1. El-Serag, H.B., Hepatocellular carcinoma. N Engl J Med, 2011. 365(12): p. 1118-27.
2. El-Serag, H.B. and K.L. Rudolph, Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology, 2007. 132(7): p. 2557-76.
3. Yang, J.D., et al., A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol, 2019. 16(10): p. 589-604.
4. Marrero, J.A., et al., Alpha-fetoprotein, des-gamma carboxyprothrombin, and lectin-bound alpha-fetoprotein in early hepatocellular carcinoma. Gastroenterology, 2009. 137(1): p. 110-8.
5. Colli, A., et al., Accuracy of ultrasonography, spiral CT, magnetic resonance, and alpha-fetoprotein in diagnosing hepatocellular carcinoma: a systematic review. Am J Gastroenterol, 2006. 101(3): p. 513-23.
6. Chedid, M.F., et al., HEPATOCELLULAR CARCINOMA: DIAGNOSIS AND OPERATIVE MANAGEMENT. Arq Bras Cir Dig, 2017. 30(4): p. 272-278.
7. Sanchez Calle, A., et al., Emerging roles of long non-coding RNA in cancer. Cancer Sci, 2018. 109(7): p. 2093-2100.
8. Struhl, K., Transcriptional noise and the fidelity of initiation by RNA polymerase II. Nat Struct Mol Biol, 2007. 14(2): p. 103-5.
9. Wilusz, J.E., H. Sunwoo, and D.L. Spector, Long noncoding RNAs: functional surprises from the RNA world. Genes Dev, 2009. 23(13): p. 1494-504.
10. Heilig, R., et al., The DNA sequence and analysis of human chromosome 14. Nature, 2003. 421(6923): p. 601-7.
11. Hernandez, A., Structure and function of the type 3 deiodinase gene. Thyroid, 2005. 15(8): p. 865-74.
12. Hernandez, A., et al., Complex organization and structure of sense and antisense transcripts expressed from the DIO3 gene imprinted locus. Genomics, 2004. 83(3): p. 413-24.
13. Reik, W. and J. Walter, Genomic imprinting: parental influence on the genome. Nat Rev Genet, 2001. 2(1): p. 21-32.
14. Wang, M., et al., Long non-coding RNA DIO3OS/let-7d/NF-kappaB2 axis regulates cells proliferation and metastasis of thyroid cancer cells. J Cell Commun Signal, 2021. 15(2): p. 237-250.
15. Cui, K., et al., Long noncoding RNA DIO3OS interacts with miR-122 to promote proliferation and invasion of pancreatic cancer cells through upregulating ALDOA. Cancer Cell Int, 2019. 19: p. 202.
16. Liu, J., et al., An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics. Cell, 2018. 173(2): p. 400-416.e11.
17. Subramanian, A., et al., Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A, 2005. 102(43): p. 15545-50.
18. Bindea, G., et al., Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity, 2013. 39(4): p. 782-95.
19. Danaher, P., et al., Gene expression markers of Tumor Infiltrating Leukocytes. J Immunother Cancer, 2017. 5: p. 18.
20. Sun, C., et al., NK cell receptor imbalance and NK cell dysfunction in HBV infection and hepatocellular carcinoma. Cell Mol Immunol, 2015. 12(3): p. 292-302.
21. Global Burden of Disease Cancer, C., et al., Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2017: A Systematic Analysis for the Global Burden of Disease Study. JAMA Oncol, 2019. 5(12): p. 1749-1768.
22. Forner, A., M. Reig, and J. Bruix, Hepatocellular carcinoma. The Lancet, 2018. 391(10127): p. 1301-1314.
23. Parkin, D.M., et al., Estimating the world cancer burden: Globocan 2000. Int J Cancer, 2001. 94(2): p. 153-6.
24. Chen, W., et al., Cancer statistics in China, 2015. CA Cancer J Clin, 2016. 66(2): p. 115-32.
25. Bhan, A., M. Soleimani, and S.S. Mandal, Long Noncoding RNA and Cancer: A New Paradigm. Cancer Res, 2017. 77(15): p. 3965-3981.
26. Song, M., et al., Large-scale analyses identify a cluster of novel long noncoding RNAs as potential competitive endogenous RNAs in progression of hepatocellular carcinoma. Aging (Albany NY), 2019. 11(22): p. 10422-10453.
27. Tanaka, A. and S. Sakaguchi, Regulatory T cells in cancer immunotherapy. Cell Res, 2017. 27(1): p. 109-118.
28. Nishikawa, H. and S. Sakaguchi, Regulatory T cells in tumor immunity. Int J Cancer, 2010. 127(4): p. 759-67.
29. Marson, A., et al., Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature, 2007. 445(7130): p. 931-5.
30. Vignali, D.A., L.W. Collison, and C.J. Workman, How regulatory T cells work. Nat Rev Immunol, 2008. 8(7): p. 523-32.
31. Zhou, X., et al., Tissue resident regulatory T cells: novel therapeutic targets for human disease. Cell Mol Immunol, 2015. 12(5): p. 543-52.
32. Sakaguchi, S., et al., Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol, 1995. 155(3): p. 1151-64.
33. Echarti, A., et al., CD8+ and Regulatory T cells Differentiate Tumor Immune Phenotypes and Predict Survival in Locally Advanced Head and Neck Cancer. Cancers (Basel), 2019. 11(9).
34. Cao, X., et al., Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance. Immunity, 2007. 27(4): p. 635-46.
35. Zahorchak, A.F., et al., Monocytic myeloid-derived suppressor cells generated from rhesus macaque bone marrow enrich for regulatory T cells. Cell Immunol, 2018. 329: p. 50-55.
36. Zhao, Y., et al., Resveratrol ameliorates Lewis lung carcinoma-bearing mice development, decreases granulocytic myeloid-derived suppressor cell accumulation and impairs its suppressive ability. Cancer Sci, 2018. 109(9): p. 2677-2686.
37. Murdoch, C., et al., The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer, 2008. 8(8): p. 618-31.
38. Choueiry, F., et al., CD200 promotes immunosuppression in the pancreatic tumor microenvironment. J Immunother Cancer, 2020. 8(1).
39. Görgün, G.T., et al., Tumor-promoting immune-suppressive myeloid-derived suppressor cells in the multiple myeloma microenvironment in humans. Blood, 2013. 121(15): p. 2975-87.
40. Zhang, B., et al., Circulating and tumor-infiltrating myeloid-derived suppressor cells in patients with colorectal carcinoma. PLoS One, 2013. 8(2): p. e57114.
41. Hoechst, B., et al., A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces CD4(+)CD25(+)Foxp3(+) T cells. Gastroenterology, 2008. 135(1): p. 234-43.
42. Fregni, G., et al., NK cells sense tumors, course of disease and treatments: Consequences for NK-based therapies. Oncoimmunology, 2012. 1(1): p. 38-47.
43. Habif, G., et al., Targeting natural killer cells in solid tumors. Cell Mol Immunol, 2019. 16(5): p. 415-422.
44. Garcia-Iglesias, T., et al., Low NKp30, NKp46 and NKG2D expression and reduced cytotoxic activity on NK cells in cervical cancer and precursor lesions. BMC Cancer, 2009. 9: p. 186.
45. Schleypen, J.S., et al., Cytotoxic markers and frequency predict functional capacity of natural killer cells infiltrating renal cell carcinoma. Clin Cancer Res, 2006. 12(3 Pt 1): p. 718-25.
46. Mantovani, S., et al., Deficient Natural Killer Cell NKp30-Mediated Function and Altered NCR3 Splice Variants in Hepatocellular Carcinoma. Hepatology, 2019. 69(3): p. 1165-1179.
47. Lei, X., et al., Immune cells within the tumor microenvironment: Biological functions and roles in cancer immunotherapy. Cancer Lett, 2020. 470: p. 126-133.
48. Miranda, A., et al., Cancer stemness, intratumoral heterogeneity, and immune response across cancers. Proc Natl Acad Sci U S A, 2019. 116(18): p. 9020-9029.