[1] Umphred DA, Lazaro RT. Neurological rehabilitation. Elsevier Health Sciences; 2012
[2] De Ryck A, Brouns R, Geurden M, Elseviers M, De Deyn PP, Engelborghs S. Risk factors for poststroke depression: identification of inconsistencies based on a systematic review. J Geriatr Psychiatry Neurol. 2014;27:147–58. https://doi.org/10.1177/0891988714527514
[3] Pohjasvaara T, Vataja R, Leppävuori A, Kaste M, Erkinjuntti T. Suicidal ideas in stroke patients 3 and 15 months after stroke. Cerebrovasc Dis. 2001;12:21–6. https://doi.org/10.1159/000047676
[4] Fuller-Thomson E, Tulipano MJ, Song M. The association between depression, suicidal ideation, and stroke in a population-based sample. Int J Stroke. 2012;7:188–94. https://doi.org/10.1111/j.1747-4949.2011.00702.x
[5] Park SM. The impact of the COVID-19 pandemic on mental health among population. kjhep. 2020;37:83–91. https://doi.org/10.14367/kjhep.2020.37.5.83
[6] Poudel K, Subedi P. Impact of COVID-19 pandemic on socioeconomic and mental health aspects in Nepal. Int J Soc Psychiatry. 2020;66:748–55. https://doi.org/10.1177/0020764020942247
[7] Mash HBH, Ursano RJ, Kessler RC, Naifeh JA, Fullerton CS, Aliaga PA, et al. Predictors of suicide attempt within 30 days after first medically documented suicidal ideation in US Army soldiers. Am J Psychiatry. 2021;178:1050–9. https://doi.org/10.1176/appi.ajp.2021.20111570
[8] Faber RA. Suicide in neurological disorders. Neuroepidemiology. 2003;22:103–5. https://doi.org/10.1159/000068751
[9] Pompili M, Venturini P, Campi S, Seretti ME, Montebovi F, Lamis DA, et al. Do stroke patients have an increased risk of developing suicidal ideation or dying by suicide? An overview of the current literature. CNS Neurosci Ther. 2012;18:711–21. https://doi.org/10.1111/j.1755-5949.2012.00364.x
[10] Shin KM, Cho SM, Hong CH, Park KS, Shin YM, Lim KY, et al. Suicide among the elderly and associated factors in South Korea. Aging Ment Health. 2013;17:109–14. https://doi.org/10.1080/13607863.2012.702732
[11] Brugnara G, Neuberger U, Mahmutoglu MA, Foltyn M, Herweh C, Nagel S, et al. Multimodal predictive modeling of endovascular treatment outcome for acute ischemic stroke using machine-learning. Stroke. 2020;51:3541–51. https://doi.org/10.1161/STROKEAHA.120.030287
[12] Heo J, Yoon JG, Park H, Kim YD, Nam HS, Heo JH. Machine learning–based model for prediction of outcomes in acute stroke. Stroke. 2019;50:1263–5. https://doi.org/10.1161/STROKEAHA.118.024293
[13] Scrutinio D, Ricciardi C, Donisi L, Losavio E, Battista P, Guida P, et al. Machine learning to predict mortality after rehabilitation among patients with severe stroke. Sci Rep. 2020;10:20127. https://doi.org/10.1038/s41598-020-77243-3
[14] Tozlu C, Edwards D, Boes A, Labar D, Tsagaris KZ, Silverstein J, et al. Machine learning methods predict individual upper-limb motor impairment following therapy in chronic stroke. Neurorehabil Neural Repair. 2020;34:428–39. https://doi.org/10.1177/1545968320909796
[15] Liu R, Yue Y, Jiang H, Lu J, Wu A, Geng D, et al. A risk prediction model for post-stroke depression in Chinese stroke survivors based on clinical and socio-psychological features. Oncotarget. 2017;8:62891–9. https://doi.org/10.18632/oncotarget.16907
[16] Wang J, Zhao D, Lin M, Huang X, Shang X. Post-stroke anxiety analysis via machine learning methods. Front Aging Neurosci. 2021;13:657937. https://doi.org/10.3389/fnagi.2021.657937
[17] Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12:189–98. https://doi.org/10.1016/0022-3956(75)90026-6
[18] Miyamoto S, Kondo T, Suzukamo Y, Michimata A, Izumi S-I. Reliability and validity of the Manual Function Test in patients with stroke. Am J Phys Med Rehabil. 2009;88:247–55. https://doi.org/10.1097/PHM.0b013e3181951133
[19] Shah S, Vanclay F, Cooper B. Improving the sensitivity of the Barthel index for stroke rehabilitation. J Clin Epidemiol. 1989;42:703–9. https://doi.org/10.1016/0895-4356(89)90065-6
[20] Sherer M, Maddux JE, Mercandante B, Prentice-Dunn S, Jacobs B, Rogers RW. The self-efficacy scale: construction and validation. Psychol Rep. 1982;51:663–71. https://doi.org/10.2466/pr0.1982.51.2.663
[21] Kim H, Hwang Y, Yu J, Jung J, Woo H, Jung H. The correlation between depression, motivation for rehabilitation, activities of daily living, and quality of life in stroke patients. The J Korean Soc Occup Ther. 2009;17:41–53
[22] Beck AT, Steer R. Beck Anxiety Inventory (BAI). Überblick Reliabilitäts Validitätsbefunde Klin Außerklinischen Selbst Fremdbeurteilungsverfahren. 1988;7
[23] Beck AT, Steer RA, Carbin MG. Psychometric properties of the Beck Depression Inventory: twenty-five years of evaluation. Clin Psychol Rev. 1988;8:77–100. https://doi.org/10.1016/0272-7358(88)90050-5
[24] Beck AT, Kovacs M, Weissman A. Assessment of suicidal intention: the Scale for Suicide Ideation. J Consult Clin Psychol. 1979;47:343–52. https://doi.org/10.1037/0022-006x.47.2.343
[25] Shin MS, Park KB, Oh KJ, Kim ZS. A study of suicidal ideation among high school students: the structural relation among depression, hopelessness, and suicidal ideation. Korean J Clin Psychol. 1990;9:1–19
[26] Chen T, Xgboost GC. A scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining; 2016
[27] Habib A-ZSB, Tasnim T, Billah MM. A study on coronary disease prediction using boosting-based ensemble machine learning approaches. Paper presented at the 2019 2nd International Conference on Innovation in Engineering and Technology (ICIET); 2019
[28] Saber M, Boulmaiz T, Guermoui M, Abdrado KI, Kantoush SA, Sumi T, et al. Examining LightGBM and CatBoost models for wadi flash flood susceptibility prediction. Geocarto Int. 2021:1–26. https://doi.org/10.1080/10106049.2021.1974959
[29] Dorogush AV, Ershov V, Gulin A. CatBoost: gradient boosting with categorical features support [Internet]. arXiv [Preprint]. Available from: arXiv:1810.11363
[30] Chekroud AM, Bondar J, Delgadillo J, Doherty G, Wasil A, Fokkema M, et al. The promise of machine learning in predicting treatment outcomes in psychiatry. World Psychiatry. 2021;20:154–70. https://doi.org/10.1002/wps.20882
[31] Jørgensen HS, Nakayama H, Raaschou HO, Vive-Larsen J, Støier M, Olsen TS. Outcome and time course of recovery in stroke. Part I: Outcome. The Copenhagen Stroke Study. Arch Phys Med Rehabil. 1995;76:399–405. https://doi.org/10.1016/s0003-9993(95)80567-2
[32] Kim J-Y, Lee D-H, Hwang J-W, Lee K-U. Factors influencing suicidal ideation among lower-income group participating self-sufficiency Program in Gangwon Province, Korea. J Korea Contents Assoc. 2016;16:91–101. https://doi.org/10.5392/JKCA.2016.16.12.091
[33] Park E. Suicide ideation and the related factors among Korean adults by gender. J Agr Med Community Health. 2014;39:161–75. https://doi.org/10.5393/JAMCH.2014.39.3.161
[34] Morris PL, Robinson RG, Raphael B, Bishop D. The relationship between the perception of social support and post-stroke depression in hospitalized patients. Psychiatry. 1991;54:306–16. https://doi.org/10.1080/00332747.1991.11024559
[35] Choi R, Moon H-J, Hwang B-D. The influence of chronic disease on the stress cognition, depression experience and suicide thoughts of the elderly. The Korean. Health Serv Manag. 2010;4:73–84
[36] Kang Y, Na DL, Hahn S. A validity study on the Korean Mini-Mental State Examination (K-MMSE) in dementia patients. J Korean Neurol Assoc. 1997;15:300–8
[37] Carod-Artal FJ, Egido JA. Quality of life after stroke: the importance of a good recovery. Cerebrovasc Dis. 2009;27;Suppl 1:204–14. https://doi.org/10.1159/000200461
[38] Kim C, Koo K. The effects of physical activities of disabled men with stroke on depression and suicidal ideation. KAHPERD. 2017;56:657–64. https://doi.org/10.23949/kjpe.2017.05.56.3.49
[39] Yu S-J, Kim H-S, Kim K-S, Baik H-G. The effects of community-based self-help management program by strengthening self-efficacy of post stroke elderly patients. The Korean J Rehabil Nurs. 2001;4:187–97
[40] Diekstra RF. The epidemiology of suicide and parasuicide. Acta Psychiatr Scand Suppl. 1993;371:9–20. https://doi.org/10.1111/j.1600-0447.1993.tb05368.x
[41] Choi J, Yang H, Oh H. Store sales prediction using gradient boosting model;25. J Korea Institute Inf Commun Eng. p. 171–7; 2021
[42] Oh H-R, Son A-L, Lee Z. Occupational accident prediction modeling and analysis using SHAP. dcs. 2021;22:1115–23. https://doi.org/10.9728/dcs.2021.22.7.1115
[43] Prokhorenkova L, Gusev G, Vorobev A, Dorogush AV, Gulin A. CatBoost: unbiased boosting with categorical features [Internet]. arXiv [Preprint]. 2017. Available from: arXiv:1706.09516
[44] Chu Y, Knell G, Brayton RP, Burkhart SO, Jiang X, Shams S. Machine learning to predict sports-related concussion recovery using clinical data. Ann Phys Rehabil Med. 2022;65:101626. https://doi.org/10.1016/j.rehab.2021.101626
[45] Ge X, Sun J, Lu B, Chen Q, Xun W, Jin Y. Classification of oolong tea varieties based on hyperspectral imaging technology and BOSS‐LightGBM model. J Food Process Eng. 2019;42:e13289. https://doi.org/10.1111/jfpe.13289
[46] Swalin A. CatBoost vs. Light GBM vs. XGBoost. Towards Data Sci. 2018;11
[47] Muller MP, Tomlinson G, Marrie TJ, Tang P, McGeer A, Low DE, et al. Can routine laboratory tests discriminate between severe acute respiratory syndrome and other causes of community-acquired pneumonia? Clin Infect Dis. 2005;40:1079–86. https://doi.org/10.1086/428577
[48] Forkmann T, Brähler E, Gauggel S, Glaesmer H. Prevalence of suicidal ideation and related risk factors in the German general population. J Nerv Ment Dis. 2012;200:401–5. https://doi.org/10.1097/NMD.0b013e31825322cf
[49] Almhdawi KA, Alazrai A, Kanaan S, Shyyab AA, Oteir AO, Mansour ZM, et al. Post-stroke depression, anxiety, and stress symptoms and their associated factors: a cross-sectional study. Neuropsychol Rehabil. 2021;31:1091–104. https://doi.org/10.1080/09602011.2020.1760893
[50] Robinson RG, Jorge RE. Post-stroke depression: a review. Am J Psychiatry. 2016;173:221–31. https://doi.org/10.1176/appi.ajp.2015.15030363