1. Tsai, T.T. et al. Long-term survival in patients presenting with type B acute aortic dissection: insights from the International Registry of Acute Aortic Dissection. Circulation 114, 2226-31 (2006).
2. Erbel, R. et al. 2014 ESC Guidelines on the diagnosis and treatment of aortic diseases: Document covering acute and chronic aortic diseases of the thoracic and abdominal aorta of the adult. The Task Force for the Diagnosis and Treatment of Aortic Diseases of the European Society of Cardiology (ESC). Eur Heart J 35, 2873-926 (2014).
3. LeMaire, S.A. et al. Genome-wide association study identifies a susceptibility locus for thoracic aortic aneurysms and aortic dissections spanning FBN1 at 15q21.1. Nat Genet 43, 996-1000 (2011).
4. Guo, D.C. et al. Genetic Variants in LRP1 and ULK4 Are Associated with Acute Aortic Dissections. Am J Hum Genet 99, 762-769 (2016).
5. Roychowdhury, T. et al. Regulatory variants in TCF7L2 are associated with thoracic aortic aneurysm. Am J Hum Genet 108, 1578-1589 (2021).
6. Renard, M. et al. Clinical Validity of Genes for Heritable Thoracic Aortic Aneurysm and Dissection. J Am Coll Cardiol 72, 605-615 (2018).
7. Klarin, D. et al. Genetic Architecture of Abdominal Aortic Aneurysm in the Million Veteran Program. Circulation (2020).
8. Ashvetiya, T. et al. Identification of novel genetic susceptibility loci for thoracic and abdominal aortic aneurysms via genome-wide association study using the UK Biobank Cohort. PLoS One 16, e0247287 (2021).
9. Denny, J.C. et al. PheWAS: demonstrating the feasibility of a phenome-wide scan to discover gene-disease associations. Bioinformatics 26, 1205-10 (2010).
10. Denny, J.C. et al. Systematic comparison of phenome-wide association study of electronic medical record data and genome-wide association study data. Nat Biotechnol 31, 1102-10 (2013).
11. Elsworth, B. et al. The MRC IEU OpenGWAS data infrastructure. bioRxiv, 2020.08.10.244293 (2020).
12. Hemani, G. et al. The MR-Base platform supports systematic causal inference across the human phenome. Elife 7(2018).
13. Zhu, Z. et al. Causal associations between risk factors and common diseases inferred from GWAS summary data. Nature Communications 9, 224 (2018).
14. Isselbacher, E.M. Thoracic and abdominal aortic aneurysms. Circulation 111, 816-28 (2005).
15. Reed, D., Reed, C., Stemmermann, G. & Hayashi, T. Are aortic aneurysms caused by atherosclerosis? Circulation 85, 205-11 (1992).
16. Wootton, R.E. et al. Evidence for causal effects of lifetime smoking on risk for depression and schizophrenia: a Mendelian randomisation study. Psychol Med, 1-9 (2019).
17. Global Lipids Genetics Consortium et al. Discovery and refinement of loci associated with lipid levels. Nat Genet 45, 1274-83 (2013).
18. Evangelou, E. et al. Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. Nat Genet 50, 1412-1425 (2018).
19. Wood, A.R. et al. Defining the role of common variation in the genomic and biological architecture of adult human height. Nat Genet 46, 1173-86 (2014).
20. Burgess, S., Bowden, J., Fall, T., Ingelsson, E. & Thompson, S.G. Sensitivity Analyses for Robust Causal Inference from Mendelian Randomization Analyses with Multiple Genetic Variants. Epidemiology 28, 30-42 (2017).
21. Verbanck, M., Chen, C.Y., Neale, B. & Do, R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet 50, 693-698 (2018).
22. Bowden, J., Davey Smith, G. & Burgess, S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol 44, 512-25 (2015).
23. Marfan, A.B. Un cas de deformation congenitale des quatres membres plus prononcee aux extremities characterisee par lallongement des os avec un certain degre d amincissement. Bull Mem Soc Med Hop Paris 13, 220 (1896).
24. Szabo, Z. et al. Aortic aneurysmal disease and cutis laxa caused by defects in the elastin gene. J Med Genet 43, 255-8 (2006).
25. Boucher, P., Gotthardt, M., Li, W.P., Anderson, R.G. & Herz, J. LRP: role in vascular wall integrity and protection from atherosclerosis. Science 300, 329-32 (2003).
26. Davis, F.M. et al. Smooth muscle cell deletion of low-density lipoprotein receptor-related protein 1 augments angiotensin II-induced superior mesenteric arterial and ascending aortic aneurysms. Arterioscler Thromb Vasc Biol 35, 155-62 (2015).
27. Mancuso, N. et al. Probabilistic fine-mapping of transcriptome-wide association studies. Nat Genet 51, 675-682 (2019).
28. GTEx Consortium. Genetic effects on gene expression across human tissues. Nature 550, 204-213 (2017).
29. Tsutsui, K. et al. ADAMTSL-6 is a novel extracellular matrix protein that binds to fibrillin-1 and promotes fibrillin-1 fibril formation. J Biol Chem 285, 4870-82 (2010).
30. Elbitar, S. et al. Pathogenic variants in THSD4, encoding the ADAMTS-like 6 protein, predispose to inherited thoracic aortic aneurysm. Genet Med 23, 111-122 (2021).
31. Finucane, H.K. et al. Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types. Nat Genet 50, 621-629 (2018).
32. Ducy, P., Schinke, T. & Karsenty, G. The osteoblast: a sophisticated fibroblast under central surveillance. Science 289, 1501-4 (2000).
33. Pirruccello, J.P. et al. Deep learning enables genetic analysis of the human thoracic aorta. Nat Genet (2021).
34. Li, Y. et al. Single-Cell Transcriptome Analysis Reveals Dynamic Cell Populations and Differential Gene Expression Patterns in Control and Aneurysmal Human Aortic Tissue. Circulation 142, 1374-1388 (2020).
35. Stuart, T. et al. Comprehensive Integration of Single-Cell Data. Cell 177, 1888-1902.e21 (2019).
36. Dingemans, K.P., Teeling, P., Lagendijk, J.H. & Becker, A.E. Extracellular matrix of the human aortic media: an ultrastructural histochemical and immunohistochemical study of the adult aortic media. Anat Rec 258, 1-14 (2000).
37. Joshi, M.B. et al. T-cadherin protects endothelial cells from oxidative stress-induced apoptosis. Faseb j 19, 1737-9 (2005).
38. Philippova, M. et al. Atypical GPI-anchored T-cadherin stimulates angiogenesis in vitro and in vivo. Arterioscler Thromb Vasc Biol 26, 2222-30 (2006).
39. The 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature 526, 68-74 (2015).
40. Ruan, Y. et al. Improving Polygenic Prediction in Ancestrally Diverse Populations. medRxiv, 2020.12.27.20248738 (2021).
41. Richards, S. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17, 405-24 (2015).
42. Ioannidis, N.M. et al. REVEL: An Ensemble Method for Predicting the Pathogenicity of Rare Missense Variants. Am J Hum Genet 99, 877-885 (2016).
43. Karczewski, K.J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434-443 (2020).
44. Klarin, D. et al. Genetics of blood lipids among ~300,000 multi-ethnic participants of the Million Veteran Program. Nat Genet 50, 1514-1523 (2018).
45. Harrison, S.C. et al. Genetic Association of Lipids and Lipid Drug Targets With Abdominal Aortic Aneurysm: A Meta-analysis. JAMA Cardiol 3, 26-33 (2018).
46. Do, R. et al. Common variants associated with plasma triglycerides and risk for coronary artery disease. Nat Genet 45, 1345-52 (2013).
47. Levin, M.G. et al. Prioritizing the Role of Major Lipoproteins and Subfractions as Risk Factors for Peripheral Artery Disease. Circulation In Press(2021).
48. Majesky, M.W. Developmental basis of vascular smooth muscle diversity. Arterioscler Thromb Vasc Biol 27, 1248-58 (2007).
49. Khera, A.V. et al. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat Genet 50, 1219-1224 (2018).
50. Baker, E. & Escott-Price, V. Polygenic Risk Scores in Alzheimer's Disease: Current Applications and Future Directions. Front Digit Health 2, 14 (2020).
51. Reitter-Pfoertner, S. et al. The influence of thrombophilia on the long-term survival of patients with a history of venous thromboembolism. Thromb Haemost 109, 79-84 (2013).
52. Wolford, B.N. et al. Clinical Implications of Identifying Pathogenic Variants in Individuals With Thoracic Aortic Dissection. Circ Genom Precis Med 12, e002476 (2019).
53. Marouli, E. et al. Rare and low-frequency coding variants alter human adult height. Nature (2017).
54. Zheng, J. et al. LD Hub: a centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis. Bioinformatics 33, 272-279 (2017).
55. Gusev, A. et al. Integrative approaches for large-scale transcriptome-wide association studies. Nat Genet 48, 245-52 (2016).
56. Guo, H. et al. Integration of disease association and eQTL data using a Bayesian colocalisation approach highlights six candidate causal genes in immune-mediated diseases. Hum Mol Genet 24, 3305-13 (2015).
57. Angueira, A.R. et al. Defining the lineage of thermogenic perivascular adipose tissue. Nat Metab 3, 469-484 (2021).
58. Frazer, K.A. et al. A second generation human haplotype map of over 3.1 million SNPs. Nature 449, 851-61 (2007).
59. Mbatchou, J. et al. Computationally efficient whole-genome regression for quantitative and binary traits. Nat Genet 53, 1097-1103 (2021).
60. Willer, C.J., Li, Y. & Abecasis, G.R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190-1 (2010).
61. R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.(2008).