threshold two (“Discharge monitoring”), 38% (95% CI: 8–77%) exceeding
threshold three (“Management planning”), and 8% exceeding food dilution threshold four (“Source control
measures”), however exceedances of threshold four were not statistically signi�cant (95% CI: 0 to 31%)
(Table S16). Additionally, the Central Bay was the only location with any samples exceeding a tissue
translocation-based threshold at the 50th percentile, with 8% exceeding threshold one – however these
exceedances were not statistically signi�cant (95% CI: 0 to 23%) (Table S16).

Comparison of SFB samples to samples taken from outside of the bay demonstrated substantially higher
risk within the bay. Samples taken from the National Marine Sanctuaries - which is an open-ocean
location with minimal inputs from wastewater discharge or stormwater runoff and was selected as a
reference location as part of the study design (Zhu et al. 2021) did not have any samples exceeding the
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most conservative threshold (i.e., food-dilution threshold one) with statistical signi�cance (i.e., 35%; 95%
CI: 0–91%) (Table S16; Fig. 4). Of the samples in the National Marine Sanctuaries exceeding food dilution
threshold one at 50th percentile, the three highest were at the mouth of the bay just West of the Golden
Gate Bridge, suggesting rapid dilution of microplastic particle concentrations outside of the SFB (Fig. 4).

Sensitivity Analysis

Comparison of the in�uence of factors in estimating environmental occurrence from manta trawl data
reveals that the �ber correction factor contains the highest relative uncertainty compared to the
spectroscopic sub-sampling correction factor for plastics and the size-based alignment correction factor
(Figure S13). Holding variability for all correction/rescaling factors constant except for the �ber
correction, the 95% con�dence interval for percentage of samples in SFB exceeding Mehinto et al.
(2022)’s food-dilution threshold one is (29–100%), compared with (76–88%) for size rescaling, (65–94%)
for the plastic-proportion due to spectroscopic subsampling correction, and (26–100%) for combined
rescaling and corrections (Figure S13). If the �ber correction factor is omitted from the analysis entirely,
uncertainty decreases substantially in the risk characterization, and the overall number of statistically
signi�cant risk exceedances decreases as well (Figure S11). If the �ber correction factor is not applied,
27% of SFB samples would exceed food-dilution threshold one (95% CI: 18–39%) compared to 82% of
samples when the �ber correction is applied (95% CI: 27–100%) (Figure S11 and Table S15).

While the size distribution value (a) has a substantial impact on the outcome of the risk characterization
due to the high correction factor values derived for manta trawls (529; 95% CI: 401 to 704, Figure S9), the
site-speci�c values for marine surface waters for SFB were of minimal difference from those derived
elsewhere and applied for this risk characterization (i.e. Kooi et al. 2021) and therefore had limited
uncertainty in this assessment (Figures S13 - S14). However, larger mesh sizes correspond to
exponentially larger correction factors (Eq. 2) and are therefore highly in�uential in the case of manta
trawl data (333 µm mesh). For example, the correction factor for 1-L grab samples would be 66 (95% CI:
55 to 80), using the same a value and uncertainty applied for manta trawl here, indicating the higher
uncertainty and in�uence of rescaling manta trawl data compared to grab samples.

Comparison of the total uncertainties associated with estimating environmental surface water
concentrations with the uncertainties in risk thresholds from Mehinto et al (2022) reveals comparable
levels of uncertainty, with food dilution thresholds spanning ~ 2 to 5 orders of magnitude between 95%
con�dence intervals depending on the tier (Table S10) while estimated environmental concentrations for
manta trawl surface samples span ~ 2.5 orders of magnitude between 95th percentiles based on the
combined correction and rescaling uncertainties (Table S11).

Discussion
Here, we combine occurrence data from SFB, California with a risk assessment framework to estimate the
risk to local aquatic ecosystems. The risk framework includes hazard thresholds for two ecologically
relevant categories of effect mechanisms - food dilution and mechanisms triggered upon tissue
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translocation. Based on the best available toxicological evidence and monitoring data, our results
suggest that microplastic exposure in SFB in 2017 was high enough to cause biological perturbation
through the food dilution effect mechanism. Eighty-two percent of the SFB had concentrations that
exceeded Mehinto et al. 's (2022) tier one food-dilution threshold (“Investigative monitoring”) with
statistical signi�cance, with the highest percentages of statistical exceedances occurring within the
Central Bay. Furthermore, the Central Bay was the only region within the SFB with any samples exceeding
the third food dilution threshold (“Management planning”) with statistical signi�cance, however no
samples exceeded the highest food dilution threshold (need of immediate source control measures) with
statistical signi�cance. Because samples were not taken with the goal of being spatially or temporally
representative of the SFB (Zhu et al. 2021), additional monitoring is suggested to improve con�dence in
risk characterizations.

Our analysis suggests that the risk associated with tissue translocation-mediated effects is substantially
less than that for the food-dilution endpoint in SFB. While there were a few samples with concentrations
greater than the �rst threshold at the 50th percentile, the exceedances were not statistically signi�cant,
and there were no samples above any of the other three thresholds at the 50th percentile. This lesser
effect likely re�ects tissue translocation-mediated effects being initiated by the subset of particles that
are small enough (< 83 µm) to permeate the intestinal wall (Jeong et al. 2016; Qiao et al. 2019; Mehinto et
al., 2022), whereas food-dilution is caused by a wider spectrum of particle sizes - based on ingestibility -
that arti�cially �ll the gut and lead to reduced food assimilation by blocked food passage (Lee et al. 2013;
Murphy et al.2018; Blarer et al.2016; Cole et al.2015). Still, our analysis suggests that early stages of
tissue translocation-mediated toxicities (e.g., oxidative stress, in�ammation; Limonta et al., 2019; Xia et
al. 2020) are possible in SFB, a �nding that would not have been apparent without the rescaling
procedures used to correct the underestimation of small particles captured in trawl nets (Koelmans et al.
2020). Rescaling particle counts based on size to correct for sampling bias in combination with
toxicological thresholds aligned to ecologically relevant metrics provides the opportunity to compare
exposure and hazard more appropriately (Koelmans et al. 2022).

Based on the species sensitivity distributions used to derive the food-dilution thresholds in Mehinto et al.
(2022), the most sensitive species are the black-lip pearl oyster (Pinctada margaritifera), the marine
medaka �sh (Oryzias melastigma), and a water �ea (Ceriodaphnia dubia), thus representing a diversity of
taxonomic groups (mollusk, �sh, and crustacea). Like many productive marine/freshwater estuarine
systems, these three taxa are present in the SFB, with some similar species for which these laboratory
model organisms may be suitable indicators. For instance, the Olympia oyster (Ostrea conchaphila) is
native to the SFB and has experienced declining abundance which has been primarily attributed to loss of
habitat and other factors (Parker and Boyer 2019). Experiments using model species within the Pinctada
genus (e.g., Pinctada mazatlanica) have been used to inform risk management of the Olympia oyster in
SFB (Sumudu 2008).

The ecological risk that we found for SFB was larger than that for several previous risk characterizations
conducted for other geographies (e.g., Everaert et al. 2020; Koelmans et al. 2020; Adam et al. 2021). Key
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reasons for these differences are the use of different hazard threshold values and alignment procedures
(or lack thereof), and that this sampling effort focused inside an urban enclosed water body with limited
circulation. The SFB area has a large population of over 7 million people (MTC-ABAG Library 2022), and
39 WWTPs feeding into the bay (Hummel et al. 2018). This difference is con�rmed by the application of
our risk characterization methodology in the National Marine Sanctuary areas in the open ocean. Here, we
did not �nd any samples exceeding any thresholds with statistical signi�cance (Table S16), with the three
highest samples taken at the mouth of the SFB (Fig. 4, interactive map in SI). Comparison of SFB
concentrations to global marine surface water concentrations rescaled by Everaert et al. (2020) to the
same size range used here (1 to 5,000 µm) using similar methods, reveals higher concentrations within
SFB than in ~ 75% of global marine locations (Everaert et al 2020). While most marine monitoring data
has been conducted in the open ocean, measurements in enclosed areas near urban centers indicate
higher contamination. Everaert et al. (2020) reported 50 microplastics·L− 1 in the Yellow Sea near China -
an enclosed water body adjacent to a population of ~ 600 million people (Wang et al. 2016) - which is
higher than ~ 98% of rescaled surface water samples in SFB. The high concentrations in the SFB and
other enclosed water bodies demonstrates the importance of targeted monitoring to protect coastal
resources globally.

While our probabilistic 95th percentiles based on Monte Carlo modeling and PDFs were su�ciently small
to con�dently state SFB contains microplastics at concentrations of biological concern, there is room for
improvement in future risk characterizations to reduce uncertainties. Despite the research advancements
that allowed us to compare exposure data to hazard data with higher certainty than what has been
previously possible without the rescaling and realignment procedures developed in Koelmans et al.
(2020), our risk estimates for SFB still contain substantial uncertainty and understanding the factors that
contribute to that variability will help focus advancements needed to improve future estimates. Here we
employed four key factors to calculate risk: ambient concentration measurements, critical thresholds at
which biological effects manifest, size rescaling and other correction procedures used to correct for data
collection biases, and the alignments of the biological thresholds (Koelmans et al. 2022). Understanding
the relative contribution of these factors to variability will help improve precision of future studies.

Variability associated with the �ber correction factor represented the largest uncertainty in this risk
characterization (�gure S13). The ambient concentrations used to characterize risk were collected using
surface manta trawls (Zhu et al., 2021), which are known to signi�cantly undercount particles smaller
than the mesh size (~ 333 µm), which includes the width-measurement of �bers allowing them to pass
through the mesh like spaghetti (Dris et al., 2018; Zhu et al., 2020). For this reason, even after correcting
for the uncounted �bers and rescaling concentrations to a common size range using compartment-
speci�c size distributions, estimates generated by the 1-L grab samples taken at the same time as the
trawl remained several orders of magnitude higher (Fig. 2), suggesting our SFB risk estimates based on
corrected and rescaled manta trawl data were either an underestimate, or that the 1-L grab samples
overcounted particles. Another possible cause for underestimation of number concentrations is the fact
that the blank corrections were made based on color and morphology combinations, rather than polymer
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identity due to the use of spectroscopic subsampling as opposed to identi�cation of all particles. This
leads to underestimation of concentrations if microplastic particles of the same or similar color have a
different polymer identity. We chose to rely on the manta trawl data because the 1-L grab sample volume
was too small to provide accurate representation (Koelmans et al. 2019), with the higher percent relative
standard deviations for duplicate manta samples (up to 13.3) being much lower than 4 duplicate grab
samples (up to 46.9; Hung et al., 2020). This variability was so great that the manta and grab samples
were not even signi�cantly correlated (R2 = 0.04), even though they were paired closely in space and time
(Figure S12). Future risk characterization studies would be improved by applying polymer-speci�c data
and blank corrections and using pumps with in-line �ltration that include small mesh sizes (< 300 µm) to
reduce small-scale spatial variability while capturing a fuller range of particle sizes than a towed net can
(Tamminga et al., 2019; Lorenz et al. 2019; Mintenig et al. 2020).

The rescaling procedures described in Koelmans et al (2020) help with addressing some of the size
undercounting biases associated with use of 333 µm mesh manta trawl nets, but these corrections yield
additional sources of uncertainty, and complicate comparisons to other risk characterizations that do not
perform rescaling procedures. The large mesh size of a manta trawl (333 µm) means that the size-based
correction factor is relatively sensitive to the size exponent value used (see Table S8). For instance, the
manta-trawl collected rescaled concentrations in SFB are nearly an order of magnitude higher than
similarly rescaled data from manta-trawls reported in Everaert et al (2020) due to the larger size power
exponent value used here. Everaert et al (2020) used a power exponent of 1.6 (± 0.5) corresponding to a
correction factor of 40x for a 333 µm mesh, while a power exponent of 2.07 (± 0.03) was used here and
corresponds to a correction factor of 530x for a 333 µm mesh. The power exponent used in Everaert et al
(2020) was derived by Kooi and Koelmans (2019) using the best available data at the time - which was
arbitrarily size binned data extracted from tables and graphs from other studies - and is therefore less
accurate than the values derived in Kooi et al (2021) which used high-resolution datasets at the individual
particle level. Using data from �ve studies that used state-of-the-art Fourier-transform infrared imaging
and automated analysis, Kooi et al (2021) derived a length-based power exponent value of 2.07 (± 0.03)
for marine surface waters, which is slightly smaller and substantially more certain than the site-speci�c
value derived here using low-resolution manta trawl data measured using manual techniques (i.e., 2.15 ± 
0.48). To reduce uncertainty due to size rescaling in SFB, small mesh-size samples could be obtained
using in-line �ltration and be analyzed using state-of-the-science analytical techniques to derive local
data (e.g., Mintenig et al. 2020, Primpke et al. 2020).

A minor point of uncertainty was the spectroscopy correction factor applied to concentration data to
ensure that only plastic particles were used to characterize risk (Figure S13). We did not consider particles
that were clearly anthropogenic but were not unequivocally plastic, due to spectroscopic interferences
from dyes and/or plastic additives (Zhu et al. 2021; see Figure S13). As such, the concentrations used
here are also an underestimation for this reason. Additionally, unquanti�ed inaccuracies in blank
corrections based on color-shape combinations are expected to result in further underestimations of
exposure and therefore risk. To reduce this uncertainty, future studies should use microplastic-speci�c
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spectral libraries to reduce the proportion of spectra that are less polymer-speci�c (Munno et al., 2019;
Cowger et al. 2021) as well as automation to allow for chemical con�rmation of all particles and
polymer-speci�c blank corrections (Primpke et al. 2020).

Uncertainties in this risk characterization due to the selection of concentration thresholds at which effects
manifest are both clearly illustrated and robust, as Mehinto et al. (2022) identi�ed four thresholds that
bracket the severity of response whereas other risk assessments have relied on single thresholds and
tested the sensitivity based on relevant factors. While the variability associated with the distribution
modeling component of the SSDs in Mehinto et al (2022) spanned ~ 2 to 5 orders of magnitude, the
median threshold values were insensitive to individual studies - which had only approximately a two-fold
in�uence. Furthermore, the eight threshold values used in this study from Mehinto et al. (2022) bracket
the published range for microplastics (see Koelmans et al. 2022), with 95% con�dence intervals based on
SSDs being smaller in the food dilution thresholds in Mehinto et al. (2022) than those of thresholds
derived in previous thresholds. Koelmans et. al (2020) developed and applied the same rescaling and
alignment methodology to obtain an SSD using studies which demonstrated ingestion and suggested
food dilution as the effect mechanism and derived a hazard concentration for 5% of species (HC5) of 76
particles/L (95% CI: 11 to 521 particles/L). Additional microplastics HC5 values which have not been
rescaled or aligned span several orders of magnitude, however six out of nine published values are within
con�dence intervals of 76 particles/L (Everaert et al. 2018; Skåre et al. 2019; Zhang et al. 2020; Everaert
et al. 2020; Jung et al. 2021), with three exceeding the range due to their inclusion of nanoplastics data
(Adam et al. 2019; Besseling et al. 2019; Adam et al. 2021) as demonstrated in a review by Koelmans et
al. (2022). There is room for additional studies to improve the threshold values (Hampton et al. this
volume), with speci�c attention to experimental design to assess risk more accurately (de Rujiter et al.,
2020) and additional studies using �bers (which were highly abundant in the SFB), however the
uncertainty associated with the threshold values is still smaller than that of the exposure data.

While the Zhu et al. (2021) monitoring study in SFB included more than just surface water samples, here
our risk assessment was limited to surface water exposure. At present, quantitative risk thresholds have
not yet been developed for marine sediment exposure. However, microplastics are known to accumulate
in sediments (Koelmans et al., 2017), and the SFB had relatively high concentrations of microplastics in
the sediments. Moreover, we only considered the particle-induced effects of microplastics and did not
account for additional potential risks resulting from pathogens (Zettler et al. 2013; Bowley et al., 2021), or
potential chemical-mediated effects (see Koelmans et al. 2021 for summary of sorbed contaminants),
including the leaching of chemical additives (Zimmerman et al. 2020) that preferentially desorb following
ingestion (Co�n et al. 2019). In particular, tire wear particles were a large portion of the microplastics
found in SFB sediments and chemical derivatives from those tire products have been found to cause
acute mortality in salmon (Tian et al. 2021). Furthermore, microplastics are anticipated to interact with
and exacerbate effects from additional stressors such as thermal stress due to climate change (Weber et
al. 2020; Kolomijeca et al., 2020). Future work should seek to look holistically at risk in the SFB, including
comparing relative risks from microplastics particles and other stressors such as dissolved and sorbed
chemicals, for which risk assessment frameworks already exist.
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Conclusion
Overall, our results indicate that SFB has regions where present exposure concentrations are above
thresholds for risk with statistical con�dence based on the best available ecotoxicological hazard
thresholds. If we continue business as usual, inputs of microplastics to coastal environments are
anticipated to triple over the next twenty years (Lebreton and Andrady 2020). As such, the region might
consider management actions now to prevent greater risk in the future. Beyond San Francisco Bay, our
study can inform risk assessments in local regions across the globe. Combined these methods can be
used globally to inform management locally.
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Figure 1

Flowchart of general steps involved in microplastics risk characterization as employed in this study. Data
obtained/derived from respective studies are annotated using colors; Zhu et al. (2021) is green, Mehinto
et al. (2022) is red, and this study is blue.
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Figure 2

Unadjusted (blue) and rescaled (1 to 5,000 µm; red) aqueous microplastics concentrations in SFB for A)
aquatic matrices, B) sediment, and C) �sh. All monitoring data were rescaled for size using matrix-
speci�c PDFs derived for SFB and were corrected for plastic proportions due to spectroscopic
subsampling. Manta trawl data were further corrected to account for systematic removal of �bers from
blank-corrected data in Zhu et al. (2021). For each matrix, sampling apparatus are de�ned in parentheses.
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Figure 3

Comparison of corrected surface water concentrations of microplastics in SFB collected using manta
trawl with food-dilution threshold derived by Mehinto et al (2022). A) percentages of samples exceeding
each threshold are shown as bar plots, with solid-line error bars re�ecting the 25th and 75th percentiles
and dashed-line error bars re�ecting the 95th percentile con�dence intervals derived using Monte Carlo
simulations (n=10,000) based on probability density functions derived from the combined variability of
correction factors and rescaling. B) Empirical cumulative density plot of surface water concentrations
and 25th and 95th percentile con�dence intervals of correction factors compared to food dilution
thresholds. Exceedances are only considered statistically signi�cant when the 95% con�dence interval
does not include ‘0%’.
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Figure 4

Map of San Francisco Bay showing food dilution threshold risk exceedances based on corrected and
rescaled surface water concentrations of microplastics collected using manta trawl. Points represent
approximate coordinates of manta trawl sampling locations. Colors represent risk in relation to food
dilution thresholds in Mehinto et al. (2022; re-produced in Table S9). Greater risk can be seen within SFB
and San Pablo Bay relative to open-ocean waters outside of the SFB.

Supplementary Files

This is a list of supplementary �les associated with this preprint. Click to download.



Page 29/29

SupplementalInformation.pdf

https://assets.researchsquare.com/files/rs-1507100/v1/82cc8792f2f313d36c78e41a.pdf

