1. Kessler, R. C. The global burden of anxiety and mood disorders: putting the European Study of the Epidemiology of Mental Disorders (ESEMeD) findings into perspective. J Clin Psychiatry 68 Suppl 2, 10–19 (2007).
2. Yang, X. et al. Global, regional and national burden of anxiety disorders from 1990 to 2019: results from the Global Burden of Disease Study 2019. Epidemiol Psychiatr Sci 30, e36 (2021).
3. Hettema, J. M., Neale, M. C. & Kendler, K. S. A Review and Meta-Analysis of the Genetic Epidemiology of Anxiety Disorders. AJP 158, 1568–1578 (2001).
4. Sharma, S., Powers, A., Bradley, B. & Ressler, K. J. Gene × Environment Determinants of Stress- and Anxiety-Related Disorders. Annu Rev Psychol 67, 239–261 (2016).
5. Heim, C. & Nemeroff, C. B. The impact of early adverse experiences on brain systems involved in the pathophysiology of anxiety and affective disorders. Biological Psychiatry 46, 1509–1522 (1999).
6. Faravelli, C. Childhood stressful events, HPA axis and anxiety disorders. WJP 2, 13 (2012).
7. Krishnan, V. et al. Molecular Adaptations Underlying Susceptibility and Resistance to Social Defeat in Brain Reward Regions. Cell 131, 391–404 (2007).
8. Hollis, F. & Kabbaj, M. Social defeat as an animal model for depression. ILAR journal / National Research Council, Institute of Laboratory Animal Resources 55, 221–32 (2014).
9. Laine, M. A. et al. Genetic Control of Myelin Plasticity after Chronic Psychosocial Stress. eneuro 5, ENEURO.0166-18.2018 (2018).
10. Calhoon, G. G. & Tye, K. M. Resolving the neural circuits of anxiety. Nat Neurosci 18, 1394–1404 (2015).
11. Zhang, H. et al. The recovery trajectory of adolescent social defeat stress-induced behavioral, 1H-MRS metabolites and myelin changes in Balb/c mice. Sci Rep 6, 27906 (2016).
12. Lehmann, M. L., Weigel, T. K., Elkahloun, A. G. & Herkenham, M. Chronic social defeat reduces myelination in the mouse medial prefrontal cortex. Sci Rep 7, 46548 (2017).
13. Liu, J., Dietz, K., Hodes, G. E., Russo, S. J. & Casaccia, P. Widespread transcriptional alternations in oligodendrocytes in the adult mouse brain following chronic stress: Stress Alters Oligodendrocyte Transcription. Devel Neurobio 78, 152–162 (2018).
14. Bonnefil, V. et al. Region-specific myelin differences define behavioral consequences of chronic social defeat stress in mice. eLife 8, e40855 (2019).
15. Cathomas, F. et al. Oligodendrocyte gene expression is reduced by and influences effects of chronic social stress in mice. Genes, Brain and Behavior 18, e12475 (2019).
16. de Faria, O. et al. Periods of synchronized myelin changes shape brain function and plasticity. Nat Neurosci 24, 1508–1521 (2021).
17. Lubetzki, C., Sol-Foulon, N. & Desmazières, A. Nodes of Ranvier during development and repair in the CNS. Nat Rev Neurol 16, 426–439 (2020).
18. Poliak, S. & Peles, E. The local differentiation of myelinated axons at nodes of Ranvier. Nat Rev Neurosci 4, 968–980 (2003).
19. Nelson, A. D. & Jenkins, P. M. Axonal Membranes and Their Domains: Assembly and Function of the Axon Initial Segment and Node of Ranvier. Front. Cell. Neurosci. 11, 136 (2017).
20. Arancibia-Cárcamo, I. L. et al. Node of Ranvier length as a potential regulator of myelinated axon conduction speed. eLife 6, e23329 (2017).
21. Cullen, C. L. et al. Periaxonal and nodal plasticities modulate action potential conduction in the adult mouse brain. Cell Reports 34, 108641 (2021).
22. Dutta, D. J. et al. Regulation of myelin structure and conduction velocity by perinodal astrocytes. Proc Natl Acad Sci USA 115, 11832–11837 (2018).
23. Ford, M. C. et al. Tuning of Ranvier node and internode properties in myelinated axons to adjust action potential timing. Nat Commun 6, 8073 (2015).
24. Noori, R. et al. Activity-dependent myelination: A glial mechanism of oscillatory self-organization in large-scale brain networks. Proc Natl Acad Sci USA 117, 13227–13237 (2020).
25. Howell, O. W. et al. Disruption of neurofascin localization reveals early changes preceding demyelination and remyelination in multiple sclerosis. Brain 129, 3173–3185 (2006).
26. Hinman, J. D. et al. Age-related molecular reorganization at the node of Ranvier. J. Comp. Neurol. 495, 351–362 (2006).
27. Gallego-Delgado, P. et al. Neuroinflammation in the normal-appearing white matter (NAWM) of the multiple sclerosis brain causes abnormalities at the nodes of Ranvier. PLoS Biol 18, e3001008 (2020).
28. Roth, B. L. DREADDs for Neuroscientists. Neuron 89, 683–94 (2016).
29. Subramanian, A. et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences 102, 15545–15550 (2005).
30. Bishop, S., Duncan, J., Brett, M. & Lawrence, A. D. Prefrontal cortical function and anxiety: controlling attention to threat-related stimuli. Nat Neurosci 7, 184–188 (2004).
31. Riga, D. et al. Optogenetic dissection of medial prefrontal cortex circuitry. Front. Syst. Neurosci. 8, (2014).
32. Stedehouder, J. et al. Fast-spiking Parvalbumin Interneurons are Frequently Myelinated in the Cerebral Cortex of Mice and Humans. Cerebral Cortex 27, 5001–5013 (2017).
33. Golden, S. A., III, H. E. C., Berton, O. & Russo, S. J. A standardized protocol for repeated social defeat stress in mice. Nature Protocols 6, 1183 (2011).
34. Arancibia-Carcamo, I. L. & Attwell, D. The node of Ranvier in CNS pathology. Acta Neuropathol 128, 161–175 (2014).
35. Bhat, M. A. et al. Axon-Glia Interactions and the Domain Organization of Myelinated Axons Requires Neurexin IV/Caspr/Paranodin. Neuron 30, 369–383 (2001).
36. Pillai, A. M. et al. Spatiotemporal ablation of myelinating glia-specific neurofascin (Nfasc NF155 ) in mice reveals gradual loss of paranodal axoglial junctions and concomitant disorganization of axonal domains. J. Neurosci. Res. 87, 1773–1793 (2009).
37. Schneider, S. et al. Decrease in newly generated oligodendrocytes leads to motor dysfunctions and changed myelin structures that can be rescued by transplanted cells: Reduced Oligodendrogenesis in the Adult Brain. Glia 64, 2201–2218 (2016).
38. Fields, R. D. A new mechanism of nervous system plasticity: activity-dependent myelination. Nat Rev Neurosci 16, 756–767 (2015).
39. Mitew, S. et al. Pharmacogenetic stimulation of neuronal activity increases myelination in an axon-specific manner. Nat Commun 9, 306 (2018).
40. Bonetto, G., Belin, D. & Káradóttir, R. T. Myelin: A gatekeeper of activity-dependent circuit plasticity? Science 374, eaba6905 (2021).
41. Laine, M. A. et al. Brain activation induced by chronic psychosocial stress in mice. Sci Rep 7, 15061 (2017).
42. Padilla-Coreano, N. et al. Direct Ventral Hippocampal-Prefrontal Input Is Required for Anxiety-Related Neural Activity and Behavior. Neuron 89, 857–866 (2016).
43. Parfitt, G. M. et al. Bidirectional Control of Anxiety-Related Behaviors in Mice: Role of Inputs Arising from the Ventral Hippocampus to the Lateral Septum and Medial Prefrontal Cortex. Neuropsychopharmacol 42, 1715–1728 (2017).
44. Fu, Y. et al. Paranodal myelin retraction in relapsing experimental autoimmune encephalomyelitis visualized by coherent anti-Stokes Raman scattering microscopy. J. Biomed. Opt. 16, 106006 (2011).
45. Stahon, K. E. et al. Age-Related Changes in Axonal and Mitochondrial Ultrastructure and Function in White Matter. Journal of Neuroscience 36, 9990–10001 (2016).
46. Susuki, K. Node of Ranvier Disruption as a Cause of Neurological Diseases. ASN Neuro 5, AN20130025 (2013).
47. Rosenbluth, J. Multiple functions of the paranodal junction of myelinated nerve fibers. J. Neurosci. Res. 87, 3250–3258 (2009).
48. Miyata, S. et al. Association between chronic stress-induced structural abnormalities in Ranvier nodes and reduced oligodendrocyte activity in major depression. Sci Rep 6, 23084 (2016).
49. Hare, B. D. & Duman, R. S. Prefrontal cortex circuits in depression and anxiety: contribution of discrete neuronal populations and target regions. Mol Psychiatry 25, 2742–2758 (2020).
50. Laine, M. A. et al. Genetic Control of Myelin Plasticity after Chronic Psychosocial Stress. eNeuro 5, ENEURO.0166-18.2018 (2018).
51. Law, C. W., Chen, Y., Shi, W. & Smyth, G. K. voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol 15, R29 (2014).
52. Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research 43, e47–e47 (2015).
53. Phipson, B., Lee, S., Majewski, I. J., Alexander, W. S. & Smyth, G. K. Robust hyperparameter estimation protects against hypervariable genes and improves power to detect differential expression. Ann. Appl. Stat. 10, (2016).
54. Mootha, V. K. et al. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34, 267–273 (2003).
55. Lebow, M. et al. Susceptibility to PTSD-Like Behavior Is Mediated by Corticotropin-Releasing Factor Receptor Type 2 Levels in the Bed Nucleus of the Stria Terminalis. Journal of Neuroscience 32, 6906–6916 (2012).
56. Franklin, K. B. J. The mouse brain in stereotaxic coordinates. (Elsevier Academic Press, 2008).
57. Frangi, A. F., Niessen, W. J., Vincken, K. L. & Viergever, M. A. Multiscale vessel enhancement filtering. in Medical Image Computing and Computer-Assisted Intervention — MICCAI’98 (eds. Wells, W. M., Colchester, A. & Delp, S.) vol. 1496 130–137 (Springer Berlin Heidelberg, 1998).
58. Chan, T. F. & Vese, L. A. Active contours without edges. IEEE Trans. on Image Process. 10, 266–277 (2001).
59. Duda, R. O. & Hart, P. E. Use of the Hough transformation to detect lines and curves in pictures. Commun. ACM 15, 11–15 (1972).
60. Abdollahzadeh, A., Belevich, I., Jokitalo, E., Tohka, J. & Sierra, A. Automated 3D Axonal Morphometry of White Matter. Sci Rep 9, 6084 (2019).
61. Abdollahzadeh, A., Belevich, I., Jokitalo, E., Sierra, A. & Tohka, J. DeepACSON automated segmentation of white matter in 3D electron microscopy. Commun Biol 4, 179 (2021).
62. Abdollahzadeh, A., Sierra, A. & Tohka, J. Cylindrical Shape Decomposition for 3D Segmentation of Tubular Objects. IEEE Access 9, 23979–23995 (2021).
63. Hanley, J. A. Statistical Analysis of Correlated Data Using Generalized Estimating Equations: An Orientation. American Journal of Epidemiology 157, 364–375 (2003).