Bala R, Reiff P (2012) Improvements in short-term forecasting of geomagnetic activity. Space Weather, 10:S06001. doi:10.1029/2012SW000779.
Bartels J (1939) Potsdamer Erdmagnetische Kennziffern, 4. Mitteilung. Zeitschrift für Geophysik, 15: 214 – 221. doi:10.23689/fidgeo-3179.
Bartels J (1949) The standardized index, Ks, and the planetary index, Kp. IATME Bull., 12b, 97 – 120.
Black DI (1967) Cosmic ray effects and faunal extinctions at geomagnetic field reversals. Earth and Planetary Sci. Lett., 3: 225 – 236. doi:10.1016/0012‐821X(67)90042-8.
Boberg F, Wintoft P, Lundstedt H (2000) Real time Kp predictions from solar wind data using neural networks. Phys. Chem. Earth, Part C: Solar, Terrestrial & Planetary Science, 25(4), 275 – 280. doi:10.1016/S1464-1917(00)00016-7.
Costello KA (1998) Moving the Rice MSFM into a real-time forecast mode using solar wind driven forecast modules, Doctoral dissertation, Rice University.
Dungey JW (1961) Interplanetary magnetic field and the auroral zones, Phys. Rev. Lett., 6(2): 47 – 48. doi:10.1103/PhysRevLett.6.47.
Elliott HA, Jahn JM, McComas DJ (2013) The Kp index and solar wind speed relationship: Insights for improving space weather forecasts, Space Weather, 11:339 – 349. doi:10.1002/swe.20053.
Farris MH, Russell CT (1994) Determining the standoff distance of the bow shock: Mach number dependence and use of models, J. Geophys. Res: Space Physics, 99(A9): 17681 – 17689. doi:10.1029/94JA01020.
Gholipour A, Lucas C, Araabi BN (2004) Black box modeling of magnetospheric dynamics to forecast geomagnetic activity, Space Weather, 2: S07001. doi:10.1029/2003SW000039.
Glassmeier KH, Richter O, Vogt J, Möbus P, Schwalb A (2009) The Sun, geomagnetic polarity transitions, and possible biospheric effects: Review and illustrating model. Int. J. Astrobiol., 8(3): 147 – 159. doi:10.1017/S1473550409990073.
Glassmeier KH, Vogt J (2010) Magnetic polarity transitions and biospheric effects. Space Sci. Rev., 155(1–4):387–410. doi:10.1007/s11214-010-9659-6.
Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput., 9(8):1735 – 1780. doi:10.1162/neco.1997.9.8.1735.
Ji EY, Moon YJ, Park J, Lee JY, Lee DH (2013) Comparison of neural network and support vector machine methods for Kp forecasting. J. Geophys. Res: Space Physics, 118:5109 – 5117. doi:10.1002/jgra.50500.
Kamimura R (2015) Self-organizing selective potentiality learning to detect important input neurons, In Proceedings of 2015 IEEE International Conference on Systems, Man and Cybernetics (SMC), 1619 – 1626. doi:10.1109/SMC.2015.286.
Kamimura R, Kitajima R (2015) Selective potentiality maximization for input neuron selection in self-organizing maps, In Proceedings of 2015 International Joint Conference on Neural Networks (IJCNN), 1 – 8. doi:10.1109/ijcnn.2015.7280541.
Kitajima R, Endou K, Kamimura R (2016a) Creating a Model for Detecting Non-Continuous Customers in Retail Stores by Focusing on the Potentiality of Input Neurons, Commun. Operat. Res. Soc. Japan, 61(2):88 - 96 (In Japanese).
Kitajima R, Kamimura R, Uchida O, Toriumi F (2016b) Identifying important tweets by considering the potentiality of neurons, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, E99-A:8:1555 – 1559. doi:10.1587/transfun.e99.a.1555.
Kitajima R, Sakai H, Kamimura R (2019) Analysis of relationships between top messages and profitability by potential learning, J. Japan Soc. Fuzzy Theory Intell. Inform., 31(2):636 – 644. doi:10.3156/jsoft.31.2_636 (In Japanese).
Nagai A (1994) Prediction of magnetospheric parameters using artificial neural networks, Doctoral dissertation, Rice University.
Newell PT, Sotirelis T, Liou K, Meng CI, Rich FJ (2007) A nearly universal solar wind-magnetosphere coupling function inferred from 10 magnetospheric state variables. J. Geophys. Res: Space Physics, 112. doi:10.1029/2006JA012015.
Newell PT, Sotirelis T, Liou K, Rich FJ (2008) Pairs of solar wind-magnetosphere coupling functions: Combining a merging term with a viscous term works best, J. Geophys. Res: Space Physics,113:A04218. doi:10.1029/2007JA012825.
Rangarajan GK (1987) Indices of geomagnetic activity. In Jacobs, J. A. (Ed.), Ed., Geomagnetism, 3:323 – 384. Academic Press.
Shprits YY, Vasile R, Zhelavskaya IS (2019) Nowcasting and predicting the Kp index using historical values and real-time observations. Space Weather, 17:1219 – 1229. doi:10.1029/2018SW002141.
Snyder CW, Neugebauer M, Rao UR (1963) The solar wind velocity and its correlation with cosmic-ray variations and with solar and geomagnetic activity. J. Geophys. Res., 68:6361. doi:10.1029/JZ068i024p06361.
Tan Y, Hu Q, Wang Z, Zhong Q (2018) Geomagnetic index Kp forecasting with LSTM. Space Weather, 16. doi.org/10.1002/2017SW001764.
Thomsen MF (2004) Why Kp is such a good measure of magnetospheric convection, Space Weather, 2:S11004. doi:10.1029/2004SW000089.
Vatanen T, Osmala M, Raiko T, Lagus K, Sysi-Aho M, Orešič M, Honkela T, Lähdesmäki H (2015) Self-organization and missing values in SOM and GTM. Neurocomputing, 147(5):60 – 70. doi:10.1016/j.neucom.2014.02.061.
Wing S, Johnson JR, Jen J, Meng CI, Sibeck DG, Bechtold K, Takahashi K (2005) Kp forecast models. J. Geophys. Res., 110. doi:10.1029/2004JA010500.
Wintoft P, Wik M, Matzka J, Shprits Y (2017) Forecasting Kp from solar wind data: Input parameter study using 3-hour averages and 3-hour range values. J. Space Weather Space Clim., 7:A29. doi:10.1051/swsc/2017027.
Zhelavskaya IS, Vasile R, Shprits YY, Stolle C, Matzka J (2019) Systematic analysis of machine learning and feature selection techniques for prediction of the Kp index. Space Weather, 17:1461–1486. doi:10.1029/2019SW002271.