1 Heslop‐Harrison JS, Schwarzacher T. Organisation of the plant genome in chromosomes. The Plant Journal. 2011, 66.1: 18-33.
2 Bennetzen JL, Wang H. The contributions of transposable elements to the structure, function, and evolution of plant genomes. Annual review of plant biology. 2014, 65:505-530.
3 Kazazian HH. Mobile elements: drivers of genome evolution. Science. 2004, 303(5664):1626-1632.
4 Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, et al. A unified classification system for eukaryotic transposable elements. Nature reviews genetics. 2007, 8(12): 973.
5 Neumann P, Novák P, Hoštáková N, Macas J. Systematic survey of plant LTR-retrotransposons elucidates phylogenetic relationships of their polyprotein domains and provides a reference for element classification. Mobile DNA. 2019, 10(1): 1.
6 Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, et al. The B73 maize genome: complexity, diversity, and dynamics. Science. 2009, 326(5956):1112-1115.
7 Orozco-Arias S, Isaza G, Guyot R. Retrotransposons in plant genomes: Structure, identification, and classification through bioinformatics and machine learning. International journal of molecular sciences. 2019, 20(15):3837.
8 Bennetzen JL. Mechanisms and rates of genome expansion and contraction in flowering plants. Genetica. 2002, 115(1):29-36.
9 Dodsworth S, Jang TS, Struebig M, Chase MW, Weiss-Schneeweiss H, Leitch AR. Genome-wide repeat dynamics reflect phylogenetic distance in closely related allotetraploid Nicotiana (Solanaceae). Plant systematics and evolution. 2017, 303(8):1013-1020.
10 De Souza TB, Chaluvadi SR, Johnen L, Marques A, González-Elizondo MS, Bennetzen JL, Vanzela ALL. Analysis of retrotransposon abundance, diversity and distribution in holocentric Eleocharis (Cyperaceae) genomes. Annals of botany. 2018, 122(2): 279-290.
11 Hirsch CD, Springer NM. Transposable element influences on gene expression in plants. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 2017. 1860(1), 157-165.
12 Heslop-Harrison JS, Brandes A, Schwarzacher T. Tandemly repeated DNA sequences and centromeric chromosomal regions of Arabidopsis species. Chromosome research, 2003. 11, 241-253.
13 Underwood CJ, Henderson IR, Martienssen RA. Genetic and epigenetic variation of transposable elements in Arabidopsis. Current opinion in plant biology. 2017 Apr 1;36:135-41.
14 Santos FC, Guyot R, Do Valle CB, Chiari L, Techio VH, Heslop-Harrison P, Vanzela ALL. Chromosomal distribution and evolution of abundant retrotransposons in plants: gypsy elements in diploid and polyploid Brachiaria forage grasses. Chromosome research. 2015, 23(3):571-582.
15 Mlinarec J, Franjević D, Harapin J, Besendorfer V. The impact of the Tekay chromoviral elements on genome organisation and evolution of Anemone sl (Ranunculaceae). Plant Biology. 2016 Mar;18(2):332-47.
16 Gaeta ML, Yuyama PM, Sartori D, Fungaro MHP, Vanzela ALL. Occurrence and chromosome distribution of retroelementsand NUPT sequences in Copaifera langsdorffii Desf. (Caesalpinioideae). Chromosome research. 2010, 18:515–524.
17 Yang TJ, Lee S, Chang SB, Yu Y, de Jong JH, Wing RA. Indepth sequence analysis of the centromeric region of tomatochromosome 12: Identification of a large CAA block and char-acterization of centromeric retrotranposons. Chromosoma. 2005, 114:103-117.
18 Park M, Park J, Kim S, Kwon J-K, Park HM, Bae IH, Yang T-J, Lee Y-H, Kang B-C, Choi D. Evolution of the large genome in Capsicum annuum occurred through accumulation of single-type long terminal repeat retrotransposons and their derivatives. The plant journal. 2012, 69:1018-1029.
19 Kim S, Park M, Yeom SI, Kim YM, Lee JM, Lee HA, et al. Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nature genetics. 2014, 46(3):270.
20 Moscone EA, Lambrou M, Hunziker AT, Ehrendorfer F. Giemsa C-banded karyotypes in Capsicum (Solanaceae). Plant systematics and evolution. 1993, 186(3-4):213-229.
21 Park YK, Kim BD, Kim BS, Armstrong KC, Kim NS. Karyotyping of the chromosomes and physical mapping of the 5S rRNA and 18S-26S rRNA gene families in five different species in Capsicum. Genes & genetic systems. 1999, 74(4):149-157.
22 Park YK, Park KC, Park CH, Kim NS. Chromosomal localization and sequence variation of 5S rRNA gene in five Capsicum species. Molecules and cells. 2000, 10(1):18-24.
23 Scaldaferro MA, Grabiele M, Moscone EA. Heterochromatin type, amount and distribution in wild species of chili peppers (Capsicum, Solanaceae). Genetic resources and crop evolution. 2013, 60(2):693-709.
24 Scaldaferro MA, da Cruz MVR, Cecchini NM, Moscone EA. FISH and AgNor mapping of the 45S and 5S rRNA genes in wild and cultivated species of Capsicum (Solananceae). Genome. 2015, 59(2):95-113.
25 Aguilera PM, Debat HJ, Grabiele M. An integrated physical map of the cultivated hot chili pepper, Capsicum baccatum var. Pendulum. International Journal of Agriculture & Biology. 2017, doi: 10.17957/IJAB/15.0303
26 Martins LDV, Peron AP, Lopes ÂCDA, Gomes RLF., Carvalho RD, Feitoza LDL. Heterochromatin distribution and histone modification patterns of H4K5 acetylation and H3S10 phosphorylation in Capsicum L. Crop Breeding and applied biotechnology. 2018, 18(2):161-168.
27 Moreira AFP, Ruas PM., De Fátima Ruas, C, Baba VY, Giordani W, Arruda IM, et al. Genetic diversity, population structure and genetic parameters of fruit traits in Capsicum chinense. Scientia Horticulturae. 2018, 236, 1-9.
28 Qin C, Yu C, Shen Y, Fang X, Chen L, Min J, et al. Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization. Proceedings of the national academy of sciences. 2014, 111(14):5135-5140.
29 McCarthy EM, McDonald JF. LTR_STRUC: a novel search and identification program for LTR retrotransposons. Bioinformatics. 2003 Feb 12;19(3):362-7.
30 Sonnhammer EL, Durbin R. A dot-matrix program with dynamic threshold control suited for genomic DNA and protein sequence analysis. Gene. 1995, 167(1-2):GC1-GC10.
31 Carver T, Harris SR, Berriman M, Parkhill J, McQuillan JA. Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics. 2011 Dec 22;28(4):464-9.
32 Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic acids research. 1994 Nov 11;22(22):4673-80.
33 Darling AC, Mau B, Blattner FR, Perna NT. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome research. 2004 Jul 1;14(7):1394-403.
34 Galindo-González L, Mhiri C, Deyholos MK, Grandbastien MA. LTR-retrotransposons in plants: Engines of evolution. Gene. 2017, 626:14-25.
35 Lisch D. How important are transposons for plant evolution?. Nature reviews genetics. 2013, 14(1):49.
36 Neumann P, Navrátilová A, Koblížková A, Kejnovský E, Hřibová E, Hobza R, Macas J. Plant centromeric retrotransposons: a structural and cytogenetic perspective. Mobile DNA. 2011, 2(1):4.
37 De Castro Nunes R, Orozco-Arias S, Crouzillat D, Mueller LA, Strickler SR, Descombes P, Vanzela AL. Structure and distribution of centromeric retrotransposons at diploid and allotetraploid Coffea centromeric and pericentromeric regions. Frontiers in plant science. 2018, 9:175.
38 Negi P, Rai AN, Suprasanna P. Moving through the stressed genome: emerging regulatory roles for transposons in plant stress response. Frontiers in plant science. 2016, 7:1448
39 Xu S, Brockmöller T, Navarro-Quezada A, Kuhl H, Gase K, Ling Z, et al. Wild tobacco genomes reveal the evolution of nicotine biosynthesis. Proceedings of the National Academy of Sciences. 2017, 114(23), 6133-6138.
40 Makarevitch I, Waters AJ, West PT, Stitzer M, Hirsch CN, Ross-Ibarra J, Springer NM. Transposable elements contribute to activation of maize genes in response to abiotic stress. PLoS genetics. 2015, 11(1), e1004915.
41 Mao H, Wang H, Liu S, Li Z, Yang X, Yan J et al. A transposable element in a NAC gene is associated with drought tolerance in maize seedlings. Nature Communications. 2015, 6, 8326.
42 Jouffroy O, Saha S, Mueller L, Quesneville H, Maumus F. Comprehensive repeatome annotation reveals strong potential impact of repetitive elements on tomato ripening. BMC genomics. 2016, 17(1):624.
43 Paz RC, Kozaczek ME, Rosli HG, Andino NP, Sanchez-Puerta MV. Diversity, distribution and dynamics of full-length Copia and Gypsy LTR retroelements in Solanum lycopersicum. Genetica. 2017, 145(4-5):417-430.
44 Kim S, Park J, Yeom SI, Kim YM, Seo E, Kim KT, Kim MS, Lee JM, Cheong K, Shin HS, Kim SB. New reference genome sequences of hot pepper reveal the massive evolution of plant disease-resistance genes by retroduplication. Genome biology. 2017 Dec;18(1):210.
45 Carrizo García C, Barfuss MH, Sehr EM, Barboza GE, Samuel R, Moscone EA, Ehrendorfer F. Phylogenetic relationships, diversification and expansion of chili peppers (Capsicum, Solanaceae). Annals of botany. 2016, 118(1):35-51.
46 Manzur JP, Fita A, Prohens J, Rodríguez-Burruezo A. Successful wide hybridization and introgression breeding in a diverse set of common peppers (Capsicum annuum) using different cultivated Ají (C. baccatum) accessions as donor parents. PLoS One. 2015, 10(12), e0144142.
47 Cremona G, Iovene M, Festa G, Conicella C, Parisi M. Production of embryo rescued hybrids between the landrace “Friariello” (Capsicum annuum var. annuum) and C. baccatum var. pendulum: phenotypic and cytological characterization. Euphytica. 2018, 214(8), 129.
48 Staton SE, Bakken BH, Blackman BK, Chapman MA, Kane NC, Tang S, Burke JM. The sunflower (Helianthus annuus L.) genome reflects a recent history of biased accumulation of transposable elements. The plant journal. 2012, 72(1):142-153.
49 Di Filippo M, Traini A, D'Agostino N, Frusciante L, Chiusano ML. Euchromatic and heterochromatic compositional properties emerging from the analysis of Solanum lycopersicum BAC sequences. Gene. 2012, 499(1):176-181.
50 Bolger A, Scossa F, Bolger ME, Lanz C, Maumus F, Tohge T, Fich EA. The genome of the stress-tolerant wild tomato species Solanum pennellii. Nature genetics. 2014, 46(9):1034.
51 Vernhettes S, Grandbastien MA, Casacuberta JM. The evolutionary analysis of the Tnt1 retrotransposon in Nicotiana species reveals the high variability of its regulatory sequences. Molecular biology and evolution. 1998, 15(7):827-836.
52 Melayah D, Lim KY, Bonnivard E, Chalhoub B, Borne FDD, Mhiri C, Grandbastien, MA. Distribution of the Tnt1 retrotransposon family in the amphidiploid tobacco (Nicotiana tabacum) and its wild Nicotiana relatives. Biological journal of the linnean society. 2004, 82(4):639-649.
53 Casacuberta E, González J. The impact of transposable elements in environmental adaptation. Molecular ecology. 2013, 22(6):1503-1517.
54 Kumar A, Bennetzen, JL. Plant retrotransposons. Annual review of genetics. 1999, 33(1):479-532.
55 Jurka J, Bao W, Kojima KK. Families of transposable elements, population structure and the origin of species. Biology direct. 2011, 6(1):44.
56 Hawkins JS, Proulx SR, Rapp RA, Wendel JF. Rapid DNA loss as a counterbalance to genome expansion through retrotransposon proliferation in plants. Proceedings of the national academy of sciences. 2009, 106(42):17811-17816.
57 Yuyama PM, Pereira LFP, Dos Santos TB, Sera T, Vilas-Boas LA, Lopes FR, et al. FISH using a gag-like fragment probe reveals a common Ty 3-gypsy-like retrotransposon in genome of Coffea species. Genome. 2012, 55(12), 825-833.
58 Zhang H, Koblížková A, Wang K, Gong Z, Oliveira L, Torres GA, et al. Boom-bust turnovers of megabase-sized centromeric DNA in Solanum species: rapid evolution of DNA sequences associated with centromeres. The Plant Cell. 2014, 26(4), 1436-1447.
59 Lu H, Cui X, Liu Z, Liu Y, Wang X, Zhou Z. Discovery and annotation of a novel transposable element family in Gossypium. BMC plant biology. 2018, 18(1):307.
60 Llorens C, Futami R, Covelli L, Domínguez-Escribá L, Viu JM, Tamarit D, Aguilar-Rodríguez J, Vicente-Ripolles M, Fuster G, Bernet GP, Maumus F. The Gypsy Database (GyDB) of mobile genetic elements: release 2.0. Nucleic acids research. 2010 Oct 29;39(suppl_1):D70-4.
61 Ma B, Xin Y, Kuang L, He N. Distribution and characteristics of transposable elements in the mulberry genome. The plant genome. 2019; doi:10.3835/plantgenome2018.12.0094
62 Schemberger MO, Nogaroto V, Almeida MC, Artoni RF, Valente GT, Martins C,et al. Sequence analyses and chromosomal distribution of the Tc1/Mariner element in Parodontidae fish (Teleostei: Characiformes). Gene. 2016, 593(2), 308-314.
63 Schemberger MO, Nascimento VD, Coan R, Ramos É, Nogaroto V, Ziemniczak K, et al. DNA transposon invasion and microsatellite accumulation guide W chromosome differentiation in a Neotropical fish genome. Chromosoma. 2019, 1-14.
64 Moscone EA, Lambrou M, Ehrendorfer F. Fluorescent chromosome banding in the cultivated species of Capsicum (Solanaceae). Plant systematics and evolution. 1996, 202(1-2):37-63.
65 Park M, Jo S, Kwon JK, Park J, Ahn JH, Kim S, Kim BD. Comparative analysis of pepper and tomato reveals euchromatin expansion of pepper genome caused by differential accumulation of Ty3/Gypsy-like elements. BMC genomics. 2011, 12(1):85.
66 Pamponét VCC, Souza MM, Silva GS, Micheli F, de Melo CAF, de Oliveira S G, Corrêa RX. Low coverage sequencing for repetitive DNA analysis in Passiflora edulis Sims: cytogenomic characterization of transposable elements and satellite DNA. BMC genomics. 2019, 20(1):262.
67 Houben A, Schroeder-Reiter E, Nagaki K, Nasuda S, Wanner G, Murata M, et al. CENH3 interacts with the centromeric retrotransposon cereba and GC-rich satellites and locates to centromeric substructures in barley. Chromosoma. 2007, 116(3), 275-283.
68 Nagaki K, Neumann P, Zhang D, Ouyang S, Buell CR, Cheng Z, Jiang J. Structure, divergence, and distribution of the CRR centromeric retrotransposon family in rice. Molecular biology evolution. 2005, 22:845-855.
69 Vogel JP, Garvin DF, Mockler TC, Schmutz J, Rokhsar D, Bevan MW, Barry K et al. Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature. 2010, 463:763–768. doi: 10.1038/nature08747
70 Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J. Repbase Update, a database of eukaryotic repetitive elements. Cytogenetic and genome research. 2005;110(1-4):462-7.
71 Birney E, Clamp M, Durbin R. GeneWise and genomewise. Genome research. 2004 May 1;14(5):988-95.
72 El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, Qureshi M, Richardson LJ, Salazar GA, Smart A, Sonnhammer EL. The Pfam protein families database in 2019. Nucleic acids research. 2018 Oct 24;47(D1):D427-32.
73 Liu W, Xie Y, Ma J, Luo X, Nie P, Zuo Z, Lahrmann U, Zhao Q, Zheng Y, Zhao Y, Xue Y. IBS: an illustrator for the presentation and visualization of biological sequences. Bioinformatics. 2015 Jun 10;31(20):3359-61.
74 Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular biology and evolution. 2018, 35(6):1547-1549.
75 Babicki S, Arndt D, Marcu A, Liang Y, Grant JR, Maciejewski A, Wishart DS. Heatmapper: web-enabled heat mapping for all. Nucleic Acids Res. 2016. (epub ahead of print). doi:10.1093/nar/gkw419
76 Doyle JJ, Doyle JL. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical bullettin. 1987, 19:11-15.
77 Schwarzacher T, Ambros P, Schweizer D. Application of Giemsa banding to orchid karyotype analysis. Plant systematics and evolution. 1980, 134(3-4):293-297.