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Abstract

As the source of several anticancer drugs, the marine environment is a treasure trove for the discovery of
new drugs. In this study, a sesterterpenoid-type natural product heteronemin was investigated as a
potential ferroptotic agent in the pancreatic cancer cell line (Panc-1). The effect of heteronemin on lipid
peroxidation and autophagy- and ferritin-related protein expressions was examined using
spectrophotometric and immunoblotting techniques, respectively. As well, several preclinical cell-based
tests were used for the anticancer assessment. Results: Heteronemin at 55 nM concentration reduced cell
viability by 50%. Heteronemin-induced cell death was reversed by a ferroptosis inhibitor, Ferrostatin-1. The
levels of ferroptosis markers and malondialdehyde (MDA) were upregulated by heteronemin treatment
while glutathione peroxidase-4 (GPX4) protein expression was downregulated. Also, significant
alterations in ferritinophagy- and iron-related proteins (Atg5, Atg7, FTL, STEAP3, and DMT-1) were
observed in Panc-1 cells (p < 0.05). Conclusions: The obtained results indicated that heteronemin exerted
its pharmacological effect via triggering ferroptosis in pancreatic cancer. The potent cytotoxic effect of
heteronemin suggested its potential development as a drug lead in the war against cancer.

Introduction

Pancreatic dysfunction can lead to several diseases including diabetes, pancreatitis, and cancer [1-3].
The vast majority (80-90%) of patients with pancreatic ductal adenocarcinoma (PDAC) have local
metastases at the time of diagnosis [4, 5]. These patients do not benefit from surgery. Instead, they are
treated by chemotherapeutic agents including a combination of gemcitabine or 5-fluorouracil plus
leucovorin [6]. The high mortality rate of PDAC is observed due to its aggressive nature, early local and
advanced metastasis, resistance to chemotherapeutics, and limited effective treatments [7, 8].
Chemotherapy and/or radiotherapy are insufficient for PDAC as cancer cells are resistant to apoptosis.
There is an urgent need to identify new biomarkers for the early detection of pancreatic cancer and to
identify new molecular targets involved in the progression of this aggressive disease.

Ferroptosis is an iron- and reactive oxygen species-dependent cell death pathway involves in several
diseases i.e. ischemic organ damage, neurodegeneration, and cancer [9—17]. Unlike autophagy and
apoptosis, ferroptosis is characterized by histological because of lipid peroxidation and decreased
glutathione peroxidase-4 (GPX4) activity [18]. In cancer, ferroptosis can be considered as a tumor
suppressor adaptive response. From this point of view, the regulation of ferroptosis could be a reasonable
target for cancer cells that are resistant to the standard chemotherapy or molecular targeted therapies.

Most of the chemotherapeutic drugs are based on bioactive natural products [19, 20, 21]. Thus, the
investigation of marine natural products against cancer has become a widespread approach among
scientists. A considerable number of marine-derived products such as pachymatismin, bryostatins, and
heteronemin have been shown to inhibit the proliferation of human cancer cells in the in vitro and in vivo
models [22-24].
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Heteronemin, a marine sesterterpenoid derivative isolated from the sponge Hyrtios sp., has attracted
increasing interest due to its potent cytotoxic effect in cancer cell types [25-32]. Even though a recent
study conducted by our laboratory reported its possible regulatory role in ferroptosis in hepatocellular
carcinoma [25], it is unclear whether heteronemin induces ferroptosis in pancreatic cancer cells and if so,
which pathway it uses when promoting ferroptosis. Herein, we evaluated ferroptosis and its related
proteins as molecular targets of heteronemin for PDAC treatment.

Materials And Methods

Cell Culture and Treatments

Human pancreatic ductal adenocarcinoma cell line (Panc-1, CRL-1469™, RRID: CVCL_0480) was bought
from the American Type Culture Collection (ATCC, Manassas, VA, USA). Immortalized human keratinocyte
cell line (HaCaT) was kindly gifted by Prof. Cigdem Yenisey of Aydin Adnan Menderes University. Cells
were maintained in DMEM containing 10% heat-inactivated fetal bovine serum, 100 U/mL penicillin, and
100 pg/mL streptomycin. Cells were cultured at 37 °C in a humidified incubator with 5% CO,. For the
experiments, the cells were treated with heteronemin at increasing concentrations (0.01-10 uM). HaCaT
cell line was used to study the potential cytotoxicity of heteronemin on normal cells. GPX4 antibody (sc-
166570, RRID:AB_2112427) was purchased from Santa Cruz Biotechnology (Santa Cruz, CA). Atg5
antibody (Cat# 12994, RRID:AB_2630393), Atg7 antibody (Cat# 8558, RRID:AB_10831194), anti-rabbit
IgG, HRP-linked antibody (Cat# 7074, RRID:AB_2099233) and anti-mouse IgG, HRP-linked antibody (Cat#
7076, RRID:AB_330924) were purchased from Cell Signaling Biotechnology (Danvers, MA, USA). Ferritin
light chain antibody (FNab03079), DMT1 (SLC11A2, FNab07905) and STEAP3 antibody (FNab08318)
were purchased from Fine Test Wuhan Fine Biotech Corp. (Wuhan, China). All other compounds used in
this study were purchased from Sigma-Aldrich (St. Louis, MO). Ethical approval is not applicable, because
this article does not contain any studies with human or animal subjects.

Isolation of Heteronemin from the Sponge Hippospongia sp.

Heteronemin was separated from the marine sponge Hippospongia sp. following the same procedures in
our previous report [27]. In short, samples were collected from coral reefs off the coast of Taitung, Taiwan
by scuba diving at a depth of 20 m. Samples were freeze-dried and were extracted with EtOAc.
Heteronemin was separated by a silica gel column with n-hexane-EtOAc (3:1) as the eluent solvent. The
sample was further purified on HPLC. An LC-20A VP HPLC system (Shimadzu Inc., Tokyo, Japan) was
used for analysis equipped with a quaternary pump (LC-20AT), an online degasser (DGU-14A), a
photodiode-array detector (SPD-M20A), an autosampler (SIL-20AD), and data collection using ClassVP,
Cosmosil 5C-18-MS-Il column (5 um, 150 x 4.6 mm 1.D.) supplied by Nacalai Tesque, Inc. (Kyoto, Japan)
used for liquid chromatography. The samples were injected (10 yL), and the mobile phase consisted of
water (A) and acetonitrile (B). A gradient program was applied as follows, the initial elution condition was
A:B (25:75, v/v), linearly changed to A:B (12:88, v/v) at 10 min, A:B (4:96, v/v) at 15 min. The percentage
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of the mobile phase B increased linearly to 100% within 15 minutes and 210 nm was selected as the
detection wavelength to collect the target compound.

Cell Viability Assay

Cellular viability was measured by MTS assay kit (CellTiter 96 Aqueous One Solution, Promega). Cells
were incubated in Hank’s Balanced Salt Solution (1.3 mM CacCl,, 0.5 mM MgCl,, 0.4 mM MgS0O,, 5.3 mM
KCI, 0.4 mM KH,PO,, 4.2 mM NaHCO4, 137.9 mM Nacl, 0.3 mM Na,HPO,, 5.6 mM D-glucose) containing
increasing concentrations of heteronemin (0.001-10 uM) and/or Fer-1 (0.5 pM) dissolved in DMSO. MTS
reagent was added to each well following 48 h exposure. The absorbance was measured at 490 nm with
a microplate spectrophotometer. The selective-index was calculated by comparing heteronemin I1Cs
value in the HaCaT cell line against the IC5 value in Panc-1.

Colony Formation Assay

Cells were seeded at 1 x 102 cells/well in 6-well plates and were treated with heteronemin and/or Fer-1.
The culture media were replaced with new media twice a week for two weeks. Crystal violet (Sigma-
Aldrich, St. Louis, MO) was used to stain and make colonies visible. Then, colonies were photographed
and counted in three independent wells.

Lipid peroxidation Assay

Lipid peroxidation product levels were evaluated by the method of Ohkawa et al. (1979) [33]. Briefly, the
cells were incubated with heteronemin at an increasing concentration (0.01-1 uM) for 48 h. Then, the
TBARS assay kit (Cayman Chemical) was used to measure malondialdehyde (MDA) levels in the sample
at 532 nm.

Protein Analysis

Cells (3 x 10°/well) were treated with two different concentrations of heteronemin (1 and 10 uM) for 48 h.
The cells were harvested and were lysed in a buffer containing a protease/phosphatase inhibitor cocktail.
The cellular lysates were analyzed by Western blot analysis as previously described [34].

Statistical Analysis

The obtained data were expressed as mean * standard deviation (SD) from three-five independent
experiments performed in triplicate. The Shapiro-Wilk normality test was used to determine whether the
data were normally distributed. The statistical comparisons were estimated using one-way ANOVA
followed by the Tukey test using GraphPad Prism (GraphPad Software, Inc). p values lower than 0.05
were regarded as statistically significant.

Results
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Heteronemin significantly decreased cell viability of Panc-1 cells

We analyzed the cytotoxic activity of heteronemin in healthy immortalized human keratinocytes (HaCaT)
and human pancreatic cancer cell line (Panc-1) using an MTS cell viability assay kit. Panc-1 and HaCaT
cell lines treated with different concentrations of heteronemin showed IC5pvalues of 55 nM and 256 nM,
respectively (Fig. 1). According to the IC5 values, Panc-1 cells were more susceptible to heteronemin than
HaCaT cells after 48 h of treatment. The calculated Sl value for heteronemin was 4.65. Next, we
determined the ferroptotic potential of heteronemin. As shown in Fig. 2, ferroptosis inhibitor, Fer-1,
significantly reversed cellular death induced by heteronemin. Accordingly, these observations indicated
that the selectivity of heteronemin was high, and the cytotoxic activity of heteronemin depended on the
induction of ferroptosis in Panc-1 cells.

Figure 1.
Figure 2.
Heteronemin inhibited colony formation of Panc-1 cells

Heteronemin reduced the colony-forming potential of Panc-1 cells in a concentration-dependent manner.
Fer-1 treatment significantly increased colony numbers that were decreased by heteronemin. Nearly 90%
increase in colony numbers was observed in Fer-1-treated cells (Fig. 3).

Figure 3.
Heteronemin increased lipid peroxidation and decreased GPX4 protein expression in Panc-1 cells

The concentration of lipid peroxidation final product, MDA, significantly increased in heteronemin-treated
cells at higher concentrations compared with those untreated and cisplatin-treated cells. However, at low
concentrations, no significant change in MDA level was observed (Fig. 4). Consistent with the elevated
MDA levels, the protein analysis showed that GPX4 protein expression was significantly decreased
following heteronemin (1 pM) treatment (p < 0.05).

Figure 4.
Heteronemin altered ferritinophagy- and iron-related protein expression

Autophagy is one of the mechanisms that promotes ferroptosis by breaking down ferritin inside the cell
[35]. Several proteins that regulate autophagy can trigger ferroptotic process. Thus, we evaluated the
effect of heteronemin on autophagy-related proteins, Atg5 and Atg7, in Panc-1 as well as ferritin light
chain subunit (FTL). As shown in Fig. 5a, heteronemin upregulated Atg5 and Atg7 protein expression (p <
0.05). In addition, the protein expression of ferritin subunit, FTL, was downregulated at the highest
concentration of heteronemin. Next, we determined the protein expression of divalent metal transporter-1
(DMT1) and six-transmembrane epithelial antigen of the prostate 3 (STEAP3) which are related to
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divalent iron transport from endosome to cytosol and Fe3* reduction, respectively. A significant increase
in DMT1 and STEAPS3 protein expression was observed following 48 h of heteronemin treatment (p <
0.05, Fig. 5b). These results suggested that heteronemin may trigger ferroptosis in pancreatic cancer cells
by targeting iron transport and autophagy.

Figure 5.

Discussion

Natural products extracted from distinct species significantly contributed to the development of effective
therapeutics against all types of diseases. In this context, the ocean is of immense importance as it has a
large reservoir of marine species with their biologically active compounds possessing various activities
including anticancer, anti-inflammatory, antimicrobial, and antioxidant [36—39]. Several marine-derived
secondary metabolites such as alkaloids, terpenes, peptides, and steroids exhibit potent anticancer
activities [40, 41].

In the present study, we focused on heteronemin and evaluated its ferroptotic potential in a pancreatic
cancer model. As previously reported, heteronemin exhibited anticancer, anti-nutritional, antimicrobial,
protein inhibitory, and antitubercular activities [42, 43]. In agreement with our findings, heteronemin
reduced cell viability and proliferation in several cancer cell lines including leukemia, colon
adenocarcinoma, breast cancer, and renal carcinoma at a concentration of less than one micromolar [31,
44]. In the present study, heteronemin showed potent cytotoxic activity against Panc-1 cells with IC5, of
55 nM. We observed a good selectivity profile with an Sl value of 4.65 for heteronemin in pancreatic
cancer cells following 48 h of treatment.

The most promising strategies for PDAC treatment are to inhibit mutated genes, such as KRAS, to
regulate macromolecules that contribute to the disease progression, or to overcome chemoresistance
[45]. The most used drugs approved by the FDA for pancreatic cancer are 5-fluorouracil, albumin-bound
paclitaxel, cisplatin, gemcitabine, and FOLFIRINOX (5-fluorouracil, leucovorin, irinotecan, oxaliplatin) [46].
These drugs have short half-lives and are usually given in higher and repeated doses which cause mild-
to-moderate side effects [47-49]. Cisplatin is one of the agents used to treat pancreatic cancer. Severe
side effects limit the therapeutic efficacy of cisplatin. Guo et al. (2018) reported that cisplatin inactivates
GPX together with the induction of GSH depletion in cancer cells [50]. Thus, we decided to use cisplatin
as the positive control to compare its effect with heteronemin in PDAC. Similar to the short-term cell
survival findings, the long-term cell survival results monitored in a colony formation assay supported the
inhibitory effect of heteronemin, which was comparable to cisplatin. Heteronemin-treated cells showed a
reduced migration ability as the concentration increased and the results were comparable to cisplatin.
These observations indicated that heteronemin selectively inhibited cell growth and the results were
comparable to the clinically used anticancer drugs in pancreatic cancer cells.
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Chemotherapeutic agents disrupt cell homeostasis via inhibiting DNA synthesis, increasing oxidative
stress, arresting the cell cycle, and inducing cellular death mechanisms such as necrosis and apoptosis.
Although Bcl-mediated apoptotic pathway and autophagy were reported to be induced by heteronemin in
cancer cells [29, 31], the effect of heteronemin on other cellular death pathways was not fully elucidated.

Recently, ferroptotic cell death is widely investigated in cancer studies [51, 52]. Most of the clinically used
chemotherapeutic drugs were found to induce ferroptosis as well as apoptosis [51, 53]. Similarly, we
observed that heteronemin failed to stimulate cell death in the presence of a ferroptosis inhibitor, Fer-1. In
agreement with the current data, we reported that heteronemin induced cellular death can be rescued by
ferroptosis inhibitor in hepatocellular carcinoma cells [25]. These observations were critical for our further
evaluation of heteronemin-induced ferroptosis in the present study. We hypothesized that heteronemin
would regulate several pathways such as lipid peroxidation, iron transport, and iron storage to induce
ferroptosis in cancer cells.

Increasing evidence demonstrated those numerous metabolic pathways contribute to ferroptosis through
lipid-ROS production [54, 55]. Biochemical events including intracellular iron accumulation, and lipid
peroxidation are critical for ferroptosis in cancer cells [56]. Pathways inducing ferroptosis are associated
with the reduction of cysteine uptake through the inhibition of system X, (SLC7A11), the reduction of
GPX4 activity, and eventually the accumulation of intracellular lipid peroxides [57, 58]. GPX4 is a pivotal
enzyme responsible for the detoxification of lipid peroxides and the progression of ferroptosis. Previously,
the ability of heteronemin to reduce GPX4 protein expression was reported in hepatocellular carcinoma
cell lines [25]. In our study, GPX4 protein expression was significantly decreased in response to
heteronemin as well. The downregulation of GPX4 by heteronemin together with the increased MDA
levels indicated that heteronemin successfully inhibited the lipid peroxidation product scavenging activity
of GPX4 and promoted ferroptosis in pancreatic cancer cells.

One of the components that distinguish ferroptosis from other cell death mechanisms is iron
metabolism. Free Fe?* causes ferroptosis by catalyzing free radical formation via Fenton reaction.
Biochemically, the reduction of Fe3* to Fe?* is catalyzed by STEAP3 in the endosome. Fe?* is released
into the cytoplasm via DMT1 [59]. Thus, any alteration in the expression of these proteins is critical for
the labile iron pool and the consequent maintenance of iron homeostasis. Turcu et al. (2020) reported
that blockade of DMT1 inhibits iron translocation which leads to lysosomal iron overload and ferroptosis
in cancer stem cells [60]. However, the upregulation of STEAP3 and DMT1 in pancreatic cancer cells
following heteronemin treatment indicated that the conversion of Fe3* to Fe?* as well as the release of
free Fe?* into cytoplasm may be triggered by heteronemin.

Ferritinophagy is defined as the degradation of ferritin, providing free Fe?* for the cell, and contributing to
ferroptosis as a source of unstable iron ions [10, 59]. Previously, Atg5 and Atg7 knockdown/knockout
were demonstrated to block erastin-induced ferroptosis with decreased intracellular ferrous iron levels,
and lipid peroxidation [35]. Conversely, upregulation of Atg5 and Atg7 protein expressions in response to
heteronemin treatment with slightly decreased ferritin light chain (FTL) protein level and lipid peroxidation
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may promote the induction of ferroptosis in cancer cells. Free iron accumulation inside the cell
participated in the Fenton reaction to produce lipid peroxides, which was confirmed with the increased
MDA levels.

Yang and Stockwell (2008) reported that cancer cells undergoing ferroptosis increased iron import and
decreased iron storage when compared to other cells [18]. Thus, it can be suggested that heteronemin
sensitizes tumor cells to ferroptosis by modulating iron metabolism. Reduced iron storage because of
decreased FTL and increased autophagy-related protein expression in response to heteronemin may
contribute to iron overload and eventually trigger ferroptosis in cancer cells.

Conclusions

Pancreatic cancers are resistant to the currently used drugs. To overcome drug-resistance mechanisms
such as increased drug efflux, improved DNA repair, and impaired apoptosis; activating ferroptotic
pathway is a state-of-the-art therapeutic strategy. Taken together, our present study demonstrated that
heteronemin promoted ferroptosis in pancreatic cancer cells via the regulation of several proteins that
possess critical roles in the progression of ferroptosis. We believe that our study will be of importance to
understanding the heteronemin mechanism of action as a potential anticancer drug. Heteronemin itself,
or its derivatives to be synthesized in the future with higher selectivity and affinity will be highly promising
agents for patients suffering from pancreatic cancer.
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Figure 1

Antiproliferative effect of heteronemin on Panc-1 and HaCaT cell lines at increasing concentrations
(0.001,0.1,1, 2.5, 5,10 uM). The results are expressed as percentage survival after 48 h of exposure. ICs

values were calculated as 0.055 uM (Panc-1) and 0.256 uM (HaCaT) for each cell line
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Ferroptosis inducer potential of heteronemin on Panc-1 in the presence of ferroptosis inhibitor, Fer-1 (0.5
uUM). The results are expressed as percentage survival after 48 h of exposure. *p < 0.05 vs. untreated cells,
**p < 0.05 vs. heteronemin only treated cells at the same concentration. #p < 0.05 vs. Erastin-treated cells
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Figure 3

Colony formation analysis of Panc-1 cells treated with cisplatin (5ng/mL) heteronemin (0.01, 0.1 and 1
uM) and/or Fer-1 (0.5 uM) for 14 days. The bar graph represents the average of three biological
replicates. Representative dishes stained with crystal violet. *p < 0.05 vs. untreated cells, **p < 0.05 vs.
heteronemin only treated cells at the same concentration
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[B-actin signal. Bar graph data represent the mean = SD.; n = 3 independent experiments. *p < 0.05 vs.
untreated cells
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